Move PathgridGraph into separate files.

actorid
cc9cii 11 years ago
parent a8b2eb1fe9
commit 040d4f8fc4

@ -68,7 +68,7 @@ add_openmw_dir (mwclass
add_openmw_dir (mwmechanics
mechanicsmanagerimp stat character creaturestats magiceffects movement actors objects
drawstate spells activespells npcstats aipackage aisequence alchemy aiwander aitravel aifollow
aiescort aiactivate aicombat repair enchanting pathfinding security spellsuccess spellcasting
aiescort aiactivate aicombat repair enchanting pathfinding pathgrid security spellsuccess spellcasting
disease pickpocket levelledlist combat steering
)

@ -1,7 +1,5 @@
#include "pathfinding.hpp"
#include <map>
#include "OgreMath.h"
#include "OgreVector3.h"
@ -37,44 +35,6 @@ namespace
return sqrt(x * x + y * y + z * z);
}
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
//
// One of the smallest cost in Seyda Neen is between points 77 & 78:
// pt x y
// 77 = 8026, 4480
// 78 = 7986, 4218
//
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
// starting point for experiments. If in doubt, just use value 1.
//
// The distance between 3 & 4 are pretty small, too.
// 3 = 5435, 223
// 4 = 5948, 193
//
// Approx. 514 Euclidean distance and 533 Manhattan distance.
//
float manhattan(const ESM::Pathgrid::Point a, const ESM::Pathgrid::Point b)
{
return 300 * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
}
// Choose a heuristics - Note that these may not be the best for directed
// graphs with non-uniform edge costs.
//
// distance:
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
// - slower but more accurate
//
// Manhattan:
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
// - faster but not the shortest path
float costAStar(const ESM::Pathgrid::Point a, const ESM::Pathgrid::Point b)
{
//return distance(a, b);
return manhattan(a, b);
}
// Slightly cheaper version for comparisons.
// Caller needs to be careful for very short distances (i.e. less than 1)
// or when accumuating the results i.e. (a + b)^2 != a^2 + b^2
@ -368,299 +328,4 @@ namespace MWMechanics
}
// TODO: Any multi threading concerns?
PathgridGraph::PathgridGraph()
: mCell(NULL)
, mIsGraphConstructed(false)
, mPathgrid(NULL)
, mGraph(0)
, mSCCId(0)
, mSCCIndex(0)
{
}
/*
* mGraph is populated with the cost of each allowed edge.
*
* The data structure is based on the code in buildPath2() but modified.
* Please check git history if interested.
*
* mGraph[v].edges[i].index = w
*
* v = point index of location "from"
* i = index of edges from point v
* w = point index of location "to"
*
*
* Example: (notice from p(0) to p(2) is not allowed in this example)
*
* mGraph[0].edges[0].index = 1
* .edges[1].index = 3
*
* mGraph[1].edges[0].index = 0
* .edges[1].index = 2
* .edges[2].index = 3
*
* mGraph[2].edges[0].index = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
bool PathgridGraph::initPathgridGraph(const ESM::Cell* cell)
{
if(!cell)
return false;
mCell = cell;
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*cell);
if(!mPathgrid)
return false;
mGraph.resize(mPathgrid->mPoints.size());
for(int i = 0; i < static_cast<int> (mPathgrid->mEdges.size()); i++)
{
ConnectedPoint neighbour;
neighbour.cost = costAStar(mPathgrid->mPoints[mPathgrid->mEdges[i].mV0],
mPathgrid->mPoints[mPathgrid->mEdges[i].mV1]);
// forward path of the edge
neighbour.index = mPathgrid->mEdges[i].mV1;
mGraph[mPathgrid->mEdges[i].mV0].edges.push_back(neighbour);
// reverse path of the edge
// NOTE: These are redundant, ESM already contains the required reverse paths
//neighbour.index = mPathgrid->mEdges[i].mV0;
//mGraph[mPathgrid->mEdges[i].mV1].edges.push_back(neighbour);
}
buildConnectedPoints();
mIsGraphConstructed = true;
#if 0
std::cout << "loading pathgrid " <<
+"\""+ mPathgrid->mCell +"\""
+", "+ std::to_string(mPathgrid->mData.mX)
+", "+ std::to_string(mPathgrid->mData.mY)
<< std::endl;
#endif
return true;
}
// v is the pathgrid point index (some call them vertices)
void PathgridGraph::recursiveStrongConnect(int v)
{
mSCCPoint[v].first = mSCCIndex; // index
mSCCPoint[v].second = mSCCIndex; // lowlink
mSCCIndex++;
mSCCStack.push_back(v);
int w;
for(int i = 0; i < static_cast<int> (mGraph[v].edges.size()); i++)
{
w = mGraph[v].edges[i].index;
if(mSCCPoint[w].first == -1) // not visited
{
recursiveStrongConnect(w); // recurse
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].second);
}
else
{
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].first);
}
}
if(mSCCPoint[v].second == mSCCPoint[v].first)
{ // new component
do
{
w = mSCCStack.back();
mSCCStack.pop_back();
mGraph[w].componentId = mSCCId;
}
while(w != v);
mSCCId++;
}
return;
}
/*
* mGraph contains the strongly connected component group id's along
* with pre-calculated edge costs.
*
* A cell can have disjointed pathgrids, e.g. Seyda Neen has 3
*
* mGraph for Seyda Neen will therefore have 3 different values. When
* selecting a random pathgrid point for AiWander, mGraph can be checked
* for quickly finding whether the destination is reachable.
*
* Otherwise, buildPath can automatically select a closest reachable end
* pathgrid point (reachable from the closest start point).
*
* Using Tarjan's algorithm:
*
* mGraph | graph G |
* mSCCPoint | V | derived from mPoints
* mGraph[v].edges | E (for v) |
* mSCCIndex | index | tracking smallest unused index
* mSCCStack | S |
* mGraph[v].edges[i].index | w |
*
*/
void PathgridGraph::buildConnectedPoints()
{
// both of these are set to zero in the constructor
//mSCCId = 0; // how many strongly connected components in this cell
//mSCCIndex = 0;
int pointsSize = mPathgrid->mPoints.size();
mSCCPoint.resize(pointsSize, std::pair<int, int> (-1, -1));
mSCCStack.reserve(pointsSize);
for(int v = 0; v < static_cast<int> (pointsSize); v++)
{
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
recursiveStrongConnect(v);
}
#if 0
std::cout << "components: " << std::to_string(mSCCId)
+", "+ mPathgrid->mCell
<< std::endl;
#endif
}
bool PathgridGraph::isPointConnected(const int start, const int end) const
{
return (mGraph[start].componentId == mGraph[end].componentId);
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
* Should consider using a 3rd party library version (e.g. boost)
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed.
*
* Should be possible to make this MT safe.
*
* Returns path (a list of pathgrid point indexes) which may be empty.
*
* Input params:
* start, goal - pathgrid point indexes (for this cell)
* isExterior - used to determine whether to convert to world co-ordinates
*
* Variables:
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
* gScore - past accumulated costs vector indexed by point index
* fScore - future estimated costs vector indexed by point index
*
* TODO: An intersting exercise might be to cache the paths created for a
* start/goal pair. To cache the results the paths need to be in
* pathgrid points form (currently they are converted to world
* co-ordinates). Essentially trading speed w/ memory.
*/
std::list<ESM::Pathgrid::Point> PathgridGraph::aStarSearch(const int start,
const int goal,
bool isExterior) const
{
std::list<ESM::Pathgrid::Point> path;
if(!isPointConnected(start, goal))
{
return path; // there is no path, return an empty path
}
int graphSize = mGraph.size();
std::vector<float> gScore;
gScore.resize(graphSize, -1);
std::vector<float> fScore;
fScore.resize(graphSize, -1);
std::vector<int> graphParent;
graphParent.resize(graphSize, -1);
// gScore & fScore keep costs for each pathgrid point in mPoints
gScore[start] = 0;
fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]);
std::list<int> openset;
std::list<int> closedset;
openset.push_back(start);
int current = -1;
while(!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if(current == goal)
break;
closedset.push_back(current); // remember we've been here
// check all edges for the current point index
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
{
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].index) ==
closedset.end())
{
// not in closedset - i.e. have not traversed this edge destination
int dest = mGraph[current].edges[j].index;
float tentative_g = gScore[current] + mGraph[current].edges[j].cost;
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
if(!isInOpenSet
|| tentative_g < gScore[dest])
{
graphParent[dest] = current;
gScore[dest] = tentative_g;
fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest],
mPathgrid->mPoints[goal]);
if(!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help
std::list<int>::iterator it = openset.begin();
for(it = openset.begin(); it!= openset.end(); it++)
{
if(fScore[*it] > fScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
if(current != goal)
return path; // for some reason couldn't build a path
// reconstruct path to return, using world co-ordinates
float xCell = 0;
float yCell = 0;
if (isExterior)
{
xCell = mPathgrid->mData.mX * ESM::Land::REAL_SIZE;
yCell = mPathgrid->mData.mY * ESM::Land::REAL_SIZE;
}
while(graphParent[current] != -1)
{
ESM::Pathgrid::Point pt = mPathgrid->mPoints[current];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
current = graphParent[current];
}
return path;
}
}

@ -2,7 +2,6 @@
#define GAME_MWMECHANICS_PATHFINDING_H
#include <components/esm/loadpgrd.hpp>
#include <components/esm/loadcell.hpp>
#include <list>
#include <OgreMath.h>
@ -83,65 +82,6 @@ namespace MWMechanics
const ESM::Pathgrid *mPathgrid;
const MWWorld::CellStore* mCell;
};
class PathgridGraph
{
public:
PathgridGraph();
bool isGraphConstructed() const
{
return mIsGraphConstructed;
};
bool initPathgridGraph(const ESM::Cell *cell);
// returns true if end point is strongly connected (i.e. reachable
// from start point) both start and end are pathgrid point indexes
bool isPointConnected(const int start, const int end) const;
// isOutside is used whether to convert path to world co-ordinates
std::list<ESM::Pathgrid::Point> aStarSearch(const int start, const int end,
const bool isOutside) const;
private:
const ESM::Cell *mCell;
const ESM::Pathgrid *mPathgrid;
struct ConnectedPoint // edge
{
int index; // pathgrid point index of neighbour
float cost;
};
struct Node // point
{
int componentId;
std::vector<ConnectedPoint> edges; // neighbours
};
// componentId is an integer indicating the groups of connected
// pathgrid points (all connected points will have the same value)
//
// In Seyda Neen there are 3:
//
// 52, 53 and 54 are one set (enclosed yard)
// 48, 49, 50, 51, 84, 85, 86, 87, 88, 89, 90 (ship & office)
// all other pathgrid points are the third set
//
std::vector<Node> mGraph;
bool mIsGraphConstructed;
// variables used to calculate connected components
int mSCCId;
int mSCCIndex;
std::vector<int> mSCCStack;
typedef std::pair<int, int> VPair; // first is index, second is lowlink
std::vector<VPair> mSCCPoint;
// methods used to calculate connected components
void recursiveStrongConnect(int v);
void buildConnectedPoints();
};
}
#endif

@ -0,0 +1,348 @@
#include "pathgrid.hpp"
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwworld/cellstore.hpp"
namespace
{
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
//
// One of the smallest cost in Seyda Neen is between points 77 & 78:
// pt x y
// 77 = 8026, 4480
// 78 = 7986, 4218
//
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
// starting point for experiments. If in doubt, just use value 1.
//
// The distance between 3 & 4 are pretty small, too.
// 3 = 5435, 223
// 4 = 5948, 193
//
// Approx. 514 Euclidean distance and 533 Manhattan distance.
//
float manhattan(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
{
return 300 * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
}
// Choose a heuristics - Note that these may not be the best for directed
// graphs with non-uniform edge costs.
//
// distance:
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
// - slower but more accurate
//
// Manhattan:
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
// - faster but not the shortest path
float costAStar(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
{
//return distance(a, b);
return manhattan(a, b);
}
}
namespace MWMechanics
{
PathgridGraph::PathgridGraph()
: mCell(NULL)
, mIsGraphConstructed(false)
, mPathgrid(NULL)
, mGraph(0)
, mSCCId(0)
, mSCCIndex(0)
{
}
/*
* mGraph is populated with the cost of each allowed edge.
*
* The data structure is based on the code in buildPath2() but modified.
* Please check git history if interested.
*
* mGraph[v].edges[i].index = w
*
* v = point index of location "from"
* i = index of edges from point v
* w = point index of location "to"
*
*
* Example: (notice from p(0) to p(2) is not allowed in this example)
*
* mGraph[0].edges[0].index = 1
* .edges[1].index = 3
*
* mGraph[1].edges[0].index = 0
* .edges[1].index = 2
* .edges[2].index = 3
*
* mGraph[2].edges[0].index = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
bool PathgridGraph::load(const ESM::Cell* cell)
{
if(!cell)
return false;
mCell = cell;
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*cell);
if(!mPathgrid)
return false;
if(mIsGraphConstructed)
return true;
mGraph.resize(mPathgrid->mPoints.size());
for(int i = 0; i < static_cast<int> (mPathgrid->mEdges.size()); i++)
{
ConnectedPoint neighbour;
neighbour.cost = costAStar(mPathgrid->mPoints[mPathgrid->mEdges[i].mV0],
mPathgrid->mPoints[mPathgrid->mEdges[i].mV1]);
// forward path of the edge
neighbour.index = mPathgrid->mEdges[i].mV1;
mGraph[mPathgrid->mEdges[i].mV0].edges.push_back(neighbour);
// reverse path of the edge
// NOTE: These are redundant, ESM already contains the required reverse paths
//neighbour.index = mPathgrid->mEdges[i].mV0;
//mGraph[mPathgrid->mEdges[i].mV1].edges.push_back(neighbour);
}
buildConnectedPoints();
mIsGraphConstructed = true;
#if 0
std::cout << "loading pathgrid " <<
+"\""+ mPathgrid->mCell +"\""
+", "+ std::to_string(mPathgrid->mData.mX)
+", "+ std::to_string(mPathgrid->mData.mY)
<< std::endl;
#endif
return true;
}
// v is the pathgrid point index (some call them vertices)
void PathgridGraph::recursiveStrongConnect(int v)
{
mSCCPoint[v].first = mSCCIndex; // index
mSCCPoint[v].second = mSCCIndex; // lowlink
mSCCIndex++;
mSCCStack.push_back(v);
int w;
for(int i = 0; i < static_cast<int> (mGraph[v].edges.size()); i++)
{
w = mGraph[v].edges[i].index;
if(mSCCPoint[w].first == -1) // not visited
{
recursiveStrongConnect(w); // recurse
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].second);
}
else
{
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].first);
}
}
if(mSCCPoint[v].second == mSCCPoint[v].first)
{ // new component
do
{
w = mSCCStack.back();
mSCCStack.pop_back();
mGraph[w].componentId = mSCCId;
}
while(w != v);
mSCCId++;
}
return;
}
/*
* mGraph contains the strongly connected component group id's along
* with pre-calculated edge costs.
*
* A cell can have disjointed pathgrids, e.g. Seyda Neen has 3
*
* mGraph for Seyda Neen will therefore have 3 different values. When
* selecting a random pathgrid point for AiWander, mGraph can be checked
* for quickly finding whether the destination is reachable.
*
* Otherwise, buildPath can automatically select a closest reachable end
* pathgrid point (reachable from the closest start point).
*
* Using Tarjan's algorithm:
*
* mGraph | graph G |
* mSCCPoint | V | derived from mPoints
* mGraph[v].edges | E (for v) |
* mSCCIndex | index | tracking smallest unused index
* mSCCStack | S |
* mGraph[v].edges[i].index | w |
*
*/
void PathgridGraph::buildConnectedPoints()
{
// both of these are set to zero in the constructor
//mSCCId = 0; // how many strongly connected components in this cell
//mSCCIndex = 0;
int pointsSize = mPathgrid->mPoints.size();
mSCCPoint.resize(pointsSize, std::pair<int, int> (-1, -1));
mSCCStack.reserve(pointsSize);
for(int v = 0; v < static_cast<int> (pointsSize); v++)
{
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
recursiveStrongConnect(v);
}
#if 0
std::cout << "components: " << std::to_string(mSCCId)
+", "+ mPathgrid->mCell
<< std::endl;
#endif
}
bool PathgridGraph::isPointConnected(const int start, const int end) const
{
return (mGraph[start].componentId == mGraph[end].componentId);
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
* Should consider using a 3rd party library version (e.g. boost)
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed.
*
* Should be possible to make this MT safe.
*
* Returns path (a list of pathgrid point indexes) which may be empty.
*
* Input params:
* start, goal - pathgrid point indexes (for this cell)
* isExterior - used to determine whether to convert to world co-ordinates
*
* Variables:
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
* gScore - past accumulated costs vector indexed by point index
* fScore - future estimated costs vector indexed by point index
*
* TODO: An intersting exercise might be to cache the paths created for a
* start/goal pair. To cache the results the paths need to be in
* pathgrid points form (currently they are converted to world
* co-ordinates). Essentially trading speed w/ memory.
*/
std::list<ESM::Pathgrid::Point> PathgridGraph::aStarSearch(const int start,
const int goal,
bool isExterior) const
{
std::list<ESM::Pathgrid::Point> path;
if(!isPointConnected(start, goal))
{
return path; // there is no path, return an empty path
}
int graphSize = mGraph.size();
std::vector<float> gScore;
gScore.resize(graphSize, -1);
std::vector<float> fScore;
fScore.resize(graphSize, -1);
std::vector<int> graphParent;
graphParent.resize(graphSize, -1);
// gScore & fScore keep costs for each pathgrid point in mPoints
gScore[start] = 0;
fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]);
std::list<int> openset;
std::list<int> closedset;
openset.push_back(start);
int current = -1;
while(!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if(current == goal)
break;
closedset.push_back(current); // remember we've been here
// check all edges for the current point index
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
{
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].index) ==
closedset.end())
{
// not in closedset - i.e. have not traversed this edge destination
int dest = mGraph[current].edges[j].index;
float tentative_g = gScore[current] + mGraph[current].edges[j].cost;
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
if(!isInOpenSet
|| tentative_g < gScore[dest])
{
graphParent[dest] = current;
gScore[dest] = tentative_g;
fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest],
mPathgrid->mPoints[goal]);
if(!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help
std::list<int>::iterator it = openset.begin();
for(it = openset.begin(); it!= openset.end(); it++)
{
if(fScore[*it] > fScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
if(current != goal)
return path; // for some reason couldn't build a path
// reconstruct path to return, using world co-ordinates
float xCell = 0;
float yCell = 0;
if (isExterior)
{
xCell = mPathgrid->mData.mX * ESM::Land::REAL_SIZE;
yCell = mPathgrid->mData.mY * ESM::Land::REAL_SIZE;
}
while(graphParent[current] != -1)
{
ESM::Pathgrid::Point pt = mPathgrid->mPoints[current];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
current = graphParent[current];
}
return path;
}
}

@ -0,0 +1,75 @@
#ifndef GAME_MWMECHANICS_PATHGRID_H
#define GAME_MWMECHANICS_PATHGRID_H
#include <components/esm/loadpgrd.hpp>
#include <list>
namespace ESM
{
class Cell;
}
namespace MWWorld
{
class CellStore;
}
namespace MWMechanics
{
class PathgridGraph
{
public:
PathgridGraph();
bool load(const ESM::Cell *cell);
// returns true if end point is strongly connected (i.e. reachable
// from start point) both start and end are pathgrid point indexes
bool isPointConnected(const int start, const int end) const;
// isOutside is used whether to convert path to world co-ordinates
std::list<ESM::Pathgrid::Point> aStarSearch(const int start,
const int end,
const bool isOutside) const;
private:
const ESM::Cell *mCell;
const ESM::Pathgrid *mPathgrid;
struct ConnectedPoint // edge
{
int index; // pathgrid point index of neighbour
float cost;
};
struct Node // point
{
int componentId;
std::vector<ConnectedPoint> edges; // neighbours
};
// componentId is an integer indicating the groups of connected
// pathgrid points (all connected points will have the same value)
//
// In Seyda Neen there are 3:
//
// 52, 53 and 54 are one set (enclosed yard)
// 48, 49, 50, 51, 84, 85, 86, 87, 88, 89, 90 (ship & office)
// all other pathgrid points are the third set
//
std::vector<Node> mGraph;
bool mIsGraphConstructed;
// variables used to calculate connected components
int mSCCId;
int mSCCIndex;
std::vector<int> mSCCStack;
typedef std::pair<int, int> VPair; // first is index, second is lowlink
std::vector<VPair> mSCCPoint;
// methods used to calculate connected components
void recursiveStrongConnect(int v);
void buildConnectedPoints();
};
}
#endif

@ -363,6 +363,7 @@ namespace MWWorld
loadRefs (store, esm);
mState = State_Loaded;
mPathgridGraph.load(mCell);
}
}
@ -683,14 +684,6 @@ namespace MWWorld
bool CellStore::isPointConnected(const int start, const int end) const
{
if(!mPathgridGraph.isGraphConstructed())
{
// Ugh... there must be a better way...
MWMechanics::PathgridGraph *p = const_cast<MWMechanics::PathgridGraph *> (&mPathgridGraph);
if(!p->initPathgridGraph(mCell))
return false;
}
return mPathgridGraph.isPointConnected(start, end);
}
@ -698,16 +691,6 @@ namespace MWWorld
std::list<ESM::Pathgrid::Point> CellStore::aStarSearch(const int start, const int end,
const bool isOutside) const
{
if(!mPathgridGraph.isGraphConstructed())
{
MWMechanics::PathgridGraph *p = const_cast<MWMechanics::PathgridGraph *> (&mPathgridGraph);
if(!p->initPathgridGraph(mCell))
{
std::list<ESM::Pathgrid::Point> path; // empty
return path;
}
}
return mPathgridGraph.aStarSearch(start, end, isOutside);
}
}

@ -8,7 +8,7 @@
#include "esmstore.hpp"
#include "cellreflist.hpp"
#include "../mwmechanics/pathfinding.hpp"
#include "../mwmechanics/pathgrid.hpp"
namespace ESM
{

Loading…
Cancel
Save