forked from mirror/async-std
parent
d941bb8919
commit
d3c67148b7
@ -0,0 +1,76 @@
|
|||||||
|
## Writing an Accept Loop
|
||||||
|
|
||||||
|
Let's implement the scaffold of the server: a loop that binds a TCP socket to an address and starts accepting connections.
|
||||||
|
|
||||||
|
|
||||||
|
First of all, let's add required import boilerplate:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#![feature(async_await)]
|
||||||
|
|
||||||
|
use std::net::ToSocketAddrs; // 1
|
||||||
|
|
||||||
|
use async_std::{
|
||||||
|
prelude::*, // 2
|
||||||
|
task, // 3
|
||||||
|
net::TcpListener, // 4
|
||||||
|
};
|
||||||
|
|
||||||
|
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>; // 5
|
||||||
|
```
|
||||||
|
|
||||||
|
1. `async_std` uses `std` types where appropriate.
|
||||||
|
We'll need `ToSocketAddrs` to specify address to listen on.
|
||||||
|
2. `prelude` re-exports some traits required to work with futures and streams
|
||||||
|
3. The `task` module roughtly corresponds to `std::thread` module, but tasks are much lighter weight.
|
||||||
|
A single thread can run many tasks.
|
||||||
|
4. For the socket type, we use `TcpListener` from `async_std`, which is just like `std::net::TcpListener`, but is non-blocking and uses `async` API.
|
||||||
|
5. We will skip implementing comprehensive error handling in this example.
|
||||||
|
To propagate the errors, we will use a boxed error trait object.
|
||||||
|
Do you know that there's `From<&'_ str> for Box<dyn Error>` implementation in stdlib, which allows you to use strings with `?` operator?
|
||||||
|
|
||||||
|
|
||||||
|
Now we can write the server's accept loop:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
async fn server(addr: impl ToSocketAddrs) -> Result<()> { // 1
|
||||||
|
let listener = TcpListener::bind(addr).await?; // 2
|
||||||
|
let mut incoming = listener.incoming();
|
||||||
|
while let Some(stream) = incoming.next().await { // 3
|
||||||
|
// TODO
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. We mark `server` function as `async`, which allows us to use `.await` syntax inside.
|
||||||
|
2. `TcpListener::bind` call returns a future, which we `.await` to extract the `Result`, and then `?` to get a `TcpListener`.
|
||||||
|
Note how `.await` and `?` work nicely together.
|
||||||
|
This is exactly how `std::net::TcpListener` works, but with `.await` added.
|
||||||
|
Mirroring API of `std` is an explicit design goal of `async_std`.
|
||||||
|
3. Here, we would like to iterate incoming sockets, just how one would do in `std`:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
let listener: std::net::TcpListener = unimplemented!();
|
||||||
|
for stream in listener.incoming() {
|
||||||
|
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Unfortunately this doesn't quite work with `async` yet, because there's no support for `async` for-loops in the language yet.
|
||||||
|
For this reason we have to implement the loop manually, by using `while let Some(item) = iter.next().await` pattern.
|
||||||
|
|
||||||
|
Finally, let's add main:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
let fut = server("127.0.0.1:8080");
|
||||||
|
task::block_on(fut)
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
The crucial thing to realise that is in Rust, unlike other languages, calling an async function does **not** run any code.
|
||||||
|
Async functions only construct futures, which are inert state machines.
|
||||||
|
To start stepping through the future state-machine in an async function, you should use `.await`.
|
||||||
|
In a non-async function, a way to execute a future is to handle it to the executor.
|
||||||
|
In this case, we use `task::block_on` to execute future on the current thread and block until it's done.
|
@ -0,0 +1,136 @@
|
|||||||
|
|
||||||
|
## All Together
|
||||||
|
|
||||||
|
At this point, we only need to start broker to get a fully-functioning (in the happy case!) chat:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#![feature(async_await)]
|
||||||
|
|
||||||
|
use std::{
|
||||||
|
net::ToSocketAddrs,
|
||||||
|
sync::Arc,
|
||||||
|
collections::hash_map::{HashMap, Entry},
|
||||||
|
};
|
||||||
|
|
||||||
|
use futures::{
|
||||||
|
channel::mpsc,
|
||||||
|
SinkExt,
|
||||||
|
};
|
||||||
|
|
||||||
|
use async_std::{
|
||||||
|
io::BufReader,
|
||||||
|
prelude::*,
|
||||||
|
task,
|
||||||
|
net::{TcpListener, TcpStream},
|
||||||
|
};
|
||||||
|
|
||||||
|
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
|
||||||
|
type Sender<T> = mpsc::UnboundedSender<T>;
|
||||||
|
type Receiver<T> = mpsc::UnboundedReceiver<T>;
|
||||||
|
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
task::block_on(server("127.0.0.1:8080"))
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
||||||
|
let listener = TcpListener::bind(addr).await?;
|
||||||
|
|
||||||
|
let (broker_sender, broker_receiver) = mpsc::unbounded(); // 1
|
||||||
|
let _broker_handle = task::spawn(broker(broker_receiver));
|
||||||
|
let mut incoming = listener.incoming();
|
||||||
|
while let Some(stream) = incoming.next().await {
|
||||||
|
let stream = stream?;
|
||||||
|
println!("Accepting from: {}", stream.peer_addr()?);
|
||||||
|
spawn_and_log_error(client(broker_sender.clone(), stream));
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn client(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
|
||||||
|
let stream = Arc::new(stream); // 2
|
||||||
|
let reader = BufReader::new(&*stream);
|
||||||
|
let mut lines = reader.lines();
|
||||||
|
|
||||||
|
let name = match lines.next().await {
|
||||||
|
None => Err("peer disconnected immediately")?,
|
||||||
|
Some(line) => line?,
|
||||||
|
};
|
||||||
|
broker.send(Event::NewPeer { name: name.clone(), stream: Arc::clone(&stream) }).await // 3
|
||||||
|
.unwrap();
|
||||||
|
|
||||||
|
while let Some(line) = lines.next().await {
|
||||||
|
let line = line?;
|
||||||
|
let (dest, msg) = match line.find(':') {
|
||||||
|
None => continue,
|
||||||
|
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
|
||||||
|
};
|
||||||
|
let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
|
||||||
|
let msg: String = msg.trim().to_string();
|
||||||
|
|
||||||
|
broker.send(Event::Message { // 4
|
||||||
|
from: name.clone(),
|
||||||
|
to: dest,
|
||||||
|
msg,
|
||||||
|
}).await.unwrap();
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn client_writer(
|
||||||
|
mut messages: Receiver<String>,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
) -> Result<()> {
|
||||||
|
let mut stream = &*stream;
|
||||||
|
while let Some(msg) = messages.next().await {
|
||||||
|
stream.write_all(msg.as_bytes()).await?;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Event {
|
||||||
|
NewPeer {
|
||||||
|
name: String,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
},
|
||||||
|
Message {
|
||||||
|
from: String,
|
||||||
|
to: Vec<String>,
|
||||||
|
msg: String,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn broker(mut events: Receiver<Event>) -> Result<()> {
|
||||||
|
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
|
||||||
|
|
||||||
|
while let Some(event) = events.next().await {
|
||||||
|
match event {
|
||||||
|
Event::Message { from, to, msg } => {
|
||||||
|
for addr in to {
|
||||||
|
if let Some(peer) = peers.get_mut(&addr) {
|
||||||
|
peer.send(format!("from {}: {}\n", from, msg)).await?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Event::NewPeer { name, stream} => {
|
||||||
|
match peers.entry(name) {
|
||||||
|
Entry::Occupied(..) => (),
|
||||||
|
Entry::Vacant(entry) => {
|
||||||
|
let (client_sender, client_receiver) = mpsc::unbounded();
|
||||||
|
entry.insert(client_sender); // 4
|
||||||
|
spawn_and_log_error(client_writer(client_receiver, stream)); // 5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Inside the `server`, we create broker's channel and `task`.
|
||||||
|
2. Inside `client`, we need to wrap `TcpStream` into an `Arc`, to be able to share it with the `client_writer`.
|
||||||
|
3. On login, we notify the broker.
|
||||||
|
Note that we `.unwrap` on send: broker should outlive all the clients and if that's not the case the broker probably panicked, so we can escalate the panic as well.
|
||||||
|
4. Similarly, we forward parsed messages to the broker, assuming that it is alive.
|
@ -0,0 +1,86 @@
|
|||||||
|
## Clean Shutdown
|
||||||
|
|
||||||
|
On of the problems of the current implementation is that it doesn't handle graceful shutdown.
|
||||||
|
If we break from the accept loop for some reason, all in-flight tasks are just dropped on the floor.
|
||||||
|
A more correct shutdown sequence would be:
|
||||||
|
|
||||||
|
1. Stop accepting new clients
|
||||||
|
2. Deliver all pending messages
|
||||||
|
3. Exit the process
|
||||||
|
|
||||||
|
A clean shutdown in a channel based architecture is easy, although it can appear a magic trick at first.
|
||||||
|
In Rust, receiver side of a channel is closed as soon as all senders are dropped.
|
||||||
|
That is, as soon as producers exit and drop their senders, the rest of the system shutdowns naturally.
|
||||||
|
In `async_std` this translates to two rules:
|
||||||
|
|
||||||
|
1. Make sure that channels form an acyclic graph.
|
||||||
|
2. Take care to wait, in the correct order, until intermediate layers of the system process pending messages.
|
||||||
|
|
||||||
|
In `a-chat`, we already have an unidirectional flow of messages: `reader -> broker -> writer`.
|
||||||
|
However, we never wait for broker and writers, which might cause some messages to get dropped.
|
||||||
|
Let's add waiting to the server:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
||||||
|
let listener = TcpListener::bind(addr).await?;
|
||||||
|
|
||||||
|
let (broker_sender, broker_receiver) = mpsc::unbounded();
|
||||||
|
let broker = task::spawn(broker(broker_receiver));
|
||||||
|
let mut incoming = listener.incoming();
|
||||||
|
while let Some(stream) = incoming.next().await {
|
||||||
|
let stream = stream?;
|
||||||
|
println!("Accepting from: {}", stream.peer_addr()?);
|
||||||
|
spawn_and_log_error(client(broker_sender.clone(), stream));
|
||||||
|
}
|
||||||
|
drop(broker_sender); // 1
|
||||||
|
broker.await?; // 5
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
And to the broker:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
async fn broker(mut events: Receiver<Event>) -> Result<()> {
|
||||||
|
let mut writers = Vec::new();
|
||||||
|
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
|
||||||
|
|
||||||
|
while let Some(event) = events.next().await { // 2
|
||||||
|
match event {
|
||||||
|
Event::Message { from, to, msg } => {
|
||||||
|
for addr in to {
|
||||||
|
if let Some(peer) = peers.get_mut(&addr) {
|
||||||
|
peer.send(format!("from {}: {}\n", from, msg)).await?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Event::NewPeer { name, stream} => {
|
||||||
|
match peers.entry(name) {
|
||||||
|
Entry::Occupied(..) => (),
|
||||||
|
Entry::Vacant(entry) => {
|
||||||
|
let (client_sender, client_receiver) = mpsc::unbounded();
|
||||||
|
entry.insert(client_sender);
|
||||||
|
let handle = spawn_and_log_error(client_writer(client_receiver, stream));
|
||||||
|
writers.push(handle); // 4
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
drop(peers); // 3
|
||||||
|
for writer in writers { // 4
|
||||||
|
writer.await?;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
Notice what happens with all of the channels once we exit the accept loop:
|
||||||
|
|
||||||
|
1. First, we drop the main broker's sender.
|
||||||
|
That way when the readers are done, there's no sender for the broker's channel, and the chanel closes.
|
||||||
|
2. Next, the broker exits `while let Some(event) = events.next().await` loop.
|
||||||
|
3. It's crucial that, at this stage, we drop the `peers` map.
|
||||||
|
This drops writer's senders.
|
||||||
|
4. Now we can join all of the writers.
|
||||||
|
5. Finally, we join the broker, which also guarantees that all the writes have terminated.
|
@ -0,0 +1,60 @@
|
|||||||
|
|
||||||
|
## Connecting Readers and Writers
|
||||||
|
|
||||||
|
So how we make sure that messages read in `client` flow into the relevant `client_writer`?
|
||||||
|
We should somehow maintain an `peers: HashMap<String, Sender<String>>` map which allows a client to find destination channels.
|
||||||
|
However, this map would be a bit of shared mutable state, so we'll have to wrap an `RwLock` over it and answer tough questions of what should happen if the client joins at the same moment as it receives a message.
|
||||||
|
|
||||||
|
One trick to make reasoning about state simpler comes from the actor model.
|
||||||
|
We can create a dedicated broker tasks which owns the `peers` map and communicates with other tasks by channels.
|
||||||
|
By hiding `peers` inside such "actor" task, we remove the need for mutxes and also make serialization point explicit.
|
||||||
|
The order of events "Bob sends message to Alice" and "Alice joins" is determined by the order of the corresponding events in the broker's event queue.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Event { // 1
|
||||||
|
NewPeer {
|
||||||
|
name: String,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
},
|
||||||
|
Message {
|
||||||
|
from: String,
|
||||||
|
to: Vec<String>,
|
||||||
|
msg: String,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn broker(mut events: Receiver<Event>) -> Result<()> {
|
||||||
|
let mut peers: HashMap<String, Sender<String>> = HashMap::new(); // 2
|
||||||
|
|
||||||
|
while let Some(event) = events.next().await {
|
||||||
|
match event {
|
||||||
|
Event::Message { from, to, msg } => { // 3
|
||||||
|
for addr in to {
|
||||||
|
if let Some(peer) = peers.get_mut(&addr) {
|
||||||
|
peer.send(format!("from {}: {}\n", from, msg)).await?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Event::NewPeer { name, stream } => {
|
||||||
|
match peers.entry(name) {
|
||||||
|
Entry::Occupied(..) => (),
|
||||||
|
Entry::Vacant(entry) => {
|
||||||
|
let (client_sender, client_receiver) = mpsc::unbounded();
|
||||||
|
entry.insert(client_sender); // 4
|
||||||
|
spawn_and_log_error(client_writer(client_receiver, stream)); // 5
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Broker should handle two types of events: a message or an arrival of a new peer.
|
||||||
|
2. Internal state of the broker is a `HashMap`.
|
||||||
|
Note how we don't need a `Mutex` here and can confidently say, at each iteration of the broker's loop, what is the current set of peers
|
||||||
|
3. To handle a message we send it over a channel to each destination
|
||||||
|
4. To handle new peer, we first register it in the peer's map ...
|
||||||
|
5. ... and then spawn a dedicated task to actually write the messages to the socket.
|
@ -0,0 +1,285 @@
|
|||||||
|
## Handling Disconnections
|
||||||
|
|
||||||
|
Currently, we only ever *add* new peers to the map.
|
||||||
|
This is clearly wrong: if a peer closes connection to the chat, we should not try to send any more messages to it.
|
||||||
|
|
||||||
|
One subtlety with handling disconnection is that we can detect it either in the reader's task, or in the writer's task.
|
||||||
|
The most obvious solution here is to just remove the peer from the `peers` map in both cases, but this would be wrong.
|
||||||
|
If *both* read and write fail, we'll remove the peer twice, but it can be the case that the peer reconnected between the two failures!
|
||||||
|
To fix this, we will only remove the peer when the write side finishes.
|
||||||
|
If the read side finishes we will notify the write side that it should stop as well.
|
||||||
|
That is, we need to add an ability to signal shutdown for the writer task.
|
||||||
|
|
||||||
|
One way to approach this is a `shutdown: Receiver<()>` channel.
|
||||||
|
There's a more minimal solution however, which makes a clever use of RAII.
|
||||||
|
Closing a channel is a synchronization event, so we don't need to send a shutdown message, we can just drop the sender.
|
||||||
|
This way, we statically guarantee that we issue shutdown exactly once, even if we early return via `?` or panic.
|
||||||
|
|
||||||
|
First, let's add shutdown channel to the `client`:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Void {} // 1
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Event {
|
||||||
|
NewPeer {
|
||||||
|
name: String,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
shutdown: Receiver<Void>, // 2
|
||||||
|
},
|
||||||
|
Message {
|
||||||
|
from: String,
|
||||||
|
to: Vec<String>,
|
||||||
|
msg: String,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn client(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
|
||||||
|
// ...
|
||||||
|
|
||||||
|
let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::<Void>(); // 3
|
||||||
|
broker.send(Event::NewPeer {
|
||||||
|
name: name.clone(),
|
||||||
|
stream: Arc::clone(&stream),
|
||||||
|
shutdown: shutdown_receiver,
|
||||||
|
}).await.unwrap();
|
||||||
|
|
||||||
|
// ...
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. To enforce that no messages are send along the shutdown channel, we use an uninhabited type.
|
||||||
|
2. We pass the shutdown channel to the writer task
|
||||||
|
3. In the reader, we create an `_shutdown_sender` whose only purpose is to get dropped.
|
||||||
|
|
||||||
|
In the `client_writer`, we now need to chose between shutdown and message channels.
|
||||||
|
We use `select` macro for this purpose:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
use futures::select;
|
||||||
|
|
||||||
|
async fn client_writer(
|
||||||
|
messages: &mut Receiver<String>,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
mut shutdown: Receiver<Void>, // 1
|
||||||
|
) -> Result<()> {
|
||||||
|
let mut stream = &*stream;
|
||||||
|
loop { // 2
|
||||||
|
select! {
|
||||||
|
msg = messages.next() => match msg {
|
||||||
|
Some(msg) => stream.write_all(msg.as_bytes()).await?,
|
||||||
|
None => break,
|
||||||
|
},
|
||||||
|
void = shutdown.next() => match void {
|
||||||
|
Some(void) => match void {}, // 3
|
||||||
|
None => break,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. We add shutdown channel as an argument.
|
||||||
|
2. Because of `select`, we can't use a `white let` loop, so we desugar it further into a `loop`.
|
||||||
|
3. In the shutdown case we use `match void {}` as a statically-checked `unreachable!()`.
|
||||||
|
|
||||||
|
Another problem is that between the moment we detect disconnection in `client_writer` and the moment when we actually remove the peer from the `peers` map, new messages might be pushed into the peer's channel.
|
||||||
|
To not lose these messages completely, we'll return the messages channel back to broker.
|
||||||
|
This also allows us to establish a useful invariant that the message channel strictly outlives the peer in the `peers` map, and make the broker itself infailable.
|
||||||
|
|
||||||
|
## Final Code
|
||||||
|
|
||||||
|
The final code looks like this:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#![feature(async_await)]
|
||||||
|
|
||||||
|
use std::{
|
||||||
|
net::ToSocketAddrs,
|
||||||
|
sync::Arc,
|
||||||
|
collections::hash_map::{HashMap, Entry},
|
||||||
|
};
|
||||||
|
|
||||||
|
use futures::{
|
||||||
|
channel::mpsc,
|
||||||
|
SinkExt,
|
||||||
|
select,
|
||||||
|
};
|
||||||
|
|
||||||
|
use async_std::{
|
||||||
|
io::BufReader,
|
||||||
|
prelude::*,
|
||||||
|
task,
|
||||||
|
net::{TcpListener, TcpStream},
|
||||||
|
};
|
||||||
|
|
||||||
|
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
|
||||||
|
type Sender<T> = mpsc::UnboundedSender<T>;
|
||||||
|
type Receiver<T> = mpsc::UnboundedReceiver<T>;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Void {}
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
task::block_on(server("127.0.0.1:8080"))
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
||||||
|
let listener = TcpListener::bind(addr).await?;
|
||||||
|
|
||||||
|
let (broker_sender, broker_receiver) = mpsc::unbounded();
|
||||||
|
let broker = task::spawn(broker(broker_receiver));
|
||||||
|
let mut incoming = listener.incoming();
|
||||||
|
while let Some(stream) = incoming.next().await {
|
||||||
|
let stream = stream?;
|
||||||
|
println!("Accepting from: {}", stream.peer_addr()?);
|
||||||
|
spawn_and_log_error(client(broker_sender.clone(), stream));
|
||||||
|
}
|
||||||
|
drop(broker_sender);
|
||||||
|
broker.await;
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn client(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
|
||||||
|
let stream = Arc::new(stream);
|
||||||
|
let reader = BufReader::new(&*stream);
|
||||||
|
let mut lines = reader.lines();
|
||||||
|
|
||||||
|
let name = match lines.next().await {
|
||||||
|
None => Err("peer disconnected immediately")?,
|
||||||
|
Some(line) => line?,
|
||||||
|
};
|
||||||
|
let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::<Void>();
|
||||||
|
broker.send(Event::NewPeer {
|
||||||
|
name: name.clone(),
|
||||||
|
stream: Arc::clone(&stream),
|
||||||
|
shutdown: shutdown_receiver,
|
||||||
|
}).await.unwrap();
|
||||||
|
|
||||||
|
while let Some(line) = lines.next().await {
|
||||||
|
let line = line?;
|
||||||
|
let (dest, msg) = match line.find(':') {
|
||||||
|
None => continue,
|
||||||
|
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
|
||||||
|
};
|
||||||
|
let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
|
||||||
|
let msg: String = msg.trim().to_string();
|
||||||
|
|
||||||
|
broker.send(Event::Message {
|
||||||
|
from: name.clone(),
|
||||||
|
to: dest,
|
||||||
|
msg,
|
||||||
|
}).await.unwrap();
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn client_writer(
|
||||||
|
messages: &mut Receiver<String>,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
mut shutdown: Receiver<Void>,
|
||||||
|
) -> Result<()> {
|
||||||
|
let mut stream = &*stream;
|
||||||
|
loop {
|
||||||
|
select! {
|
||||||
|
msg = messages.next() => match msg {
|
||||||
|
Some(msg) => stream.write_all(msg.as_bytes()).await?,
|
||||||
|
None => break,
|
||||||
|
},
|
||||||
|
void = shutdown.next() => match void {
|
||||||
|
Some(void) => match void {},
|
||||||
|
None => break,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
enum Event {
|
||||||
|
NewPeer {
|
||||||
|
name: String,
|
||||||
|
stream: Arc<TcpStream>,
|
||||||
|
shutdown: Receiver<Void>,
|
||||||
|
},
|
||||||
|
Message {
|
||||||
|
from: String,
|
||||||
|
to: Vec<String>,
|
||||||
|
msg: String,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn broker(mut events: Receiver<Event>) {
|
||||||
|
let (disconnect_sender, mut disconnect_receiver) = // 1
|
||||||
|
mpsc::unbounded::<(String, Receiver<String>)>();
|
||||||
|
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
|
||||||
|
|
||||||
|
loop {
|
||||||
|
let event = select! {
|
||||||
|
event = events.next() => match event {
|
||||||
|
None => break, // 2
|
||||||
|
Some(event) => event,
|
||||||
|
},
|
||||||
|
disconnect = disconnect_receiver.next() => {
|
||||||
|
let (name, _pending_messages) = disconnect.unwrap(); // 3
|
||||||
|
assert!(peers.remove(&name).is_some());
|
||||||
|
continue;
|
||||||
|
},
|
||||||
|
};
|
||||||
|
match event {
|
||||||
|
Event::Message { from, to, msg } => {
|
||||||
|
for addr in to {
|
||||||
|
if let Some(peer) = peers.get_mut(&addr) {
|
||||||
|
peer.send(format!("from {}: {}\n", from, msg)).await
|
||||||
|
.unwrap() // 6
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Event::NewPeer { name, stream, shutdown } => {
|
||||||
|
match peers.entry(name.clone()) {
|
||||||
|
Entry::Occupied(..) => (),
|
||||||
|
Entry::Vacant(entry) => {
|
||||||
|
let (client_sender, mut client_receiver) = mpsc::unbounded();
|
||||||
|
entry.insert(client_sender);
|
||||||
|
let mut disconnect_sender = disconnect_sender.clone();
|
||||||
|
spawn_and_log_error(async move {
|
||||||
|
let res = client_writer(&mut client_receiver, stream, shutdown).await;
|
||||||
|
disconnect_sender.send((name, client_receiver)).await // 4
|
||||||
|
.unwrap();
|
||||||
|
res
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
drop(peers); // 5
|
||||||
|
drop(disconnect_sender); // 6
|
||||||
|
while let Some((_name, _pending_messages)) = disconnect_receiver.next().await {
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
|
||||||
|
where
|
||||||
|
F: Future<Output = Result<()>> + Send + 'static,
|
||||||
|
{
|
||||||
|
task::spawn(async move {
|
||||||
|
if let Err(e) = fut.await {
|
||||||
|
eprintln!("{}", e)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. In the broker, we create a channel to reap disconnected peers and their undelivered messages.
|
||||||
|
2. The broker's main loop exits when the input events channel is exhausted (that is, when all readers exit).
|
||||||
|
3. Because broker itself holds a `disconnect_sender`, we know that the disconnections channel can't be fully drained in the main loop.
|
||||||
|
4. We send peer's name and pending messages to the disconnections channel in both the happy and the not-so-happy path.
|
||||||
|
Again, we can safely unwrap because broker outlives writers.
|
||||||
|
5. We drop `peers` map to close writers' messages channel and shut down the writers for sure.
|
||||||
|
It is not strictly necessary in the current setup, where the broker waits for readers' shutdown anyway.
|
||||||
|
However, if we add a server-initiated shutdown (for example, kbd:[ctrl+c] handling), this will be a way for the broker to shutdown the writers.
|
||||||
|
6. Finally, we close and drain the disconnections channel.
|
@ -0,0 +1 @@
|
|||||||
|
# Handling Disconnections
|
@ -0,0 +1,71 @@
|
|||||||
|
## Implementing a client
|
||||||
|
|
||||||
|
Let's now implement the client for the chat.
|
||||||
|
Because the protocol is line-based, the implementation is pretty straightforward:
|
||||||
|
|
||||||
|
* Lines read from stdin should be send over the socket.
|
||||||
|
* Lines read from the socket should be echoed to stdout.
|
||||||
|
|
||||||
|
Unlike the server, the client needs only limited concurrency, as it interacts with only a single user.
|
||||||
|
For this reason, async doesn't bring a lot of performance benefits in this case.
|
||||||
|
|
||||||
|
However, async is still useful for managing concurrency!
|
||||||
|
Specifically, the client should *simultaneously* read from stdin and from the socket.
|
||||||
|
Programming this with threads is cumbersome, especially when implementing clean shutdown.
|
||||||
|
With async, we can just use the `select!` macro.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
#![feature(async_await)]
|
||||||
|
|
||||||
|
use std::net::ToSocketAddrs;
|
||||||
|
|
||||||
|
use futures::select;
|
||||||
|
|
||||||
|
use async_std::{
|
||||||
|
prelude::*,
|
||||||
|
net::TcpStream,
|
||||||
|
task,
|
||||||
|
io::{stdin, BufReader},
|
||||||
|
};
|
||||||
|
|
||||||
|
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
|
||||||
|
|
||||||
|
|
||||||
|
fn main() -> Result<()> {
|
||||||
|
task::block_on(try_main("127.0.0.1:8080"))
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn try_main(addr: impl ToSocketAddrs) -> Result<()> {
|
||||||
|
let stream = TcpStream::connect(addr).await?;
|
||||||
|
let (reader, mut writer) = (&stream, &stream); // 1
|
||||||
|
let reader = BufReader::new(reader);
|
||||||
|
let mut lines_from_server = futures::StreamExt::fuse(reader.lines()); // 2
|
||||||
|
|
||||||
|
let stdin = BufReader::new(stdin());
|
||||||
|
let mut lines_from_stdin = futures::StreamExt::fuse(stdin.lines()); // 2
|
||||||
|
loop {
|
||||||
|
select! { // 3
|
||||||
|
line = lines_from_server.next() => match line {
|
||||||
|
Some(line) => {
|
||||||
|
let line = line?;
|
||||||
|
println!("{}", line);
|
||||||
|
},
|
||||||
|
None => break,
|
||||||
|
},
|
||||||
|
line = lines_from_stdin.next() => match line {
|
||||||
|
Some(line) => {
|
||||||
|
let line = line?;
|
||||||
|
writer.write_all(line.as_bytes()).await?;
|
||||||
|
writer.write_all(b"\n").await?;
|
||||||
|
}
|
||||||
|
None => break,
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. Here we split `TcpStream` into read and write halfs: there's `impl AsyncRead for &'_ TcpStream`, just like the one in std.
|
||||||
|
2. We crate a steam of lines for both the socket and stdin.
|
||||||
|
3. In the main select loop, we print the lines we receive from server and send the lines we read from the console.
|
@ -0,0 +1,11 @@
|
|||||||
|
# Tutorial: Writing a chat
|
||||||
|
|
||||||
|
Nothing is as simple as a chat server, right? Not quite, chat servers
|
||||||
|
already expose you to all the fun of asynchronous programming: how
|
||||||
|
do you handle client connecting concurrently. How do handle them disconnecting?
|
||||||
|
How do your distribute the massages?
|
||||||
|
|
||||||
|
In this tutorial, we will show you how to write one in `async-std`.
|
||||||
|
|
||||||
|
You can also find the tutorial in [our repository](https://github.com/async-rs/a-chat).
|
||||||
|
|
@ -0,0 +1,92 @@
|
|||||||
|
## Receiving messages
|
||||||
|
|
||||||
|
Let's implement the receiving part of the protocol.
|
||||||
|
We need to:
|
||||||
|
|
||||||
|
1. split incoming `TcpStream` on `\n` and decode bytes as utf-8
|
||||||
|
2. interpret the first line as a login
|
||||||
|
3. parse the rest of the lines as a `login: message`
|
||||||
|
|
||||||
|
```rust
|
||||||
|
use async_std::net::TcpStream;
|
||||||
|
|
||||||
|
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
||||||
|
let listener = TcpListener::bind(addr).await?;
|
||||||
|
let mut incoming = listener.incoming();
|
||||||
|
while let Some(stream) = incoming.next().await {
|
||||||
|
let stream = stream?;
|
||||||
|
println!("Accepting from: {}", stream.peer_addr()?);
|
||||||
|
let _handle = task::spawn(client(stream)); // 1
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
|
||||||
|
async fn client(stream: TcpStream) -> Result<()> {
|
||||||
|
let reader = BufReader::new(&stream); // 2
|
||||||
|
let mut lines = reader.lines();
|
||||||
|
|
||||||
|
let name = match lines.next().await { // 3
|
||||||
|
None => Err("peer disconnected immediately")?,
|
||||||
|
Some(line) => line?,
|
||||||
|
};
|
||||||
|
println!("name = {}", name);
|
||||||
|
|
||||||
|
while let Some(line) = lines.next().await { // 4
|
||||||
|
let line = line?;
|
||||||
|
let (dest, msg) = match line.find(':') { // 5
|
||||||
|
None => continue,
|
||||||
|
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
|
||||||
|
};
|
||||||
|
let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
|
||||||
|
let msg: String = msg.trim().to_string();
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. We use `task::spawn` function to spawn an independent task for working with each client.
|
||||||
|
That is, after accepting the client the `server` loop immediately starts waiting for the next one.
|
||||||
|
This is the core benefit of event-driven architecture: we serve many number of clients concurrently, without spending many hardware threads.
|
||||||
|
|
||||||
|
2. Luckily, the "split byte stream into lines" functionality is already implemented.
|
||||||
|
`.lines()` call returns a stream of `String`'s.
|
||||||
|
|
||||||
|
3. We get the first line -- login
|
||||||
|
|
||||||
|
4. And, once again, we implement a manual async for loop.
|
||||||
|
|
||||||
|
5. Finally, we parse each line into a list of destination logins and the message itself.
|
||||||
|
|
||||||
|
## Managing Errors
|
||||||
|
|
||||||
|
One serious problem in the above solution is that, while we correctly propagate errors in the `client`, we just drop the error on the floor afterwards!
|
||||||
|
That is, `task::spawn` does not return error immediately (it can't, it needs to run the future to completion first), only after it is joined.
|
||||||
|
We can "fix" it by waiting for the task to be joined, like this:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
let handle = task::spawn(client(stream));
|
||||||
|
handle.await?
|
||||||
|
```
|
||||||
|
|
||||||
|
The `.await` waits until the client finishes, and `?` propagates the result.
|
||||||
|
|
||||||
|
There are two problems with this solution however!
|
||||||
|
*First*, because we immediately await the client, we can only handle one client at time, and that completely defeats the purpose of async!
|
||||||
|
*Second*, if a client encounters an IO error, the whole server immediately exits.
|
||||||
|
That is, a flaky internet connection of one peer brings down the whole chat room!
|
||||||
|
|
||||||
|
A correct way to handle client errors in this case is log them, and continue serving other clients.
|
||||||
|
So let's use a helper function for this:
|
||||||
|
|
||||||
|
```rust
|
||||||
|
fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
|
||||||
|
where
|
||||||
|
F: Future<Output = Result<()>> + Send + 'static,
|
||||||
|
{
|
||||||
|
task::spawn(async move {
|
||||||
|
if let Err(e) = fut.await {
|
||||||
|
eprintln!("{}", e)
|
||||||
|
}
|
||||||
|
})
|
||||||
|
}
|
||||||
|
```s
|
@ -0,0 +1,36 @@
|
|||||||
|
## Sending Messages
|
||||||
|
|
||||||
|
Now it's time to implement the other half -- sending messages.
|
||||||
|
A most obvious way to implement sending is to give each `client` access to the write half of `TcpStream` of each other clients.
|
||||||
|
That way, a client can directly `.write_all` a message to recipients.
|
||||||
|
However, this would be wrong: if Alice sends `bob: foo`, and Charley sends `bob: bar`, Bob might actually receive `fobaor`.
|
||||||
|
Sending a message over a socket might require several syscalls, so two concurrent `.write_all`'s might interfere with each other!
|
||||||
|
|
||||||
|
As a rule of thumb, only a single task should write to each `TcpStream`.
|
||||||
|
So let's create a `client_writer` task which receives messages over a channel and writes them to the socket.
|
||||||
|
This task would be the point of serialization of messages.
|
||||||
|
if Alice and Charley send two messages to Bob at the same time, Bob will see the messages in the same order as they arrive in the channel.
|
||||||
|
|
||||||
|
```rust
|
||||||
|
use futures::channel::mpsc; // 1
|
||||||
|
use futures::SinkExt;
|
||||||
|
|
||||||
|
type Sender<T> = mpsc::UnboundedSender<T>; // 2
|
||||||
|
type Receiver<T> = mpsc::UnboundedReceiver<T>;
|
||||||
|
|
||||||
|
async fn client_writer(
|
||||||
|
mut messages: Receiver<String>,
|
||||||
|
stream: Arc<TcpStream>, // 3
|
||||||
|
) -> Result<()> {
|
||||||
|
let mut stream = &*stream;
|
||||||
|
while let Some(msg) = messages.next().await {
|
||||||
|
stream.write_all(msg.as_bytes()).await?;
|
||||||
|
}
|
||||||
|
Ok(())
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
1. We will use channels from the `futures` crate.
|
||||||
|
2. For simplicity, we will use `unbounded` channels, and won't be discussing backpressure in this tutorial.
|
||||||
|
3. As `client` and `client_writer` share the same `TcpStream`, we need to put it into an `Arc`.
|
||||||
|
Note that because `client` only reads from and `client_writer` only writes to the stream, so we don't get a race here.
|
@ -0,0 +1,48 @@
|
|||||||
|
# Specification and Getting Started
|
||||||
|
|
||||||
|
## Specification
|
||||||
|
|
||||||
|
The chat uses a simple text protocol over TCP.
|
||||||
|
Protocol consists of utf-8 messages, separated by `\n`.
|
||||||
|
|
||||||
|
The client connects to the server and sends login as a first line.
|
||||||
|
After that, the client can send messages to other clients using the following syntax:
|
||||||
|
|
||||||
|
```
|
||||||
|
login1, login2, ... login2: message
|
||||||
|
```
|
||||||
|
|
||||||
|
Each of the specified clients than receives a `from login: message` message.
|
||||||
|
|
||||||
|
A possible session might look like this
|
||||||
|
|
||||||
|
```
|
||||||
|
On Alice's computer: | On Bob's computer:
|
||||||
|
|
||||||
|
> alice | > bob
|
||||||
|
> bob: hello < from alice: hello
|
||||||
|
| > alice, bob: hi!
|
||||||
|
< from bob: hi!
|
||||||
|
< from bob: hi! |
|
||||||
|
```
|
||||||
|
|
||||||
|
The main challenge for the chat server is keeping track of many concurrent connections.
|
||||||
|
The main challenge for the chat client is managing concurrent outgoing messages, incoming messages and user's typing.
|
||||||
|
|
||||||
|
|
||||||
|
## Getting Started
|
||||||
|
|
||||||
|
Let's create a new Cargo project:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ cargo new a-chat
|
||||||
|
$ cd a-chat
|
||||||
|
```
|
||||||
|
|
||||||
|
At the moment `async-std` requires Rust nightly, so let's add a rustup override for convenience:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ rustup override add nightly
|
||||||
|
$ rustc --version
|
||||||
|
rustc 1.38.0-nightly (c4715198b 2019-08-05)
|
||||||
|
```
|
@ -1,896 +0,0 @@
|
|||||||
# Tutorial: Implementing a Chat Server
|
|
||||||
|
|
||||||
In this tutorial, we will implement an asynchronous chat on top of async-std.
|
|
||||||
|
|
||||||
## Specification
|
|
||||||
|
|
||||||
The chat uses a simple text protocol over TCP.
|
|
||||||
Protocol consists of utf-8 messages, separated by `\n`.
|
|
||||||
|
|
||||||
The client connects to the server and sends login as a first line.
|
|
||||||
After that, the client can send messages to other clients using the following syntax:
|
|
||||||
|
|
||||||
```
|
|
||||||
login1, login2, ... login2: message
|
|
||||||
```
|
|
||||||
|
|
||||||
Each of the specified clients than receives a `from login: message` message.
|
|
||||||
|
|
||||||
A possible session might look like this
|
|
||||||
|
|
||||||
```
|
|
||||||
On Alice's computer: | On Bob's computer:
|
|
||||||
|
|
||||||
> alice | > bob
|
|
||||||
> bob: hello < from alice: hello
|
|
||||||
| > alice, bob: hi!
|
|
||||||
< from bob: hi!
|
|
||||||
< from bob: hi! |
|
|
||||||
```
|
|
||||||
|
|
||||||
The main challenge for the chat server is keeping track of many concurrent connections.
|
|
||||||
The main challenge for the chat client is managing concurrent outgoing messages, incoming messages and user's typing.
|
|
||||||
|
|
||||||
## Getting Started
|
|
||||||
|
|
||||||
Let's create a new Cargo project:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ cargo new a-chat
|
|
||||||
$ cd a-chat
|
|
||||||
```
|
|
||||||
|
|
||||||
At the moment `async-std` requires nightly, so let's add a rustup override for convenience:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
$ rustup override add nightly
|
|
||||||
$ rustc --version
|
|
||||||
rustc 1.38.0-nightly (c4715198b 2019-08-05)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Accept Loop
|
|
||||||
|
|
||||||
Let's implement the scaffold of the server: a loop that binds a TCP socket to an address and starts accepting connections.
|
|
||||||
|
|
||||||
|
|
||||||
First of all, let's add required import boilerplate:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
#![feature(async_await)]
|
|
||||||
|
|
||||||
use std::net::ToSocketAddrs; // 1
|
|
||||||
|
|
||||||
use async_std::{
|
|
||||||
prelude::*, // 2
|
|
||||||
task, // 3
|
|
||||||
net::TcpListener, // 4
|
|
||||||
};
|
|
||||||
|
|
||||||
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>; // 5
|
|
||||||
```
|
|
||||||
|
|
||||||
1. `async_std` uses `std` types where appropriate.
|
|
||||||
We'll need `ToSocketAddrs` to specify address to listen on.
|
|
||||||
2. `prelude` re-exports some traits required to work with futures and streams
|
|
||||||
3. The `task` module roughtly corresponds to `std::thread` module, but tasks are much lighter weight.
|
|
||||||
A single thread can run many tasks.
|
|
||||||
4. For the socket type, we use `TcpListener` from `async_std`, which is just like `std::net::TcpListener`, but is non-blocking and uses `async` API.
|
|
||||||
5. We will skip implementing comprehensive error handling in this example.
|
|
||||||
To propagate the errors, we will use a boxed error trait object.
|
|
||||||
Do you know that there's `From<&'_ str> for Box<dyn Error>` implementation in stdlib, which allows you to use strings with `?` operator?
|
|
||||||
|
|
||||||
|
|
||||||
Now we can write the server's accept loop:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
async fn server(addr: impl ToSocketAddrs) -> Result<()> { // 1
|
|
||||||
let listener = TcpListener::bind(addr).await?; // 2
|
|
||||||
let mut incoming = listener.incoming();
|
|
||||||
while let Some(stream) = incoming.next().await { // 3
|
|
||||||
// TODO
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. We mark `server` function as `async`, which allows us to use `.await` syntax inside.
|
|
||||||
2. `TcpListener::bind` call returns a future, which we `.await` to extract the `Result`, and then `?` to get a `TcpListener`.
|
|
||||||
Note how `.await` and `?` work nicely together.
|
|
||||||
This is exactly how `std::net::TcpListener` works, but with `.await` added.
|
|
||||||
Mirroring API of `std` is an explicit design goal of `async_std`.
|
|
||||||
3. Here, we would like to iterate incoming sockets, just how one would do in `std`:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
let listener: std::net::TcpListener = unimplemented!();
|
|
||||||
for stream in listener.incoming() {
|
|
||||||
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Unfortunately this doesn't quite work with `async` yet, because there's no support for `async` for-loops in the language yet.
|
|
||||||
For this reason we have to implement the loop manually, by using `while let Some(item) = iter.next().await` pattern.
|
|
||||||
|
|
||||||
Finally, let's add main:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
fn main() -> Result<()> {
|
|
||||||
let fut = server("127.0.0.1:8080");
|
|
||||||
task::block_on(fut)
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
The crucial thing to realise that is in Rust, unlike other languages, calling an async function does **not** run any code.
|
|
||||||
Async functions only construct futures, which are inert state machines.
|
|
||||||
To start stepping through the future state-machine in an async function, you should use `.await`.
|
|
||||||
In a non-async function, a way to execute a future is to handle it to the executor.
|
|
||||||
In this case, we use `task::block_on` to execute future on the current thread and block until it's done.
|
|
||||||
|
|
||||||
## Receiving messages
|
|
||||||
|
|
||||||
Let's implement the receiving part of the protocol.
|
|
||||||
We need to:
|
|
||||||
|
|
||||||
1. split incoming `TcpStream` on `\n` and decode bytes as utf-8
|
|
||||||
2. interpret the first line as a login
|
|
||||||
3. parse the rest of the lines as a `login: message`
|
|
||||||
|
|
||||||
```rust
|
|
||||||
use async_std::net::TcpStream;
|
|
||||||
|
|
||||||
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
|
||||||
let listener = TcpListener::bind(addr).await?;
|
|
||||||
let mut incoming = listener.incoming();
|
|
||||||
while let Some(stream) = incoming.next().await {
|
|
||||||
let stream = stream?;
|
|
||||||
println!("Accepting from: {}", stream.peer_addr()?);
|
|
||||||
let _handle = task::spawn(client(stream)); // 1
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn client(stream: TcpStream) -> Result<()> {
|
|
||||||
let reader = BufReader::new(&stream); // 2
|
|
||||||
let mut lines = reader.lines();
|
|
||||||
|
|
||||||
let name = match lines.next().await { // 3
|
|
||||||
None => Err("peer disconnected immediately")?,
|
|
||||||
Some(line) => line?,
|
|
||||||
};
|
|
||||||
println!("name = {}", name);
|
|
||||||
|
|
||||||
while let Some(line) = lines.next().await { // 4
|
|
||||||
let line = line?;
|
|
||||||
let (dest, msg) = match line.find(':') { // 5
|
|
||||||
None => continue,
|
|
||||||
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
|
|
||||||
};
|
|
||||||
let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
|
|
||||||
let msg: String = msg.trim().to_string();
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. We use `task::spawn` function to spawn an independent task for working with each client.
|
|
||||||
That is, after accepting the client the `server` loop immediately starts waiting for the next one.
|
|
||||||
This is the core benefit of event-driven architecture: we serve many number of clients concurrently, without spending many hardware threads.
|
|
||||||
|
|
||||||
2. Luckily, the "split byte stream into lines" functionality is already implemented.
|
|
||||||
`.lines()` call returns a stream of `String`'s.
|
|
||||||
|
|
||||||
3. We get the first line -- login
|
|
||||||
|
|
||||||
4. And, once again, we implement a manual async for loop.
|
|
||||||
|
|
||||||
5. Finally, we parse each line into a list of destination logins and the message itself.
|
|
||||||
|
|
||||||
## Managing Errors
|
|
||||||
|
|
||||||
One serious problem in the above solution is that, while we correctly propagate errors in the `client`, we just drop the error on the floor afterwards!
|
|
||||||
That is, `task::spawn` does not return error immediately (it can't, it needs to run the future to completion first), only after it is joined.
|
|
||||||
We can "fix" it by waiting for the task to be joined, like this:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
let handle = task::spawn(client(stream));
|
|
||||||
handle.await?
|
|
||||||
```
|
|
||||||
|
|
||||||
The `.await` waits until the client finishes, and `?` propagates the result.
|
|
||||||
|
|
||||||
There are two problems with this solution however!
|
|
||||||
*First*, because we immediately await the client, we can only handle one client at time, and that completely defeats the purpose of async!
|
|
||||||
*Second*, if a client encounters an IO error, the whole server immediately exits.
|
|
||||||
That is, a flaky internet connection of one peer brings down the whole chat room!
|
|
||||||
|
|
||||||
A correct way to handle client errors in this case is log them, and continue serving other clients.
|
|
||||||
So let's use a helper function for this:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
|
|
||||||
where
|
|
||||||
F: Future<Output = Result<()>> + Send + 'static,
|
|
||||||
{
|
|
||||||
task::spawn(async move {
|
|
||||||
if let Err(e) = fut.await {
|
|
||||||
eprintln!("{}", e)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
## Sending Messages
|
|
||||||
|
|
||||||
Now it's time to implement the other half -- sending messages.
|
|
||||||
A most obvious way to implement sending is to give each `client` access to the write half of `TcpStream` of each other clients.
|
|
||||||
That way, a client can directly `.write_all` a message to recipients.
|
|
||||||
However, this would be wrong: if Alice sends `bob: foo`, and Charley sends `bob: bar`, Bob might actually receive `fobaor`.
|
|
||||||
Sending a message over a socket might require several syscalls, so two concurrent `.write_all`'s might interfere with each other!
|
|
||||||
|
|
||||||
As a rule of thumb, only a single task should write to each `TcpStream`.
|
|
||||||
So let's create a `client_writer` task which receives messages over a channel and writes them to the socket.
|
|
||||||
This task would be the point of serialization of messages.
|
|
||||||
if Alice and Charley send two messages to Bob at the same time, Bob will see the messages in the same order as they arrive in the channel.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
use futures::channel::mpsc; // 1
|
|
||||||
use futures::SinkExt;
|
|
||||||
|
|
||||||
type Sender<T> = mpsc::UnboundedSender<T>; // 2
|
|
||||||
type Receiver<T> = mpsc::UnboundedReceiver<T>;
|
|
||||||
|
|
||||||
async fn client_writer(
|
|
||||||
mut messages: Receiver<String>,
|
|
||||||
stream: Arc<TcpStream>, // 3
|
|
||||||
) -> Result<()> {
|
|
||||||
let mut stream = &*stream;
|
|
||||||
while let Some(msg) = messages.next().await {
|
|
||||||
stream.write_all(msg.as_bytes()).await?;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. We will use channels from the `futures` crate.
|
|
||||||
2. For simplicity, we will use `unbounded` channels, and won't be discussing backpressure in this tutorial.
|
|
||||||
3. As `client` and `client_writer` share the same `TcpStream`, we need to put it into an `Arc`.
|
|
||||||
Note that because `client` only reads from and `client_writer` only writes to the stream, so we don't get a race here.
|
|
||||||
|
|
||||||
|
|
||||||
## Connecting Readers and Writers
|
|
||||||
|
|
||||||
So how we make sure that messages read in `client` flow into the relevant `client_writer`?
|
|
||||||
We should somehow maintain an `peers: HashMap<String, Sender<String>>` map which allows a client to find destination channels.
|
|
||||||
However, this map would be a bit of shared mutable state, so we'll have to wrap an `RwLock` over it and answer tough questions of what should happen if the client joins at the same moment as it receives a message.
|
|
||||||
|
|
||||||
One trick to make reasoning about state simpler comes from the actor model.
|
|
||||||
We can create a dedicated broker tasks which owns the `peers` map and communicates with other tasks by channels.
|
|
||||||
By hiding `peers` inside such "actor" task, we remove the need for mutxes and also make serialization point explicit.
|
|
||||||
The order of events "Bob sends message to Alice" and "Alice joins" is determined by the order of the corresponding events in the broker's event queue.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Event { // 1
|
|
||||||
NewPeer {
|
|
||||||
name: String,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
},
|
|
||||||
Message {
|
|
||||||
from: String,
|
|
||||||
to: Vec<String>,
|
|
||||||
msg: String,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn broker(mut events: Receiver<Event>) -> Result<()> {
|
|
||||||
let mut peers: HashMap<String, Sender<String>> = HashMap::new(); // 2
|
|
||||||
|
|
||||||
while let Some(event) = events.next().await {
|
|
||||||
match event {
|
|
||||||
Event::Message { from, to, msg } => { // 3
|
|
||||||
for addr in to {
|
|
||||||
if let Some(peer) = peers.get_mut(&addr) {
|
|
||||||
peer.send(format!("from {}: {}\n", from, msg)).await?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Event::NewPeer { name, stream } => {
|
|
||||||
match peers.entry(name) {
|
|
||||||
Entry::Occupied(..) => (),
|
|
||||||
Entry::Vacant(entry) => {
|
|
||||||
let (client_sender, client_receiver) = mpsc::unbounded();
|
|
||||||
entry.insert(client_sender); // 4
|
|
||||||
spawn_and_log_error(client_writer(client_receiver, stream)); // 5
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. Broker should handle two types of events: a message or an arrival of a new peer.
|
|
||||||
2. Internal state of the broker is a `HashMap`.
|
|
||||||
Note how we don't need a `Mutex` here and can confidently say, at each iteration of the broker's loop, what is the current set of peers
|
|
||||||
3. To handle a message we send it over a channel to each destination
|
|
||||||
4. To handle new peer, we first register it in the peer's map ...
|
|
||||||
5. ... and then spawn a dedicated task to actually write the messages to the socket.
|
|
||||||
|
|
||||||
## All Together
|
|
||||||
|
|
||||||
At this point, we only need to start broker to get a fully-functioning (in the happy case!) chat:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
#![feature(async_await)]
|
|
||||||
|
|
||||||
use std::{
|
|
||||||
net::ToSocketAddrs,
|
|
||||||
sync::Arc,
|
|
||||||
collections::hash_map::{HashMap, Entry},
|
|
||||||
};
|
|
||||||
|
|
||||||
use futures::{
|
|
||||||
channel::mpsc,
|
|
||||||
SinkExt,
|
|
||||||
};
|
|
||||||
|
|
||||||
use async_std::{
|
|
||||||
io::BufReader,
|
|
||||||
prelude::*,
|
|
||||||
task,
|
|
||||||
net::{TcpListener, TcpStream},
|
|
||||||
};
|
|
||||||
|
|
||||||
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
|
|
||||||
type Sender<T> = mpsc::UnboundedSender<T>;
|
|
||||||
type Receiver<T> = mpsc::UnboundedReceiver<T>;
|
|
||||||
|
|
||||||
|
|
||||||
fn main() -> Result<()> {
|
|
||||||
task::block_on(server("127.0.0.1:8080"))
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
|
||||||
let listener = TcpListener::bind(addr).await?;
|
|
||||||
|
|
||||||
let (broker_sender, broker_receiver) = mpsc::unbounded(); // 1
|
|
||||||
let _broker_handle = task::spawn(broker(broker_receiver));
|
|
||||||
let mut incoming = listener.incoming();
|
|
||||||
while let Some(stream) = incoming.next().await {
|
|
||||||
let stream = stream?;
|
|
||||||
println!("Accepting from: {}", stream.peer_addr()?);
|
|
||||||
spawn_and_log_error(client(broker_sender.clone(), stream));
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn client(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
|
|
||||||
let stream = Arc::new(stream); // 2
|
|
||||||
let reader = BufReader::new(&*stream);
|
|
||||||
let mut lines = reader.lines();
|
|
||||||
|
|
||||||
let name = match lines.next().await {
|
|
||||||
None => Err("peer disconnected immediately")?,
|
|
||||||
Some(line) => line?,
|
|
||||||
};
|
|
||||||
broker.send(Event::NewPeer { name: name.clone(), stream: Arc::clone(&stream) }).await // 3
|
|
||||||
.unwrap();
|
|
||||||
|
|
||||||
while let Some(line) = lines.next().await {
|
|
||||||
let line = line?;
|
|
||||||
let (dest, msg) = match line.find(':') {
|
|
||||||
None => continue,
|
|
||||||
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
|
|
||||||
};
|
|
||||||
let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
|
|
||||||
let msg: String = msg.trim().to_string();
|
|
||||||
|
|
||||||
broker.send(Event::Message { // 4
|
|
||||||
from: name.clone(),
|
|
||||||
to: dest,
|
|
||||||
msg,
|
|
||||||
}).await.unwrap();
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn client_writer(
|
|
||||||
mut messages: Receiver<String>,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
) -> Result<()> {
|
|
||||||
let mut stream = &*stream;
|
|
||||||
while let Some(msg) = messages.next().await {
|
|
||||||
stream.write_all(msg.as_bytes()).await?;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Event {
|
|
||||||
NewPeer {
|
|
||||||
name: String,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
},
|
|
||||||
Message {
|
|
||||||
from: String,
|
|
||||||
to: Vec<String>,
|
|
||||||
msg: String,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn broker(mut events: Receiver<Event>) -> Result<()> {
|
|
||||||
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
|
|
||||||
|
|
||||||
while let Some(event) = events.next().await {
|
|
||||||
match event {
|
|
||||||
Event::Message { from, to, msg } => {
|
|
||||||
for addr in to {
|
|
||||||
if let Some(peer) = peers.get_mut(&addr) {
|
|
||||||
peer.send(format!("from {}: {}\n", from, msg)).await?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Event::NewPeer { name, stream} => {
|
|
||||||
match peers.entry(name) {
|
|
||||||
Entry::Occupied(..) => (),
|
|
||||||
Entry::Vacant(entry) => {
|
|
||||||
let (client_sender, client_receiver) = mpsc::unbounded();
|
|
||||||
entry.insert(client_sender); // 4
|
|
||||||
spawn_and_log_error(client_writer(client_receiver, stream)); // 5
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. Inside the `server`, we create broker's channel and `task`.
|
|
||||||
2. Inside `client`, we need to wrap `TcpStream` into an `Arc`, to be able to share it with the `client_writer`.
|
|
||||||
3. On login, we notify the broker.
|
|
||||||
Note that we `.unwrap` on send: broker should outlive all the clients and if that's not the case the broker probably panicked, so we can escalate the panic as well.
|
|
||||||
4. Similarly, we forward parsed messages to the broker, assuming that it is alive.
|
|
||||||
|
|
||||||
## Clean Shutdown
|
|
||||||
|
|
||||||
On of the problems of the current implementation is that it doesn't handle graceful shutdown.
|
|
||||||
If we break from the accept loop for some reason, all in-flight tasks are just dropped on the floor.
|
|
||||||
A more correct shutdown sequence would be:
|
|
||||||
|
|
||||||
1. Stop accepting new clients
|
|
||||||
2. Deliver all pending messages
|
|
||||||
3. Exit the process
|
|
||||||
|
|
||||||
A clean shutdown in a channel based architecture is easy, although it can appear a magic trick at first.
|
|
||||||
In Rust, receiver side of a channel is closed as soon as all senders are dropped.
|
|
||||||
That is, as soon as producers exit and drop their senders, the rest of the system shutdowns naturally.
|
|
||||||
In `async_std` this translates to two rules:
|
|
||||||
|
|
||||||
1. Make sure that channels form an acyclic graph.
|
|
||||||
2. Take care to wait, in the correct order, until intermediate layers of the system process pending messages.
|
|
||||||
|
|
||||||
In `a-chat`, we already have an unidirectional flow of messages: `reader -> broker -> writer`.
|
|
||||||
However, we never wait for broker and writers, which might cause some messages to get dropped.
|
|
||||||
Let's add waiting to the server:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
|
||||||
let listener = TcpListener::bind(addr).await?;
|
|
||||||
|
|
||||||
let (broker_sender, broker_receiver) = mpsc::unbounded();
|
|
||||||
let broker = task::spawn(broker(broker_receiver));
|
|
||||||
let mut incoming = listener.incoming();
|
|
||||||
while let Some(stream) = incoming.next().await {
|
|
||||||
let stream = stream?;
|
|
||||||
println!("Accepting from: {}", stream.peer_addr()?);
|
|
||||||
spawn_and_log_error(client(broker_sender.clone(), stream));
|
|
||||||
}
|
|
||||||
drop(broker_sender); // 1
|
|
||||||
broker.await?; // 5
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
And to the broker:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
async fn broker(mut events: Receiver<Event>) -> Result<()> {
|
|
||||||
let mut writers = Vec::new();
|
|
||||||
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
|
|
||||||
|
|
||||||
while let Some(event) = events.next().await { // 2
|
|
||||||
match event {
|
|
||||||
Event::Message { from, to, msg } => {
|
|
||||||
for addr in to {
|
|
||||||
if let Some(peer) = peers.get_mut(&addr) {
|
|
||||||
peer.send(format!("from {}: {}\n", from, msg)).await?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Event::NewPeer { name, stream} => {
|
|
||||||
match peers.entry(name) {
|
|
||||||
Entry::Occupied(..) => (),
|
|
||||||
Entry::Vacant(entry) => {
|
|
||||||
let (client_sender, client_receiver) = mpsc::unbounded();
|
|
||||||
entry.insert(client_sender);
|
|
||||||
let handle = spawn_and_log_error(client_writer(client_receiver, stream));
|
|
||||||
writers.push(handle); // 4
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
drop(peers); // 3
|
|
||||||
for writer in writers { // 4
|
|
||||||
writer.await?;
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
Notice what happens with all of the channels once we exit the accept loop:
|
|
||||||
|
|
||||||
1. First, we drop the main broker's sender.
|
|
||||||
That way when the readers are done, there's no sender for the broker's channel, and the chanel closes.
|
|
||||||
2. Next, the broker exits `while let Some(event) = events.next().await` loop.
|
|
||||||
3. It's crucial that, at this stage, we drop the `peers` map.
|
|
||||||
This drops writer's senders.
|
|
||||||
4. Now we can join all of the writers.
|
|
||||||
5. Finally, we join the broker, which also guarantees that all the writes have terminated.
|
|
||||||
|
|
||||||
## Handling Disconnections
|
|
||||||
|
|
||||||
Currently, we only ever *add* new peers to the map.
|
|
||||||
This is clearly wrong: if a peer closes connection to the chat, we should not try to send any more messages to it.
|
|
||||||
|
|
||||||
One subtlety with handling disconnection is that we can detect it either in the reader's task, or in the writer's task.
|
|
||||||
The most obvious solution here is to just remove the peer from the `peers` map in both cases, but this would be wrong.
|
|
||||||
If *both* read and write fail, we'll remove the peer twice, but it can be the case that the peer reconnected between the two failures!
|
|
||||||
To fix this, we will only remove the peer when the write side finishes.
|
|
||||||
If the read side finishes we will notify the write side that it should stop as well.
|
|
||||||
That is, we need to add an ability to signal shutdown for the writer task.
|
|
||||||
|
|
||||||
One way to approach this is a `shutdown: Receiver<()>` channel.
|
|
||||||
There's a more minimal solution however, which makes a clever use of RAII.
|
|
||||||
Closing a channel is a synchronization event, so we don't need to send a shutdown message, we can just drop the sender.
|
|
||||||
This way, we statically guarantee that we issue shutdown exactly once, even if we early return via `?` or panic.
|
|
||||||
|
|
||||||
First, let's add shutdown channel to the `client`:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Void {} // 1
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Event {
|
|
||||||
NewPeer {
|
|
||||||
name: String,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
shutdown: Receiver<Void>, // 2
|
|
||||||
},
|
|
||||||
Message {
|
|
||||||
from: String,
|
|
||||||
to: Vec<String>,
|
|
||||||
msg: String,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn client(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
|
|
||||||
// ...
|
|
||||||
|
|
||||||
let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::<Void>(); // 3
|
|
||||||
broker.send(Event::NewPeer {
|
|
||||||
name: name.clone(),
|
|
||||||
stream: Arc::clone(&stream),
|
|
||||||
shutdown: shutdown_receiver,
|
|
||||||
}).await.unwrap();
|
|
||||||
|
|
||||||
// ...
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. To enforce that no messages are send along the shutdown channel, we use an uninhabited type.
|
|
||||||
2. We pass the shutdown channel to the writer task
|
|
||||||
3. In the reader, we create an `_shutdown_sender` whose only purpose is to get dropped.
|
|
||||||
|
|
||||||
In the `client_writer`, we now need to chose between shutdown and message channels.
|
|
||||||
We use `select` macro for this purpose:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
use futures::select;
|
|
||||||
|
|
||||||
async fn client_writer(
|
|
||||||
messages: &mut Receiver<String>,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
mut shutdown: Receiver<Void>, // 1
|
|
||||||
) -> Result<()> {
|
|
||||||
let mut stream = &*stream;
|
|
||||||
loop { // 2
|
|
||||||
select! {
|
|
||||||
msg = messages.next() => match msg {
|
|
||||||
Some(msg) => stream.write_all(msg.as_bytes()).await?,
|
|
||||||
None => break,
|
|
||||||
},
|
|
||||||
void = shutdown.next() => match void {
|
|
||||||
Some(void) => match void {}, // 3
|
|
||||||
None => break,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. We add shutdown channel as an argument.
|
|
||||||
2. Because of `select`, we can't use a `white let` loop, so we desugar it further into a `loop`.
|
|
||||||
3. In the shutdown case we use `match void {}` as a statically-checked `unreachable!()`.
|
|
||||||
|
|
||||||
Another problem is that between the moment we detect disconnection in `client_writer` and the moment when we actually remove the peer from the `peers` map, new messages might be pushed into the peer's channel.
|
|
||||||
To not lose these messages completely, we'll return the messages channel back to broker.
|
|
||||||
This also allows us to establish a useful invariant that the message channel strictly outlives the peer in the `peers` map, and make the broker itself infailable.
|
|
||||||
|
|
||||||
The final code looks like this:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
#![feature(async_await)]
|
|
||||||
|
|
||||||
use std::{
|
|
||||||
net::ToSocketAddrs,
|
|
||||||
sync::Arc,
|
|
||||||
collections::hash_map::{HashMap, Entry},
|
|
||||||
};
|
|
||||||
|
|
||||||
use futures::{
|
|
||||||
channel::mpsc,
|
|
||||||
SinkExt,
|
|
||||||
select,
|
|
||||||
};
|
|
||||||
|
|
||||||
use async_std::{
|
|
||||||
io::BufReader,
|
|
||||||
prelude::*,
|
|
||||||
task,
|
|
||||||
net::{TcpListener, TcpStream},
|
|
||||||
};
|
|
||||||
|
|
||||||
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
|
|
||||||
type Sender<T> = mpsc::UnboundedSender<T>;
|
|
||||||
type Receiver<T> = mpsc::UnboundedReceiver<T>;
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Void {}
|
|
||||||
|
|
||||||
fn main() -> Result<()> {
|
|
||||||
task::block_on(server("127.0.0.1:8080"))
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn server(addr: impl ToSocketAddrs) -> Result<()> {
|
|
||||||
let listener = TcpListener::bind(addr).await?;
|
|
||||||
|
|
||||||
let (broker_sender, broker_receiver) = mpsc::unbounded();
|
|
||||||
let broker = task::spawn(broker(broker_receiver));
|
|
||||||
let mut incoming = listener.incoming();
|
|
||||||
while let Some(stream) = incoming.next().await {
|
|
||||||
let stream = stream?;
|
|
||||||
println!("Accepting from: {}", stream.peer_addr()?);
|
|
||||||
spawn_and_log_error(client(broker_sender.clone(), stream));
|
|
||||||
}
|
|
||||||
drop(broker_sender);
|
|
||||||
broker.await;
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn client(mut broker: Sender<Event>, stream: TcpStream) -> Result<()> {
|
|
||||||
let stream = Arc::new(stream);
|
|
||||||
let reader = BufReader::new(&*stream);
|
|
||||||
let mut lines = reader.lines();
|
|
||||||
|
|
||||||
let name = match lines.next().await {
|
|
||||||
None => Err("peer disconnected immediately")?,
|
|
||||||
Some(line) => line?,
|
|
||||||
};
|
|
||||||
let (_shutdown_sender, shutdown_receiver) = mpsc::unbounded::<Void>();
|
|
||||||
broker.send(Event::NewPeer {
|
|
||||||
name: name.clone(),
|
|
||||||
stream: Arc::clone(&stream),
|
|
||||||
shutdown: shutdown_receiver,
|
|
||||||
}).await.unwrap();
|
|
||||||
|
|
||||||
while let Some(line) = lines.next().await {
|
|
||||||
let line = line?;
|
|
||||||
let (dest, msg) = match line.find(':') {
|
|
||||||
None => continue,
|
|
||||||
Some(idx) => (&line[..idx], line[idx + 1 ..].trim()),
|
|
||||||
};
|
|
||||||
let dest: Vec<String> = dest.split(',').map(|name| name.trim().to_string()).collect();
|
|
||||||
let msg: String = msg.trim().to_string();
|
|
||||||
|
|
||||||
broker.send(Event::Message {
|
|
||||||
from: name.clone(),
|
|
||||||
to: dest,
|
|
||||||
msg,
|
|
||||||
}).await.unwrap();
|
|
||||||
}
|
|
||||||
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn client_writer(
|
|
||||||
messages: &mut Receiver<String>,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
mut shutdown: Receiver<Void>,
|
|
||||||
) -> Result<()> {
|
|
||||||
let mut stream = &*stream;
|
|
||||||
loop {
|
|
||||||
select! {
|
|
||||||
msg = messages.next() => match msg {
|
|
||||||
Some(msg) => stream.write_all(msg.as_bytes()).await?,
|
|
||||||
None => break,
|
|
||||||
},
|
|
||||||
void = shutdown.next() => match void {
|
|
||||||
Some(void) => match void {},
|
|
||||||
None => break,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
|
|
||||||
#[derive(Debug)]
|
|
||||||
enum Event {
|
|
||||||
NewPeer {
|
|
||||||
name: String,
|
|
||||||
stream: Arc<TcpStream>,
|
|
||||||
shutdown: Receiver<Void>,
|
|
||||||
},
|
|
||||||
Message {
|
|
||||||
from: String,
|
|
||||||
to: Vec<String>,
|
|
||||||
msg: String,
|
|
||||||
},
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn broker(mut events: Receiver<Event>) {
|
|
||||||
let (disconnect_sender, mut disconnect_receiver) = // 1
|
|
||||||
mpsc::unbounded::<(String, Receiver<String>)>();
|
|
||||||
let mut peers: HashMap<String, Sender<String>> = HashMap::new();
|
|
||||||
|
|
||||||
loop {
|
|
||||||
let event = select! {
|
|
||||||
event = events.next() => match event {
|
|
||||||
None => break, // 2
|
|
||||||
Some(event) => event,
|
|
||||||
},
|
|
||||||
disconnect = disconnect_receiver.next() => {
|
|
||||||
let (name, _pending_messages) = disconnect.unwrap(); // 3
|
|
||||||
assert!(peers.remove(&name).is_some());
|
|
||||||
continue;
|
|
||||||
},
|
|
||||||
};
|
|
||||||
match event {
|
|
||||||
Event::Message { from, to, msg } => {
|
|
||||||
for addr in to {
|
|
||||||
if let Some(peer) = peers.get_mut(&addr) {
|
|
||||||
peer.send(format!("from {}: {}\n", from, msg)).await
|
|
||||||
.unwrap() // 6
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Event::NewPeer { name, stream, shutdown } => {
|
|
||||||
match peers.entry(name.clone()) {
|
|
||||||
Entry::Occupied(..) => (),
|
|
||||||
Entry::Vacant(entry) => {
|
|
||||||
let (client_sender, mut client_receiver) = mpsc::unbounded();
|
|
||||||
entry.insert(client_sender);
|
|
||||||
let mut disconnect_sender = disconnect_sender.clone();
|
|
||||||
spawn_and_log_error(async move {
|
|
||||||
let res = client_writer(&mut client_receiver, stream, shutdown).await;
|
|
||||||
disconnect_sender.send((name, client_receiver)).await // 4
|
|
||||||
.unwrap();
|
|
||||||
res
|
|
||||||
});
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
drop(peers); // 5
|
|
||||||
drop(disconnect_sender); // 6
|
|
||||||
while let Some((_name, _pending_messages)) = disconnect_receiver.next().await {
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
|
|
||||||
where
|
|
||||||
F: Future<Output = Result<()>> + Send + 'static,
|
|
||||||
{
|
|
||||||
task::spawn(async move {
|
|
||||||
if let Err(e) = fut.await {
|
|
||||||
eprintln!("{}", e)
|
|
||||||
}
|
|
||||||
})
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. In the broker, we create a channel to reap disconnected peers and their undelivered messages.
|
|
||||||
2. The broker's main loop exits when the input events channel is exhausted (that is, when all readers exit).
|
|
||||||
3. Because broker itself holds a `disconnect_sender`, we know that the disconnections channel can't be fully drained in the main loop.
|
|
||||||
4. We send peer's name and pending messages to the disconnections channel in both the happy and the not-so-happy path.
|
|
||||||
Again, we can safely unwrap because broker outlives writers.
|
|
||||||
5. We drop `peers` map to close writers' messages channel and shut down the writers for sure.
|
|
||||||
It is not strictly necessary in the current setup, where the broker waits for readers' shutdown anyway.
|
|
||||||
However, if we add a server-initiated shutdown (for example, kbd:[ctrl+c] handling), this will be a way for the broker to shutdown the writers.
|
|
||||||
6. Finally, we close and drain the disconnections channel.
|
|
||||||
|
|
||||||
## Implementing a client
|
|
||||||
|
|
||||||
Let's now implement the client for the chat.
|
|
||||||
Because the protocol is line-based, the implementation is pretty straightforward:
|
|
||||||
|
|
||||||
* Lines read from stdin should be send over the socket.
|
|
||||||
* Lines read from the socket should be echoed to stdout.
|
|
||||||
|
|
||||||
Unlike the server, the client needs only limited concurrency, as it interacts with only a single user.
|
|
||||||
For this reason, async doesn't bring a lot of performance benefits in this case.
|
|
||||||
|
|
||||||
However, async is still useful for managing concurrency!
|
|
||||||
Specifically, the client should *simultaneously* read from stdin and from the socket.
|
|
||||||
Programming this with threads is cumbersome, especially when implementing clean shutdown.
|
|
||||||
With async, we can just use the `select!` macro.
|
|
||||||
|
|
||||||
```rust
|
|
||||||
#![feature(async_await)]
|
|
||||||
|
|
||||||
use std::net::ToSocketAddrs;
|
|
||||||
|
|
||||||
use futures::select;
|
|
||||||
|
|
||||||
use async_std::{
|
|
||||||
prelude::*,
|
|
||||||
net::TcpStream,
|
|
||||||
task,
|
|
||||||
io::{stdin, BufReader},
|
|
||||||
};
|
|
||||||
|
|
||||||
type Result<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
|
|
||||||
|
|
||||||
|
|
||||||
fn main() -> Result<()> {
|
|
||||||
task::block_on(try_main("127.0.0.1:8080"))
|
|
||||||
}
|
|
||||||
|
|
||||||
async fn try_main(addr: impl ToSocketAddrs) -> Result<()> {
|
|
||||||
let stream = TcpStream::connect(addr).await?;
|
|
||||||
let (reader, mut writer) = (&stream, &stream); // 1
|
|
||||||
let reader = BufReader::new(reader);
|
|
||||||
let mut lines_from_server = futures::StreamExt::fuse(reader.lines()); // 2
|
|
||||||
|
|
||||||
let stdin = BufReader::new(stdin());
|
|
||||||
let mut lines_from_stdin = futures::StreamExt::fuse(stdin.lines()); // 2
|
|
||||||
loop {
|
|
||||||
select! { // 3
|
|
||||||
line = lines_from_server.next() => match line {
|
|
||||||
Some(line) => {
|
|
||||||
let line = line?;
|
|
||||||
println!("{}", line);
|
|
||||||
},
|
|
||||||
None => break,
|
|
||||||
},
|
|
||||||
line = lines_from_stdin.next() => match line {
|
|
||||||
Some(line) => {
|
|
||||||
let line = line?;
|
|
||||||
writer.write_all(line.as_bytes()).await?;
|
|
||||||
writer.write_all(b"\n").await?;
|
|
||||||
}
|
|
||||||
None => break,
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
Ok(())
|
|
||||||
}
|
|
||||||
```
|
|
||||||
|
|
||||||
1. Here we split `TcpStream` into read and write halfs: there's `impl AsyncRead for &'_ TcpStream`, just like the one in std.
|
|
||||||
2. We crate a steam of lines for both the socket and stdin.
|
|
||||||
3. In the main select loop, we print the lines we receive from server and send the lines we read from the console.
|
|
@ -1 +0,0 @@
|
|||||||
# Tutorials
|
|
@ -1,43 +0,0 @@
|
|||||||
# Exercise: Waiting for `std::thread`
|
|
||||||
|
|
||||||
Parallel processing is usually done via [threads].
|
|
||||||
In `async-std`, we have similar concept, called a [`task`].
|
|
||||||
These two worlds seem different - and in some regards, they are - though they
|
|
||||||
are easy to connect.
|
|
||||||
In this exercise, you will learn how to connect to concurrent/parallel components easily, by connecting a thread to a task.
|
|
||||||
|
|
||||||
## Understanding the problem
|
|
||||||
|
|
||||||
The standard thread API in Rust is `std::thread`. Specifically, it contains the [`spawn`] function, which allows us to start a thread:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
std::thread::spawn(|| {
|
|
||||||
println!("in child thread");
|
|
||||||
})
|
|
||||||
println!("in parent thread");
|
|
||||||
```
|
|
||||||
|
|
||||||
This creates a thread, _immediately_ [schedules] it to run, and continues. This is crucial: once the thread is spawned, it is independent of its _parent thread_. If you want to wait for the thread to end, you need to capture its [`JoinHandle`] and join it with your current thread:
|
|
||||||
|
|
||||||
```rust
|
|
||||||
let thread = std::thread::spawn(|| {
|
|
||||||
println!("in child thread");
|
|
||||||
})
|
|
||||||
thread.join();
|
|
||||||
println!("in parent thread");
|
|
||||||
```
|
|
||||||
|
|
||||||
This comes at a cost though: the waiting thread will [block] until the child is done. Wouldn't it be nice if we could just use the `.await` syntax here and leave the opportunity for another task to be scheduled while waiting?
|
|
||||||
|
|
||||||
## Backchannels
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
[threads]: TODO: wikipedia
|
|
||||||
[`task`]: TODO: docs link
|
|
||||||
[`spawn`]: TODO: docs link
|
|
||||||
[`JoinHandle`]: TODO: docs link
|
|
||||||
[schedules]: TODO: Glossary link
|
|
||||||
[block]: TODO: Link to blocking
|
|
Loading…
Reference in New Issue