Merge pull request #733 from k-nasa/new-scheduler

New scheduler
mio-0-7
Friedel Ziegelmayer 5 years ago committed by GitHub
commit fc4e472599
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -26,6 +26,7 @@ default = [
"async-task",
"crossbeam-channel",
"crossbeam-deque",
"crossbeam-queue",
"futures-timer",
"kv-log-macro",
"log",
@ -58,6 +59,7 @@ async-task = { version = "1.3.1", optional = true }
broadcaster = { version = "1.0.0", optional = true }
crossbeam-channel = { version = "0.4.2", optional = true }
crossbeam-deque = { version = "0.7.3", optional = true }
crossbeam-queue = { version = "0.2.0", optional = true }
crossbeam-utils = { version = "0.7.2", optional = true }
futures-core = { version = "0.3.4", optional = true, default-features = false }
futures-io = { version = "0.3.4", optional = true }

@ -270,6 +270,7 @@ cfg_default! {
pub mod fs;
pub mod path;
pub mod net;
pub(crate) mod rt;
}
cfg_unstable! {

@ -66,6 +66,5 @@ pub use tcp::{Incoming, TcpListener, TcpStream};
pub use udp::UdpSocket;
mod addr;
pub(crate) mod driver;
mod tcp;
mod udp;

@ -5,7 +5,7 @@ use std::sync::Arc;
use crate::future;
use crate::io;
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::net::{TcpStream, ToSocketAddrs};
use crate::stream::Stream;
use crate::task::{Context, Poll};

@ -5,7 +5,7 @@ use std::sync::Arc;
use crate::future;
use crate::io::{self, Read, Write};
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::net::ToSocketAddrs;
use crate::task::{Context, Poll};

@ -3,8 +3,8 @@ use std::net::SocketAddr;
use std::net::{Ipv4Addr, Ipv6Addr};
use crate::future;
use crate::net::driver::Watcher;
use crate::net::ToSocketAddrs;
use crate::rt::Watcher;
use crate::utils::Context as _;
/// A UDP socket.
@ -102,7 +102,7 @@ impl UdpSocket {
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::net::UdpSocket;
/// use async_std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:0").await?;
/// let addr = socket.local_addr()?;

@ -8,7 +8,7 @@ use mio_uds;
use super::SocketAddr;
use crate::future;
use crate::io;
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path;
use crate::task::spawn_blocking;

@ -10,7 +10,7 @@ use super::SocketAddr;
use super::UnixStream;
use crate::future;
use crate::io;
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path;
use crate::stream::Stream;

@ -9,7 +9,7 @@ use mio_uds;
use super::SocketAddr;
use crate::io::{self, Read, Write};
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path;
use crate::task::{spawn_blocking, Context, Poll};

@ -0,0 +1,23 @@
//! The runtime.
use std::thread;
use once_cell::sync::Lazy;
use crate::utils::abort_on_panic;
pub use reactor::{Reactor, Watcher};
pub use runtime::Runtime;
mod reactor;
mod runtime;
/// The global runtime.
pub static RUNTIME: Lazy<Runtime> = Lazy::new(|| {
thread::Builder::new()
.name("async-std/runtime".to_string())
.spawn(|| abort_on_panic(|| RUNTIME.run()))
.expect("cannot start a runtime thread");
Runtime::new()
});

@ -1,13 +1,13 @@
use std::fmt;
use std::sync::{Arc, Mutex};
use std::time::Duration;
use mio::{self, Evented};
use once_cell::sync::Lazy;
use slab::Slab;
use crate::io;
use crate::rt::RUNTIME;
use crate::task::{Context, Poll, Waker};
use crate::utils::abort_on_panic;
/// Data associated with a registered I/O handle.
#[derive(Debug)]
@ -18,10 +18,28 @@ struct Entry {
/// Tasks that are blocked on reading from this I/O handle.
readers: Mutex<Readers>,
/// Thasks that are blocked on writing to this I/O handle.
/// Tasks that are blocked on writing to this I/O handle.
writers: Mutex<Writers>,
}
/// The state of a networking driver.
pub struct Reactor {
/// A mio instance that polls for new events.
poller: mio::Poll,
/// A list into which mio stores events.
events: Mutex<mio::Events>,
/// A collection of registered I/O handles.
entries: Mutex<Slab<Arc<Entry>>>,
/// Dummy I/O handle that is only used to wake up the polling thread.
notify_reg: (mio::Registration, mio::SetReadiness),
/// An identifier for the notification handle.
notify_token: mio::Token,
}
/// The set of `Waker`s interested in read readiness.
#[derive(Debug)]
struct Readers {
@ -29,7 +47,7 @@ struct Readers {
/// (cf. `Watcher::poll_read_ready`)
ready: bool,
/// The `Waker`s blocked on reading.
wakers: Vec<Waker>
wakers: Vec<Waker>,
}
/// The set of `Waker`s interested in write readiness.
@ -39,32 +57,18 @@ struct Writers {
/// (cf. `Watcher::poll_write_ready`)
ready: bool,
/// The `Waker`s blocked on writing.
wakers: Vec<Waker>
}
/// The state of a networking driver.
struct Reactor {
/// A mio instance that polls for new events.
poller: mio::Poll,
/// A collection of registered I/O handles.
entries: Mutex<Slab<Arc<Entry>>>,
/// Dummy I/O handle that is only used to wake up the polling thread.
notify_reg: (mio::Registration, mio::SetReadiness),
/// An identifier for the notification handle.
notify_token: mio::Token,
wakers: Vec<Waker>,
}
impl Reactor {
/// Creates a new reactor for polling I/O events.
fn new() -> io::Result<Reactor> {
pub fn new() -> io::Result<Reactor> {
let poller = mio::Poll::new()?;
let notify_reg = mio::Registration::new2();
let mut reactor = Reactor {
poller,
events: Mutex::new(mio::Events::with_capacity(1000)),
entries: Mutex::new(Slab::new()),
notify_reg,
notify_token: mio::Token(0),
@ -88,8 +92,14 @@ impl Reactor {
// Allocate an entry and insert it into the slab.
let entry = Arc::new(Entry {
token,
readers: Mutex::new(Readers { ready: false, wakers: Vec::new() }),
writers: Mutex::new(Writers { ready: false, wakers: Vec::new() }),
readers: Mutex::new(Readers {
ready: false,
wakers: Vec::new(),
}),
writers: Mutex::new(Writers {
ready: false,
wakers: Vec::new(),
}),
});
vacant.insert(entry.clone());
@ -112,50 +122,32 @@ impl Reactor {
Ok(())
}
// fn notify(&self) {
// self.notify_reg
// .1
// .set_readiness(mio::Ready::readable())
// .unwrap();
// }
}
/// Notifies the reactor so that polling stops blocking.
pub fn notify(&self) -> io::Result<()> {
self.notify_reg.1.set_readiness(mio::Ready::readable())
}
/// Waits on the poller for new events and wakes up tasks blocked on I/O handles.
///
/// Returns `Ok(true)` if at least one new task was woken.
pub fn poll(&self, timeout: Option<Duration>) -> io::Result<bool> {
let mut events = self.events.lock().unwrap();
/// The state of the global networking driver.
static REACTOR: Lazy<Reactor> = Lazy::new(|| {
// Spawn a thread that waits on the poller for new events and wakes up tasks blocked on I/O
// handles.
std::thread::Builder::new()
.name("async-std/net".to_string())
.spawn(move || {
// If the driver thread panics, there's not much we can do. It is not a
// recoverable error and there is no place to propagate it into so we just abort.
abort_on_panic(|| {
main_loop().expect("async networking thread has panicked");
})
})
.expect("cannot start a thread driving blocking tasks");
Reactor::new().expect("cannot initialize reactor")
});
/// Waits on the poller for new events and wakes up tasks blocked on I/O handles.
fn main_loop() -> io::Result<()> {
let reactor = &REACTOR;
let mut events = mio::Events::with_capacity(1000);
loop {
// Block on the poller until at least one new event comes in.
reactor.poller.poll(&mut events, None)?;
self.poller.poll(&mut events, timeout)?;
// Lock the entire entry table while we're processing new events.
let entries = reactor.entries.lock().unwrap();
let entries = self.entries.lock().unwrap();
// The number of woken tasks.
let mut progress = false;
for event in events.iter() {
let token = event.token();
if token == reactor.notify_token {
if token == self.notify_token {
// If this is the notification token, we just need the notification state.
reactor.notify_reg.1.set_readiness(mio::Ready::empty())?;
self.notify_reg.1.set_readiness(mio::Ready::empty())?;
} else {
// Otherwise, look for the entry associated with this token.
if let Some(entry) = entries.get(token.0) {
@ -163,25 +155,31 @@ fn main_loop() -> io::Result<()> {
let readiness = event.readiness();
// Wake up reader tasks blocked on this I/O handle.
if !(readiness & reader_interests()).is_empty() {
let reader_interests = mio::Ready::all() - mio::Ready::writable();
if !(readiness & reader_interests).is_empty() {
let mut readers = entry.readers.lock().unwrap();
readers.ready = true;
for w in readers.wakers.drain(..) {
w.wake();
progress = true;
}
}
// Wake up writer tasks blocked on this I/O handle.
if !(readiness & writer_interests()).is_empty() {
let writer_interests = mio::Ready::all() - mio::Ready::readable();
if !(readiness & writer_interests).is_empty() {
let mut writers = entry.writers.lock().unwrap();
writers.ready = true;
for w in writers.wakers.drain(..) {
w.wake();
progress = true;
}
}
}
}
}
Ok(progress)
}
}
@ -204,7 +202,8 @@ impl<T: Evented> Watcher<T> {
/// lifetime of the returned I/O handle.
pub fn new(source: T) -> Watcher<T> {
Watcher {
entry: REACTOR
entry: RUNTIME
.reactor()
.register(&source)
.expect("cannot register an I/O event source"),
source: Some(source),
@ -240,12 +239,11 @@ impl<T: Evented> Watcher<T> {
}
// Register the task if it isn't registered already.
if readers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
readers.wakers.push(cx.waker().clone());
}
readers.ready = false;
Poll::Pending
}
@ -281,8 +279,6 @@ impl<T: Evented> Watcher<T> {
writers.wakers.push(cx.waker().clone());
}
writers.ready = false;
Poll::Pending
}
@ -296,7 +292,7 @@ impl<T: Evented> Watcher<T> {
// Lock the waker list.
let mut readers = self.entry.readers.lock().unwrap();
if readers.ready {
return Poll::Ready(())
return Poll::Ready(());
}
// Register the task if it isn't registered already.
if readers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
@ -314,7 +310,7 @@ impl<T: Evented> Watcher<T> {
// Lock the waker list.
let mut writers = self.entry.writers.lock().unwrap();
if writers.ready {
return Poll::Ready(())
return Poll::Ready(());
}
// Register the task if it isn't registered already.
if writers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
@ -329,7 +325,8 @@ impl<T: Evented> Watcher<T> {
#[allow(dead_code)]
pub fn into_inner(mut self) -> T {
let source = self.source.take().unwrap();
REACTOR
RUNTIME
.reactor()
.deregister(&source, &self.entry)
.expect("cannot deregister I/O event source");
source
@ -339,7 +336,8 @@ impl<T: Evented> Watcher<T> {
impl<T: Evented> Drop for Watcher<T> {
fn drop(&mut self) {
if let Some(ref source) = self.source {
REACTOR
RUNTIME
.reactor()
.deregister(source, &self.entry)
.expect("cannot deregister I/O event source");
}
@ -354,27 +352,3 @@ impl<T: Evented + fmt::Debug> fmt::Debug for Watcher<T> {
.finish()
}
}
/// Returns a mask containing flags that interest tasks reading from I/O handles.
#[inline]
fn reader_interests() -> mio::Ready {
mio::Ready::all() - mio::Ready::writable()
}
/// Returns a mask containing flags that interest tasks writing into I/O handles.
#[inline]
fn writer_interests() -> mio::Ready {
mio::Ready::writable() | hup()
}
/// Returns a flag containing the hangup status.
#[inline]
fn hup() -> mio::Ready {
#[cfg(unix)]
let ready = mio::unix::UnixReady::hup().into();
#[cfg(not(unix))]
let ready = mio::Ready::empty();
ready
}

@ -0,0 +1,343 @@
use std::cell::Cell;
use std::io;
use std::iter;
use std::sync::atomic::{self, Ordering};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use crossbeam_deque::{Injector, Steal, Stealer, Worker};
use crossbeam_utils::thread::scope;
use once_cell::unsync::OnceCell;
use crate::rt::Reactor;
use crate::sync::Spinlock;
use crate::task::Runnable;
use crate::utils::{abort_on_panic, random};
thread_local! {
/// A reference to the current machine, if the current thread runs tasks.
static MACHINE: OnceCell<Arc<Machine>> = OnceCell::new();
/// This flag is set to true whenever `task::yield_now()` is invoked.
static YIELD_NOW: Cell<bool> = Cell::new(false);
}
struct Scheduler {
/// Set to `true` while a machine is polling the reactor.
polling: bool,
}
/// An async runtime.
pub struct Runtime {
/// The reactor.
reactor: Reactor,
/// The global queue of tasks.
injector: Injector<Runnable>,
/// Handles to local queues for stealing work.
stealers: Vec<Stealer<Runnable>>,
/// Machines to start
machines: Vec<Arc<Machine>>,
/// The scheduler state.
sched: Mutex<Scheduler>,
}
impl Runtime {
/// Creates a new runtime.
pub fn new() -> Runtime {
let cpus = num_cpus::get().max(1);
let processors: Vec<_> = (0..cpus).map(|_| Processor::new()).collect();
let machines: Vec<_> = processors
.into_iter()
.map(|p| Arc::new(Machine::new(p)))
.collect();
let stealers = machines
.iter()
.map(|m| m.processor.lock().worker.stealer())
.collect();
Runtime {
reactor: Reactor::new().unwrap(),
injector: Injector::new(),
stealers,
machines,
sched: Mutex::new(Scheduler { polling: false }),
}
}
/// Returns a reference to the reactor.
pub fn reactor(&self) -> &Reactor {
&self.reactor
}
/// Flushes the task slot so that tasks get run more fairly.
pub fn yield_now(&self) {
YIELD_NOW.with(|flag| flag.set(true));
}
/// Schedules a task.
pub fn schedule(&self, task: Runnable) {
MACHINE.with(|machine| {
// If the current thread is a worker thread, schedule it onto the current machine.
// Otherwise, push it into the global task queue.
match machine.get() {
None => {
self.injector.push(task);
self.notify();
}
Some(m) => m.schedule(&self, task),
}
});
}
/// Runs the runtime on the current thread.
pub fn run(&self) {
scope(|s| {
for m in &self.machines {
s.builder()
.name("async-std/machine".to_string())
.spawn(move |_| {
abort_on_panic(|| {
let _ = MACHINE.with(|machine| machine.set(m.clone()));
m.run(self);
})
})
.expect("cannot start a machine thread");
}
})
.unwrap();
}
/// Unparks a thread polling the reactor.
fn notify(&self) {
atomic::fence(Ordering::SeqCst);
self.reactor.notify().unwrap();
}
/// Attempts to poll the reactor without blocking on it.
///
/// Returns `Ok(true)` if at least one new task was woken.
///
/// This function might not poll the reactor at all so do not rely on it doing anything. Only
/// use for optimization.
fn quick_poll(&self) -> io::Result<bool> {
if let Ok(sched) = self.sched.try_lock() {
if !sched.polling {
return self.reactor.poll(Some(Duration::from_secs(0)));
}
}
Ok(false)
}
}
/// A thread running a processor.
struct Machine {
/// Holds the processor until it gets stolen.
processor: Spinlock<Processor>,
}
impl Machine {
/// Creates a new machine running a processor.
fn new(p: Processor) -> Machine {
Machine {
processor: Spinlock::new(p),
}
}
/// Schedules a task onto the machine.
fn schedule(&self, rt: &Runtime, task: Runnable) {
self.processor.lock().schedule(rt, task);
}
/// Finds the next runnable task.
fn find_task(&self, rt: &Runtime) -> Steal<Runnable> {
let mut retry = false;
// First try finding a task in the local queue or in the global queue.
if let Some(task) = self.processor.lock().pop_task() {
return Steal::Success(task);
}
match self.processor.lock().steal_from_global(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
// Try polling the reactor, but don't block on it.
let progress = rt.quick_poll().unwrap();
// Try finding a task in the local queue, which might hold tasks woken by the reactor. If
// the local queue is still empty, try stealing from other processors.
if progress {
if let Some(task) = self.processor.lock().pop_task() {
return Steal::Success(task);
}
}
match self.processor.lock().steal_from_others(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
if retry { Steal::Retry } else { Steal::Empty }
}
/// Runs the machine on the current thread.
fn run(&self, rt: &Runtime) {
/// Number of yields when no runnable task is found.
const YIELDS: u32 = 3;
/// Number of short sleeps when no runnable task in found.
const SLEEPS: u32 = 10;
/// Number of runs in a row before the global queue is inspected.
const RUNS: u32 = 64;
// The number of times the thread found work in a row.
let mut runs = 0;
// The number of times the thread didn't find work in a row.
let mut fails = 0;
loop {
// Check if `task::yield_now()` was invoked and flush the slot if so.
YIELD_NOW.with(|flag| {
if flag.replace(false) {
self.processor.lock().flush_slot(rt);
}
});
// After a number of runs in a row, do some work to ensure no task is left behind
// indefinitely. Poll the reactor, steal tasks from the global queue, and flush the
// task slot.
if runs >= RUNS {
runs = 0;
rt.quick_poll().unwrap();
let mut p = self.processor.lock();
if let Steal::Success(task) = p.steal_from_global(rt) {
p.schedule(rt, task);
}
p.flush_slot(rt);
}
// Try to find a runnable task.
if let Steal::Success(task) = self.find_task(rt) {
task.run();
runs += 1;
fails = 0;
continue;
}
fails += 1;
// Yield the current thread a few times.
if fails <= YIELDS {
thread::yield_now();
continue;
}
// Put the current thread to sleep a few times.
if fails <= YIELDS + SLEEPS {
thread::sleep(Duration::from_micros(10));
continue;
}
// One final check for available tasks while the scheduler is locked.
if let Some(task) = iter::repeat_with(|| self.find_task(rt))
.find(|s| !s.is_retry())
.and_then(|s| s.success())
{
self.schedule(rt, task);
continue;
}
let mut sched = rt.sched.lock().unwrap();
if sched.polling {
thread::sleep(Duration::from_micros(10));
continue;
}
sched.polling = true;
drop(sched);
rt.reactor.poll(None).unwrap();
let mut sched = rt.sched.lock().unwrap();
sched.polling = false;
runs = 0;
fails = 0;
}
}
}
struct Processor {
/// The local task queue.
worker: Worker<Runnable>,
/// Contains the next task to run as an optimization that skips the queue.
slot: Option<Runnable>,
}
impl Processor {
/// Creates a new processor.
fn new() -> Processor {
Processor {
worker: Worker::new_fifo(),
slot: None,
}
}
/// Schedules a task to run on this processor.
fn schedule(&mut self, rt: &Runtime, task: Runnable) {
match self.slot.replace(task) {
None => {}
Some(task) => {
self.worker.push(task);
rt.notify();
}
}
}
/// Flushes a task from the slot into the local queue.
fn flush_slot(&mut self, rt: &Runtime) {
if let Some(task) = self.slot.take() {
self.worker.push(task);
rt.notify();
}
}
/// Pops a task from this processor.
fn pop_task(&mut self) -> Option<Runnable> {
self.slot.take().or_else(|| self.worker.pop())
}
/// Steals a task from the global queue.
fn steal_from_global(&self, rt: &Runtime) -> Steal<Runnable> {
rt.injector.steal_batch_and_pop(&self.worker)
}
/// Steals a task from other processors.
fn steal_from_others(&self, rt: &Runtime) -> Steal<Runnable> {
// Pick a random starting point in the list of queues.
let len = rt.stealers.len();
let start = random(len as u32) as usize;
// Create an iterator over stealers that starts from the chosen point.
let (l, r) = rt.stealers.split_at(start);
let stealers = r.iter().chain(l.iter());
// Try stealing a batch of tasks from each queue.
stealers
.map(|s| s.steal_batch_and_pop(&self.worker))
.collect()
}
}

@ -192,3 +192,8 @@ cfg_unstable! {
pub(crate) mod waker_set;
pub(crate) use waker_set::WakerSet;
cfg_default! {
pub(crate) mod spin_lock;
pub(crate) use spin_lock::Spinlock;
}

@ -0,0 +1,89 @@
use std::cell::UnsafeCell;
use std::ops::{Deref, DerefMut};
use std::sync::atomic::{AtomicBool, Ordering};
use crossbeam_utils::Backoff;
/// A simple spinlock.
#[derive(Debug)]
pub struct Spinlock<T> {
locked: AtomicBool,
value: UnsafeCell<T>,
}
unsafe impl<T: Send> Send for Spinlock<T> {}
unsafe impl<T: Send> Sync for Spinlock<T> {}
impl<T> Spinlock<T> {
/// Returns a new spinlock initialized with `value`.
pub const fn new(value: T) -> Spinlock<T> {
Spinlock {
locked: AtomicBool::new(false),
value: UnsafeCell::new(value),
}
}
/// Locks the spinlock.
pub fn lock(&self) -> SpinlockGuard<'_, T> {
let backoff = Backoff::new();
while self.locked.compare_and_swap(false, true, Ordering::Acquire) {
backoff.snooze();
}
SpinlockGuard { parent: self }
}
}
/// A guard holding a spinlock locked.
#[derive(Debug)]
pub struct SpinlockGuard<'a, T> {
parent: &'a Spinlock<T>,
}
unsafe impl<T: Send> Send for SpinlockGuard<'_, T> {}
unsafe impl<T: Sync> Sync for SpinlockGuard<'_, T> {}
impl<'a, T> Drop for SpinlockGuard<'a, T> {
fn drop(&mut self) {
self.parent.locked.store(false, Ordering::Release);
}
}
impl<'a, T> Deref for SpinlockGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.parent.value.get() }
}
}
impl<'a, T> DerefMut for SpinlockGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.parent.value.get() }
}
}
#[test]
fn spinlock() {
use std::sync::Arc;
use crate::sync::{Spinlock};
use crate::task;
task::block_on(async {
let m = Arc::new(Spinlock::new(0));
let mut tasks = vec![];
for _ in 0..10 {
let m = m.clone();
tasks.push(task::spawn(async move {
*m.lock() += 1;
}));
}
for t in tasks {
t.await;
}
assert_eq!(*m.lock(), 10);
})
}

@ -6,7 +6,6 @@ use std::task::{RawWaker, RawWakerVTable};
use crossbeam_utils::sync::Parker;
use kv_log_macro::trace;
use log::log_enabled;
use crate::task::{Context, Poll, Task, Waker};
@ -41,12 +40,10 @@ where
let task = Task::new(None);
// Log this `block_on` operation.
if log_enabled!(log::Level::Trace) {
trace!("block_on", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
}
trace!("block_on", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
let future = async move {
// Drop task-locals on exit.
@ -56,13 +53,9 @@ where
// Log completion on exit.
defer! {
if log_enabled!(log::Level::Trace) {
Task::get_current(|t| {
trace!("completed", {
task_id: t.id().0,
});
});
}
trace!("completed", {
task_id: Task::get_current(|t| t.id().0),
});
}
future.await

@ -1,9 +1,9 @@
use kv_log_macro::trace;
use log::log_enabled;
use std::future::Future;
use kv_log_macro::trace;
use crate::io;
use crate::task::executor;
use crate::rt::RUNTIME;
use crate::task::{JoinHandle, Task};
use crate::utils::abort_on_panic;
@ -37,12 +37,10 @@ impl Builder {
let task = Task::new(self.name);
// Log this `spawn` operation.
if log_enabled!(log::Level::Trace) {
trace!("spawn", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
}
trace!("spawn", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
let future = async move {
// Drop task-locals on exit.
@ -52,19 +50,15 @@ impl Builder {
// Log completion on exit.
defer! {
if log_enabled!(log::Level::Trace) {
Task::get_current(|t| {
trace!("completed", {
task_id: t.id().0,
});
});
}
trace!("completed", {
task_id: Task::get_current(|t| t.id().0),
});
}
future.await
};
let schedule = move |t| executor::schedule(Runnable(t));
let schedule = move |t| RUNTIME.schedule(Runnable(t));
let (task, handle) = async_task::spawn(future, schedule, task);
task.schedule();
Ok(JoinHandle::new(handle))
@ -72,7 +66,7 @@ impl Builder {
}
/// A runnable task.
pub(crate) struct Runnable(async_task::Task<Task>);
pub struct Runnable(async_task::Task<Task>);
impl Runnable {
/// Runs the task by polling its future once.

@ -1,13 +0,0 @@
//! Task executor.
//!
//! API bindings between `crate::task` and this module are very simple:
//!
//! * The only export is the `schedule` function.
//! * The only import is the `crate::task::Runnable` type.
pub(crate) use pool::schedule;
use sleepers::Sleepers;
mod pool;
mod sleepers;

@ -1,179 +0,0 @@
use std::cell::Cell;
use std::iter;
use std::thread;
use std::time::Duration;
use crossbeam_deque::{Injector, Stealer, Worker};
use once_cell::sync::Lazy;
use once_cell::unsync::OnceCell;
use crate::task::executor::Sleepers;
use crate::task::Runnable;
use crate::utils::{abort_on_panic, random};
/// The state of an executor.
struct Pool {
/// The global queue of tasks.
injector: Injector<Runnable>,
/// Handles to local queues for stealing work from worker threads.
stealers: Vec<Stealer<Runnable>>,
/// Used for putting idle workers to sleep and notifying them when new tasks come in.
sleepers: Sleepers,
}
/// Global executor that runs spawned tasks.
static POOL: Lazy<Pool> = Lazy::new(|| {
let num_threads = num_cpus::get().max(1);
let mut stealers = Vec::new();
// Spawn worker threads.
for _ in 0..num_threads {
let worker = Worker::new_fifo();
stealers.push(worker.stealer());
let proc = Processor {
worker,
slot: Cell::new(None),
slot_runs: Cell::new(0),
};
thread::Builder::new()
.name("async-std/executor".to_string())
.spawn(|| {
let _ = PROCESSOR.with(|p| p.set(proc));
abort_on_panic(main_loop);
})
.expect("cannot start a thread driving tasks");
}
Pool {
injector: Injector::new(),
stealers,
sleepers: Sleepers::new(),
}
});
/// The state of a worker thread.
struct Processor {
/// The local task queue.
worker: Worker<Runnable>,
/// Contains the next task to run as an optimization that skips queues.
slot: Cell<Option<Runnable>>,
/// How many times in a row tasks have been taked from the slot rather than the queue.
slot_runs: Cell<u32>,
}
thread_local! {
/// Worker thread state.
static PROCESSOR: OnceCell<Processor> = OnceCell::new();
}
/// Schedules a new runnable task for execution.
pub(crate) fn schedule(task: Runnable) {
PROCESSOR.with(|proc| {
// If the current thread is a worker thread, store it into its task slot or push it into
// its local task queue. Otherwise, push it into the global task queue.
match proc.get() {
Some(proc) => {
// Replace the task in the slot.
if let Some(task) = proc.slot.replace(Some(task)) {
// If the slot already contained a task, push it into the local task queue.
proc.worker.push(task);
POOL.sleepers.notify_one();
}
}
None => {
POOL.injector.push(task);
POOL.sleepers.notify_one();
}
}
})
}
/// Main loop running a worker thread.
fn main_loop() {
/// Number of yields when no runnable task is found.
const YIELDS: u32 = 3;
/// Number of short sleeps when no runnable task in found.
const SLEEPS: u32 = 1;
// The number of times the thread didn't find work in a row.
let mut fails = 0;
loop {
// Try to find a runnable task.
match find_runnable() {
Some(task) => {
fails = 0;
// Run the found task.
task.run();
}
None => {
fails += 1;
// Yield the current thread or put it to sleep.
if fails <= YIELDS {
thread::yield_now();
} else if fails <= YIELDS + SLEEPS {
thread::sleep(Duration::from_micros(10));
} else {
POOL.sleepers.wait();
fails = 0;
}
}
}
}
}
/// Find the next runnable task.
fn find_runnable() -> Option<Runnable> {
/// Maximum number of times the slot can be used in a row.
const SLOT_LIMIT: u32 = 16;
PROCESSOR.with(|proc| {
let proc = proc.get().unwrap();
// Try taking a task from the slot.
let runs = proc.slot_runs.get();
if runs < SLOT_LIMIT {
if let Some(task) = proc.slot.take() {
proc.slot_runs.set(runs + 1);
return Some(task);
}
}
proc.slot_runs.set(0);
// Pop a task from the local queue, if not empty.
proc.worker.pop().or_else(|| {
// Otherwise, we need to look for a task elsewhere.
iter::repeat_with(|| {
// Try stealing a batch of tasks from the global queue.
POOL.injector
.steal_batch_and_pop(&proc.worker)
// Or try stealing a batch of tasks from one of the other threads.
.or_else(|| {
// First, pick a random starting point in the list of local queues.
let len = POOL.stealers.len();
let start = random(len as u32) as usize;
// Try stealing a batch of tasks from each local queue starting from the
// chosen point.
let (l, r) = POOL.stealers.split_at(start);
let stealers = r.iter().chain(l.iter());
stealers
.map(|s| s.steal_batch_and_pop(&proc.worker))
.collect()
})
})
// Loop while no task was stolen and any steal operation needs to be retried.
.find(|s| !s.is_retry())
// Extract the stolen task, if there is one.
.and_then(|s| s.success())
})
})
}

@ -1,52 +0,0 @@
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Condvar, Mutex};
/// The place where worker threads go to sleep.
///
/// Similar to how thread parking works, if a notification comes up while no threads are sleeping,
/// the next thread that attempts to go to sleep will pick up the notification immediately.
pub struct Sleepers {
/// How many threads are currently a sleep.
sleep: Mutex<usize>,
/// A condvar for notifying sleeping threads.
wake: Condvar,
/// Set to `true` if a notification came up while nobody was sleeping.
notified: AtomicBool,
}
impl Sleepers {
/// Creates a new `Sleepers`.
pub fn new() -> Sleepers {
Sleepers {
sleep: Mutex::new(0),
wake: Condvar::new(),
notified: AtomicBool::new(false),
}
}
/// Puts the current thread to sleep.
pub fn wait(&self) {
let mut sleep = self.sleep.lock().unwrap();
if !self.notified.swap(false, Ordering::SeqCst) {
*sleep += 1;
let _ = self.wake.wait(sleep).unwrap();
}
}
/// Notifies one thread.
pub fn notify_one(&self) {
if !self.notified.load(Ordering::SeqCst) {
let mut sleep = self.sleep.lock().unwrap();
if *sleep > 0 {
*sleep -= 1;
self.wake.notify_one();
} else {
self.notified.store(true, Ordering::SeqCst);
}
}
}
}

@ -14,9 +14,6 @@ use crate::task::{Context, Poll, Task};
#[derive(Debug)]
pub struct JoinHandle<T>(async_task::JoinHandle<T, Task>);
unsafe impl<T> Send for JoinHandle<T> {}
unsafe impl<T> Sync for JoinHandle<T> {}
impl<T> JoinHandle<T> {
/// Creates a new `JoinHandle`.
pub(crate) fn new(inner: async_task::JoinHandle<T, Task>) -> JoinHandle<T> {

@ -141,13 +141,12 @@ cfg_default! {
pub use spawn::spawn;
pub use task_local::{AccessError, LocalKey};
use builder::Runnable;
use task_local::LocalsMap;
pub(crate) use builder::Runnable;
pub(crate) use task_local::LocalsMap;
mod block_on;
mod builder;
mod current;
mod executor;
mod join_handle;
mod sleep;
mod spawn;

@ -31,7 +31,8 @@ use crate::utils::abort_on_panic;
///
/// task::spawn_blocking(|| {
/// println!("long-running task here");
/// }).await;
/// })
/// .await;
/// #
/// # })
/// ```
@ -50,14 +51,14 @@ where
type Runnable = async_task::Task<Task>;
/// The number of sleeping worker threads.
static SLEEPING: AtomicUsize = AtomicUsize::new(0);
struct Pool {
sender: Sender<Runnable>,
receiver: Receiver<Runnable>,
}
/// The number of sleeping worker threads.
static SLEEPING: AtomicUsize = AtomicUsize::new(0);
static POOL: Lazy<Pool> = Lazy::new(|| {
// Start a single worker thread waiting for the first task.
start_thread();

@ -1,5 +1,5 @@
use std::pin::Pin;
use std::future::Future;
use std::pin::Pin;
use crate::task::{Context, Poll};
@ -43,6 +43,10 @@ impl Future for YieldNow {
if !self.0 {
self.0 = true;
cx.waker().wake_by_ref();
#[cfg(feature = "default")]
crate::rt::RUNTIME.yield_now();
Poll::Pending
} else {
Poll::Ready(())

Loading…
Cancel
Save