async-std/src/fs/file.rs
2019-09-08 10:43:47 +02:00

826 lines
26 KiB
Rust

//! Async file implementation.
use std::cell::UnsafeCell;
use std::cmp;
use std::fs;
use std::io::{Read as _, Seek, SeekFrom, Write as _};
use std::ops::{Deref, DerefMut};
use std::path::Path;
use std::pin::Pin;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Arc, Mutex};
use cfg_if::cfg_if;
use futures_io::{AsyncRead, AsyncSeek, AsyncWrite, Initializer};
use crate::future;
use crate::io::{self, Write};
use crate::task::{self, blocking, Context, Poll, Waker};
/// A reference to a file on the filesystem.
///
/// An instance of a `File` can be read and/or written depending on what options it was opened
/// with.
///
/// Files are automatically closed when they go out of scope. Errors detected on closing are
/// ignored by the implementation of `Drop`. Use the method [`sync_all`] if these errors must be
/// manually handled.
///
/// This type is an async version of [`std::fs::File`].
///
/// [`sync_all`]: struct.File.html#method.sync_all
/// [`std::fs::File`]: https://doc.rust-lang.org/std/fs/struct.File.html
///
/// # Examples
///
/// Create a new file and write some bytes to it:
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
/// use async_std::prelude::*;
///
/// let mut file = File::create("a.txt").await?;
/// file.write_all(b"Hello, world!").await?;
/// #
/// # Ok(()) }) }
/// ```
///
/// Read the contents of a file into a `Vec<u8>`:
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
/// use async_std::prelude::*;
///
/// let mut file = File::open("a.txt").await?;
/// let mut contents = Vec::new();
/// file.read_to_end(&mut contents).await?;
/// #
/// # Ok(()) }) }
/// ```
#[derive(Debug)]
pub struct File {
file: Arc<fs::File>,
lock: Lock<State>,
}
impl File {
/// Opens a file in read-only mode.
///
/// See the [`OpenOptions::open`] method for more details.
///
/// # Errors
///
/// This function will return an error if `path` does not already exist.
/// Other errors may also be returned according to [`OpenOptions::open`].
///
/// [`OpenOptions::open`]: https://doc.rust-lang.org/std/fs/struct.OpenOptions.html
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
///
/// let file = File::open("a.txt").await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn open<P: AsRef<Path>>(path: P) -> io::Result<File> {
let path = path.as_ref().to_owned();
let file = blocking::spawn(async move { fs::File::open(&path) }).await?;
Ok(file.into())
}
/// Opens a file in write-only mode.
///
/// This function will create a file if it does not exist, and will truncate it if it does.
///
/// See the [`OpenOptions::open`] function for more details.
///
/// [`OpenOptions::open`]: https://doc.rust-lang.org/std/fs/struct.OpenOptions.html
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
///
/// let file = File::create("a.txt").await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn create<P: AsRef<Path>>(path: P) -> io::Result<File> {
let path = path.as_ref().to_owned();
let file = blocking::spawn(async move { fs::File::create(&path) }).await?;
Ok(file.into())
}
/// Attempts to synchronize all OS-internal metadata to disk.
///
/// This function will attempt to ensure that all in-memory data reaches the filesystem before
/// returning.
///
/// This can be used to handle errors that would otherwise only be caught when the `File` is
/// closed. Dropping a file will ignore errors in synchronizing this in-memory data.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
/// use async_std::prelude::*;
///
/// let mut file = File::create("a.txt").await?;
/// file.write_all(b"Hello, world!").await?;
/// file.sync_all().await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn sync_all(&self) -> io::Result<()> {
// Drain the write cache before calling `sync_all()`.
let state = future::poll_fn(|cx| {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_drain(cx)
})
.await?;
blocking::spawn(async move { state.file.sync_all() }).await
}
/// Similar to [`sync_all`], except that it may not synchronize file metadata.
///
/// This is intended for use cases that must synchronize content, but don't need the metadata
/// on disk. The goal of this method is to reduce disk operations.
///
/// Note that some platforms may simply implement this in terms of [`sync_all`].
///
/// [`sync_all`]: struct.File.html#method.sync_all
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
/// use async_std::prelude::*;
///
/// let mut file = File::create("a.txt").await?;
/// file.write_all(b"Hello, world!").await?;
/// file.sync_data().await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn sync_data(&self) -> io::Result<()> {
// Flush the write cache before calling `sync_data()`.
let state = future::poll_fn(|cx| {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_flush(cx)
})
.await?;
blocking::spawn(async move { state.file.sync_data() }).await
}
/// Truncates or extends the underlying file.
///
/// If the `size` is less than the current file's size, then the file will be truncated. If it
/// is greater than the current file's size, then the file will be extended to `size` and have
/// all of the intermediate data filled in with zeros.
///
/// The file's cursor isn't changed. In particular, if the cursor was at the end and the file
/// is truncated using this operation, the cursor will now be past the end.
///
/// # Errors
///
/// This function will return an error if the file is not opened for writing.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
///
/// let file = File::create("a.txt").await?;
/// file.set_len(10).await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn set_len(&self, size: u64) -> io::Result<()> {
// Invalidate the read/write cache before calling `set_len()`.
let state = future::poll_fn(|cx| {
let state = futures_core::ready!(self.lock.poll_lock(cx));
let state = futures_core::ready!(state.poll_unread(cx))?;
state.poll_drain(cx)
})
.await?;
blocking::spawn(async move { state.file.set_len(size) }).await
}
/// Queries metadata about the file.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
///
/// let file = File::open("a.txt").await?;
/// let metadata = file.metadata().await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn metadata(&self) -> io::Result<fs::Metadata> {
let file = self.file.clone();
blocking::spawn(async move { file.metadata() }).await
}
/// Changes the permissions on the underlying file.
///
/// # Errors
///
/// This function will return an error if the user lacks permission to change attributes on the
/// underlying file, but may also return an error in other OS-specific cases.
///
/// # Examples
///
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::fs::File;
///
/// let file = File::create("a.txt").await?;
///
/// let mut perms = file.metadata().await?.permissions();
/// perms.set_readonly(true);
/// file.set_permissions(perms).await?;
/// #
/// # Ok(()) }) }
/// ```
pub async fn set_permissions(&self, perm: fs::Permissions) -> io::Result<()> {
let file = self.file.clone();
blocking::spawn(async move { file.set_permissions(perm) }).await
}
}
impl Drop for File {
fn drop(&mut self) {
// We need to flush the file on drop. Unfortunately, that is not possible to do in a
// non-blocking fashion, but our only other option here is losing data remaining in the
// write cache. Good task schedulers should be resilient to occasional blocking hiccups in
// file destructors so we don't expect this to be a common problem in practice.
let _ = task::block_on(self.flush());
}
}
impl AsyncRead for File {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut &*self).poll_read(cx, buf)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl AsyncRead for &File {
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut [u8],
) -> Poll<io::Result<usize>> {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_read(cx, buf)
}
#[inline]
unsafe fn initializer(&self) -> Initializer {
Initializer::nop()
}
}
impl AsyncWrite for File {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
Pin::new(&mut &*self).poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut &*self).poll_flush(cx)
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Pin::new(&mut &*self).poll_close(cx)
}
}
impl AsyncWrite for &File {
fn poll_write(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &[u8],
) -> Poll<io::Result<usize>> {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_write(cx, buf)
}
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_flush(cx).map(|res| res.map(drop))
}
fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_close(cx)
}
}
impl AsyncSeek for File {
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
pos: SeekFrom,
) -> Poll<io::Result<u64>> {
Pin::new(&mut &*self).poll_seek(cx, pos)
}
}
impl AsyncSeek for &File {
fn poll_seek(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
pos: SeekFrom,
) -> Poll<io::Result<u64>> {
let state = futures_core::ready!(self.lock.poll_lock(cx));
state.poll_seek(cx, pos)
}
}
impl From<std::fs::File> for File {
/// Converts a `std::fs::File` into its asynchronous equivalent.
fn from(file: fs::File) -> File {
let file = Arc::new(file);
File {
file: file.clone(),
lock: Lock::new(State {
file,
mode: Mode::Idle,
cache: Vec::new(),
is_flushed: false,
last_read_err: None,
last_write_err: None,
}),
}
}
}
cfg_if! {
if #[cfg(feature = "docs")] {
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
} else if #[cfg(unix)] {
use std::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
} else if #[cfg(windows)] {
use std::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
}
}
#[cfg_attr(feature = "docs", doc(cfg(unix)))]
cfg_if! {
if #[cfg(any(unix, feature = "docs"))] {
impl AsRawFd for File {
fn as_raw_fd(&self) -> RawFd {
self.file.as_raw_fd()
}
}
impl FromRawFd for File {
unsafe fn from_raw_fd(fd: RawFd) -> File {
fs::File::from_raw_fd(fd).into()
}
}
impl IntoRawFd for File {
fn into_raw_fd(self) -> RawFd {
self.file.as_raw_fd()
}
}
}
}
#[cfg_attr(feature = "docs", doc(cfg(windows)))]
cfg_if! {
if #[cfg(any(windows, feature = "docs"))] {
impl AsRawHandle for File {
fn as_raw_handle(&self) -> RawHandle {
self.file.as_raw_handle()
}
}
impl FromRawHandle for File {
unsafe fn from_raw_handle(handle: RawHandle) -> File {
fs::File::from_raw_handle(handle).into()
}
}
impl IntoRawHandle for File {
fn into_raw_handle(self) -> RawHandle {
self.file.as_raw_handle()
}
}
}
}
/// An async mutex with non-borrowing lock guards.
#[derive(Debug)]
struct Lock<T>(Arc<LockState<T>>);
unsafe impl<T: Send> Send for Lock<T> {}
unsafe impl<T: Send> Sync for Lock<T> {}
#[derive(Debug)]
/// The state of a lock.
struct LockState<T> {
/// Set to `true` when locked.
locked: AtomicBool,
/// The inner value.
value: UnsafeCell<T>,
/// A list of tasks interested in locking.
wakers: Mutex<Vec<Waker>>,
}
impl<T> Lock<T> {
/// Creates a new lock with the given value.
fn new(value: T) -> Lock<T> {
Lock(Arc::new(LockState {
locked: AtomicBool::new(false),
value: UnsafeCell::new(value),
wakers: Mutex::new(Vec::new()),
}))
}
/// Attempts to acquire the lock.
fn poll_lock(&self, cx: &mut Context<'_>) -> Poll<LockGuard<T>> {
// Try acquiring the lock.
if self.0.locked.swap(true, Ordering::Acquire) {
// Lock the list of wakers.
let mut list = self.0.wakers.lock().unwrap();
// Try acquiring the lock again.
if self.0.locked.swap(true, Ordering::Acquire) {
// If failed again, add the current task to the list and return.
if list.iter().all(|w| !w.will_wake(cx.waker())) {
list.push(cx.waker().clone());
}
return Poll::Pending;
}
}
// The lock was successfully acquired.
Poll::Ready(LockGuard(self.0.clone()))
}
}
/// A lock guard.
///
/// When dropped, ownership of the inner value is returned back to the lock.
#[derive(Debug)]
struct LockGuard<T>(Arc<LockState<T>>);
unsafe impl<T: Send> Send for LockGuard<T> {}
unsafe impl<T: Sync> Sync for LockGuard<T> {}
impl<T> LockGuard<T> {
/// Registers a task interested in locking.
///
/// When this lock guard gets dropped, all registered tasks will be woken up.
fn register(&self, cx: &Context<'_>) {
let mut list = self.0.wakers.lock().unwrap();
if list.iter().all(|w| !w.will_wake(cx.waker())) {
list.push(cx.waker().clone());
}
}
}
impl<T> Drop for LockGuard<T> {
fn drop(&mut self) {
self.0.locked.store(false, Ordering::Release);
for w in self.0.wakers.lock().unwrap().drain(..) {
w.wake();
}
}
}
impl<T> Deref for LockGuard<T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.value.get() }
}
}
impl<T> DerefMut for LockGuard<T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.0.value.get() }
}
}
/// Modes a file can be in.
///
/// The file can either be in idle mode, reading mode, or writing mode.
#[derive(Debug)]
enum Mode {
/// The cache is empty.
Idle,
/// The cache contains data read from the inner file.
///
/// This `usize` represents how many bytes from the beginning of cache have been consumed.
Reading(usize),
/// The cache contains data that needs to be written to the inner file.
Writing,
}
/// The current state of a file.
///
/// The `File` struct puts this state behind a lock.
///
/// Filesystem operations that get spawned as blocking tasks will take ownership of the state and
/// return it back once the operation completes.
#[derive(Debug)]
struct State {
/// The inner file.
file: Arc<fs::File>,
/// The current mode (idle, reading, or writing).
mode: Mode,
/// The read/write cache.
///
/// If in reading mode, the cache contains a chunk of data that has been read from the file.
/// If in writing mode, the cache contains data that will eventually be written into the file.
cache: Vec<u8>,
/// `true` if the file is flushed.
///
/// When a file is flushed, the write cache and the inner file's buffer are empty.
is_flushed: bool,
/// The last read error that came from an async operation.
last_read_err: Option<io::Error>,
/// The last write error that came from an async operation.
last_write_err: Option<io::Error>,
}
impl LockGuard<State> {
/// Seeks to a new position in the file.
fn poll_seek(mut self, cx: &mut Context<'_>, pos: SeekFrom) -> Poll<io::Result<u64>> {
// If this operation doesn't move the cursor, then poll the current position inside the
// file. This call will hopefully not block.
if pos == SeekFrom::Current(0) {
return Poll::Ready((&*self.file).seek(pos));
}
// Invalidate the read/write cache before calling `seek()`.
self = futures_core::ready!(self.poll_unread(cx))?;
self = futures_core::ready!(self.poll_drain(cx))?;
// Seek to the new position. This call is hopefully not blocking because it should just
// change the internal offset into the file and not touch the actual file.
Poll::Ready((&*self.file).seek(pos))
}
/// Reads some bytes from the file into a buffer.
fn poll_read(mut self, cx: &mut Context<'_>, buf: &mut [u8]) -> Poll<io::Result<usize>> {
// If an async operation has left a read error, return it now.
if let Some(err) = self.last_read_err.take() {
return Poll::Ready(Err(err));
}
match self.mode {
Mode::Idle => {}
Mode::Reading(start) => {
// How many bytes in the cache are available for reading.
let available = self.cache.len() - start;
// If there is cached unconsumed data or if the cache is empty, we can read from
// it. Empty cache in reading mode indicates that the last operation didn't read
// any bytes, i.e. it reached the end of the file.
if available > 0 || self.cache.is_empty() {
// Copy data from the cache into the buffer.
let n = cmp::min(available, buf.len());
buf[..n].copy_from_slice(&self.cache[start..n]);
// Move the read cursor forward.
self.mode = Mode::Reading(start + n);
return Poll::Ready(Ok(n));
}
}
Mode::Writing => {
// If we're in writing mode, drain the write cache.
self = futures_core::ready!(self.poll_drain(cx))?;
}
}
// Make the cache as long as `buf`.
if self.cache.len() < buf.len() {
let diff = buf.len() - self.cache.len();
self.cache.reserve(diff);
}
unsafe {
self.cache.set_len(buf.len());
}
// Register current task's interest in the file lock.
self.register(cx);
// Start a read operation asynchronously.
blocking::spawn(async move {
// Read some data from the file into the cache.
let res = {
let State { file, cache, .. } = &mut *self;
(&**file).read(cache)
};
match res {
Ok(n) => {
// Update cache length and switch to reading mode, starting from index 0.
unsafe {
self.cache.set_len(n);
}
self.mode = Mode::Reading(0);
}
Err(err) => {
// Save the error and switch to idle mode.
self.cache.clear();
self.mode = Mode::Idle;
self.last_read_err = Some(err);
}
}
});
Poll::Pending
}
/// Invalidates the read cache.
///
/// This method will also move the internal file's cursor backwards by the number of unconsumed
/// bytes in the read cache.
fn poll_unread(mut self, _: &mut Context<'_>) -> Poll<io::Result<Self>> {
match self.mode {
Mode::Idle | Mode::Writing => Poll::Ready(Ok(self)),
Mode::Reading(start) => {
// Number of unconsumed bytes in the read cache.
let n = self.cache.len() - start;
if n > 0 {
// Seek `n` bytes backwards. This call is hopefully not blocking because it
// should just change the internal offset into the file and not touch the
// actual file.
(&*self.file).seek(SeekFrom::Current(-(n as i64)))?;
}
// Switch to idle mode.
self.cache.clear();
self.mode = Mode::Idle;
Poll::Ready(Ok(self))
}
}
}
/// Writes some data from a buffer into the file.
fn poll_write(mut self, cx: &mut Context<'_>, buf: &[u8]) -> Poll<io::Result<usize>> {
// If an async operation has left a write error, return it now.
if let Some(err) = self.last_write_err.take() {
return Poll::Ready(Err(err));
}
// If we're in reading mode, invalidate the read buffer.
self = futures_core::ready!(self.poll_unread(cx))?;
// Make the cache have as much capacity as `buf`.
if self.cache.capacity() < buf.len() {
let diff = buf.len() - self.cache.capacity();
self.cache.reserve(diff);
}
// How many bytes can be written into the cache before filling up.
let available = self.cache.capacity() - self.cache.len();
// If there is available space in the cache or if the buffer is empty, we can write data
// into the cache.
if available > 0 || buf.is_empty() {
let n = cmp::min(available, buf.len());
let start = self.cache.len();
// Copy data from the buffer into the cache.
unsafe {
self.cache.set_len(start + n);
}
self.cache[start..start + n].copy_from_slice(&buf[..n]);
// Mark the file as not flushed and switch to writing mode.
self.is_flushed = false;
self.mode = Mode::Writing;
Poll::Ready(Ok(n))
} else {
// Drain the write cache because it's full.
futures_core::ready!(self.poll_drain(cx))?;
Poll::Pending
}
}
/// Drains the write cache.
fn poll_drain(mut self, cx: &mut Context<'_>) -> Poll<io::Result<Self>> {
// If an async operation has left a write error, return it now.
if let Some(err) = self.last_write_err.take() {
return Poll::Ready(Err(err));
}
match self.mode {
Mode::Idle | Mode::Reading(..) => Poll::Ready(Ok(self)),
Mode::Writing => {
// Register current task's interest in the file lock.
self.register(cx);
// Start a write operation asynchronously.
blocking::spawn(async move {
match (&*self.file).write_all(&self.cache) {
Ok(_) => {
// Switch to idle mode.
self.cache.clear();
self.mode = Mode::Idle;
}
Err(err) => {
// Save the error.
self.last_write_err = Some(err);
}
};
});
Poll::Pending
}
}
}
/// Flushes the write cache into the file.
fn poll_flush(mut self, cx: &mut Context<'_>) -> Poll<io::Result<Self>> {
// If the file is already in flushed state, return.
if self.is_flushed {
return Poll::Ready(Ok(self));
}
// If there is data in the write cache, drain it.
self = futures_core::ready!(self.poll_drain(cx))?;
// Register current task's interest in the file lock.
self.register(cx);
// Start a flush operation asynchronously.
blocking::spawn(async move {
match (&*self.file).flush() {
Ok(()) => {
// Mark the file as flushed.
self.is_flushed = true;
}
Err(err) => {
// Save the error.
self.last_write_err = Some(err);
}
}
});
Poll::Pending
}
// This function does nothing because we're not sure about `AsyncWrite::poll_close()`'s exact
// semantics nor whether it will stay in the `AsyncWrite` trait.
fn poll_close(self, _: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(()))
}
}