#include "physicssystem.hpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // FindRecIndexVisitor #include "../mwbase/world.hpp" #include "../mwbase/environment.hpp" #include "../mwmechanics/creaturestats.hpp" #include "../mwmechanics/movement.hpp" #include "../mwmechanics/actorutil.hpp" #include "../mwworld/esmstore.hpp" #include "../mwworld/cellstore.hpp" #include "../mwrender/bulletdebugdraw.hpp" #include "../mwbase/world.hpp" #include "../mwbase/environment.hpp" #include "../mwworld/class.hpp" #include "collisiontype.hpp" #include "actor.hpp" #include "convert.hpp" #include "trace.h" namespace MWPhysics { static const float sMaxSlope = 49.0f; static const float sStepSizeUp = 34.0f; static const float sStepSizeDown = 62.0f; static const float sMinStep = 10.f; static const float sGroundOffset = 1.0f; // Arbitrary number. To prevent infinite loops. They shouldn't happen but it's good to be prepared. static const int sMaxIterations = 8; static bool isActor(const btCollisionObject *obj) { assert(obj); return obj->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Actor; } template static bool isWalkableSlope(const Vec3 &normal) { static const float sMaxSlopeCos = std::cos(osg::DegreesToRadians(sMaxSlope)); return (normal.z() > sMaxSlopeCos); } static bool canStepDown(const ActorTracer &stepper) { return stepper.mHitObject && isWalkableSlope(stepper.mPlaneNormal) && !isActor(stepper.mHitObject); } class Stepper { private: const btCollisionWorld *mColWorld; const btCollisionObject *mColObj; ActorTracer mTracer, mUpStepper, mDownStepper; bool mHaveMoved; public: Stepper(const btCollisionWorld *colWorld, const btCollisionObject *colObj) : mColWorld(colWorld) , mColObj(colObj) , mHaveMoved(true) {} bool step(osg::Vec3f &position, const osg::Vec3f &toMove, float &remainingTime) { /* * Slide up an incline or set of stairs. Should be called only after a * collision detection otherwise unnecessary tracing will be performed. * * NOTE: with a small change this method can be used to step over an obstacle * of height sStepSize. * * If successful return 'true' and update 'position' to the new possible * location and adjust 'remainingTime'. * * If not successful return 'false'. May fail for these reasons: * - can't move directly up from current position * - having moved up by between epsilon() and sStepSize, can't move forward * - having moved forward by between epsilon() and toMove, * = moved down between 0 and just under sStepSize but slope was too steep, or * = moved the full sStepSize down (FIXME: this could be a bug) * * * * Starting position. Obstacle or stairs with height upto sStepSize in front. * * +--+ +--+ |XX * | | -------> toMove | | +--+XX * | | | | |XXXXX * | | +--+ | | +--+XXXXX * | | |XX| | | |XXXXXXXX * +--+ +--+ +--+ +-------- * ============================================== */ /* * Try moving up sStepSize using stepper. * FIXME: does not work in case there is no front obstacle but there is one above * * +--+ +--+ * | | | | * | | | | |XX * | | | | +--+XX * | | | | |XXXXX * +--+ +--+ +--+ +--+XXXXX * |XX| |XXXXXXXX * +--+ +-------- * ============================================== */ if (mHaveMoved) { mHaveMoved = false; mUpStepper.doTrace(mColObj, position, position+osg::Vec3f(0.0f,0.0f,sStepSizeUp), mColWorld); if(mUpStepper.mFraction < std::numeric_limits::epsilon()) return false; // didn't even move the smallest representable amount // (TODO: shouldn't this be larger? Why bother with such a small amount?) } /* * Try moving from the elevated position using tracer. * * +--+ +--+ * | | |YY| FIXME: collision with object YY * | | +--+ * | | * <------------------->| | * +--+ +--+ * |XX| the moved amount is toMove*tracer.mFraction * +--+ * ============================================== */ osg::Vec3f tracerPos = mUpStepper.mEndPos; mTracer.doTrace(mColObj, tracerPos, tracerPos + toMove, mColWorld); if(mTracer.mFraction < std::numeric_limits::epsilon()) return false; // didn't even move the smallest representable amount /* * Try moving back down sStepSizeDown using stepper. * NOTE: if there is an obstacle below (e.g. stairs), we'll be "stepping up". * Below diagram is the case where we "stepped over" an obstacle in front. * * +--+ * |YY| * +--+ +--+ * | | * | | * +--+ | | * |XX| | | * +--+ +--+ * ============================================== */ mDownStepper.doTrace(mColObj, mTracer.mEndPos, mTracer.mEndPos-osg::Vec3f(0.0f,0.0f,sStepSizeDown), mColWorld); if (!canStepDown(mDownStepper)) { // Try again with increased step length if (mTracer.mFraction < 1.0f || toMove.length2() > sMinStep*sMinStep) return false; osg::Vec3f direction = toMove; direction.normalize(); mTracer.doTrace(mColObj, tracerPos, tracerPos + direction*sMinStep, mColWorld); if (mTracer.mFraction < 0.001f) return false; mDownStepper.doTrace(mColObj, mTracer.mEndPos, mTracer.mEndPos-osg::Vec3f(0.0f,0.0f,sStepSizeDown), mColWorld); if (!canStepDown(mDownStepper)) return false; } if (mDownStepper.mFraction < 1.0f) { // only step down onto semi-horizontal surfaces. don't step down onto the side of a house or a wall. // TODO: stepper.mPlaneNormal does not appear to be reliable - needs more testing // NOTE: caller's variables 'position' & 'remainingTime' are modified here position = mDownStepper.mEndPos; remainingTime *= (1.0f-mTracer.mFraction); // remaining time is proportional to remaining distance mHaveMoved = true; return true; } return false; } }; class MovementSolver { private: ///Project a vector u on another vector v static inline osg::Vec3f project(const osg::Vec3f& u, const osg::Vec3f &v) { return v * (u * v); // ^ dot product } ///Helper for computing the character sliding static inline osg::Vec3f slide(const osg::Vec3f& direction, const osg::Vec3f &planeNormal) { return direction - project(direction, planeNormal); } public: static osg::Vec3f traceDown(const MWWorld::Ptr &ptr, const osg::Vec3f& position, Actor* actor, btCollisionWorld* collisionWorld, float maxHeight) { osg::Vec3f offset = actor->getCollisionObjectPosition() - ptr.getRefData().getPosition().asVec3(); ActorTracer tracer; tracer.findGround(actor, position + offset, position + offset - osg::Vec3f(0,0,maxHeight), collisionWorld); if(tracer.mFraction >= 1.0f) { actor->setOnGround(false); return position; } else { actor->setOnGround(true); // Check if we actually found a valid spawn point (use an infinitely thin ray this time). // Required for some broken door destinations in Morrowind.esm, where the spawn point // intersects with other geometry if the actor's base is taken into account btVector3 from = toBullet(position); btVector3 to = from - btVector3(0,0,maxHeight); btCollisionWorld::ClosestRayResultCallback resultCallback1(from, to); resultCallback1.m_collisionFilterGroup = 0xff; resultCallback1.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap; collisionWorld->rayTest(from, to, resultCallback1); if (resultCallback1.hasHit() && ( (toOsg(resultCallback1.m_hitPointWorld) - (tracer.mEndPos-offset)).length2() > 35*35 || !isWalkableSlope(tracer.mPlaneNormal))) { actor->setOnSlope(!isWalkableSlope(resultCallback1.m_hitNormalWorld)); return toOsg(resultCallback1.m_hitPointWorld) + osg::Vec3f(0.f, 0.f, sGroundOffset); } else { actor->setOnSlope(!isWalkableSlope(tracer.mPlaneNormal)); } return tracer.mEndPos-offset + osg::Vec3f(0.f, 0.f, sGroundOffset); } } static osg::Vec3f move(osg::Vec3f position, const MWWorld::Ptr &ptr, Actor* physicActor, const osg::Vec3f &movement, float time, bool isFlying, float waterlevel, float slowFall, const btCollisionWorld* collisionWorld, std::map& standingCollisionTracker) { const ESM::Position& refpos = ptr.getRefData().getPosition(); // Early-out for totally static creatures // (Not sure if gravity should still apply?) if (!ptr.getClass().isMobile(ptr)) return position; // Reset per-frame data physicActor->setWalkingOnWater(false); // Anything to collide with? if(!physicActor->getCollisionMode()) { return position + (osg::Quat(refpos.rot[0], osg::Vec3f(-1, 0, 0)) * osg::Quat(refpos.rot[2], osg::Vec3f(0, 0, -1)) ) * movement * time; } const btCollisionObject *colobj = physicActor->getCollisionObject(); osg::Vec3f halfExtents = physicActor->getHalfExtents(); // NOTE: here we don't account for the collision box translation (i.e. physicActor->getPosition() - refpos.pos). // That means the collision shape used for moving this actor is in a different spot than the collision shape // other actors are using to collide against this actor. // While this is strictly speaking wrong, it's needed for MW compatibility. position.z() += halfExtents.z(); static const float fSwimHeightScale = MWBase::Environment::get().getWorld()->getStore().get() .find("fSwimHeightScale")->getFloat(); float swimlevel = waterlevel + halfExtents.z() - (physicActor->getRenderingHalfExtents().z() * 2 * fSwimHeightScale); ActorTracer tracer; osg::Vec3f inertia = physicActor->getInertialForce(); osg::Vec3f velocity; if(position.z() < swimlevel || isFlying) { velocity = (osg::Quat(refpos.rot[0], osg::Vec3f(-1, 0, 0)) * osg::Quat(refpos.rot[2], osg::Vec3f(0, 0, -1))) * movement; } else { velocity = (osg::Quat(refpos.rot[2], osg::Vec3f(0, 0, -1))) * movement; if (velocity.z() > 0.f && physicActor->getOnGround() && !physicActor->getOnSlope()) inertia = velocity; else if(!physicActor->getOnGround() || physicActor->getOnSlope()) velocity = velocity + physicActor->getInertialForce(); } // dead actors underwater will float to the surface, if the CharacterController tells us to do so if (movement.z() > 0 && ptr.getClass().getCreatureStats(ptr).isDead() && position.z() < swimlevel) velocity = osg::Vec3f(0,0,1) * 25; ptr.getClass().getMovementSettings(ptr).mPosition[2] = 0; // Now that we have the effective movement vector, apply wind forces to it if (MWBase::Environment::get().getWorld()->isInStorm()) { osg::Vec3f stormDirection = MWBase::Environment::get().getWorld()->getStormDirection(); float angleDegrees = osg::RadiansToDegrees(std::acos(stormDirection * velocity / (stormDirection.length() * velocity.length()))); static const float fStromWalkMult = MWBase::Environment::get().getWorld()->getStore().get() .find("fStromWalkMult")->getFloat(); velocity *= 1.f-(fStromWalkMult * (angleDegrees/180.f)); } Stepper stepper(collisionWorld, colobj); osg::Vec3f origVelocity = velocity; osg::Vec3f newPosition = position; /* * A loop to find newPosition using tracer, if successful different from the starting position. * nextpos is the local variable used to find potential newPosition, using velocity and remainingTime * The initial velocity was set earlier (see above). */ float remainingTime = time; for(int iterations = 0; iterations < sMaxIterations && remainingTime > 0.01f; ++iterations) { osg::Vec3f nextpos = newPosition + velocity * remainingTime; // If not able to fly, don't allow to swim up into the air if(!isFlying && // can't fly nextpos.z() > swimlevel && // but about to go above water newPosition.z() < swimlevel) { const osg::Vec3f down(0,0,-1); velocity = slide(velocity, down); // NOTE: remainingTime is unchanged before the loop continues continue; // velocity updated, calculate nextpos again } if((newPosition - nextpos).length2() > 0.0001) { // trace to where character would go if there were no obstructions tracer.doTrace(colobj, newPosition, nextpos, collisionWorld); // check for obstructions if(tracer.mFraction >= 1.0f) { newPosition = tracer.mEndPos; // ok to move, so set newPosition break; } } else { // The current position and next position are nearly the same, so just exit. // Note: Bullet can trigger an assert in debug modes if the positions // are the same, since that causes it to attempt to normalize a zero // length vector (which can also happen with nearly identical vectors, since // precision can be lost due to any math Bullet does internally). Since we // aren't performing any collision detection, we want to reject the next // position, so that we don't slowly move inside another object. break; } // We are touching something. if (tracer.mFraction < 1E-9f) { // Try to separate by backing off slighly to unstuck the solver osg::Vec3f backOff = (newPosition - tracer.mHitPoint) * 1E-2f; newPosition += backOff; } // We hit something. Check if we can step up. float hitHeight = tracer.mHitPoint.z() - tracer.mEndPos.z() + halfExtents.z(); osg::Vec3f oldPosition = newPosition; bool result = false; if (hitHeight < sStepSizeUp && !isActor(tracer.mHitObject)) { // Try to step up onto it. // NOTE: stepMove does not allow stepping over, modifies newPosition if successful result = stepper.step(newPosition, velocity*remainingTime, remainingTime); } if (result) { // don't let pure water creatures move out of water after stepMove if (ptr.getClass().isPureWaterCreature(ptr) && newPosition.z() + halfExtents.z() > waterlevel) newPosition = oldPosition; } else { // Can't move this way, try to find another spot along the plane osg::Vec3f newVelocity = slide(velocity, tracer.mPlaneNormal); // Do not allow sliding upward if there is gravity. // Stepping will have taken care of that. if(!(newPosition.z() < swimlevel || isFlying)) newVelocity.z() = std::min(newVelocity.z(), 0.0f); if ((newVelocity-velocity).length2() < 0.01) break; if ((newVelocity * origVelocity) <= 0.f) break; // ^ dot product velocity = newVelocity; } } bool isOnGround = false; bool isOnSlope = false; if (!(inertia.z() > 0.f) && !(newPosition.z() < swimlevel)) { osg::Vec3f from = newPosition; osg::Vec3f to = newPosition - (physicActor->getOnGround() ? osg::Vec3f(0,0,sStepSizeDown + 2*sGroundOffset) : osg::Vec3f(0,0,2*sGroundOffset)); tracer.doTrace(colobj, from, to, collisionWorld); if(tracer.mFraction < 1.0f && tracer.mHitObject->getBroadphaseHandle()->m_collisionFilterGroup != CollisionType_Actor) { const btCollisionObject* standingOn = tracer.mHitObject; PtrHolder* ptrHolder = static_cast(standingOn->getUserPointer()); if (ptrHolder) standingCollisionTracker[ptr] = ptrHolder->getPtr(); if (standingOn->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Water) physicActor->setWalkingOnWater(true); if (!isFlying) newPosition.z() = tracer.mEndPos.z() + sGroundOffset; isOnGround = true; isOnSlope = !isWalkableSlope(tracer.mPlaneNormal); } else { // standing on actors is not allowed (see above). // in addition to that, apply a sliding effect away from the center of the actor, // so that we do not stay suspended in air indefinitely. if (tracer.mFraction < 1.0f && tracer.mHitObject->getBroadphaseHandle()->m_collisionFilterGroup == CollisionType_Actor) { if (osg::Vec3f(velocity.x(), velocity.y(), 0).length2() < 100.f*100.f) { btVector3 aabbMin, aabbMax; tracer.mHitObject->getCollisionShape()->getAabb(tracer.mHitObject->getWorldTransform(), aabbMin, aabbMax); btVector3 center = (aabbMin + aabbMax) / 2.f; inertia = osg::Vec3f(position.x() - center.x(), position.y() - center.y(), 0); inertia.normalize(); inertia *= 100; } } isOnGround = false; } } if((isOnGround && !isOnSlope) || newPosition.z() < swimlevel || isFlying) physicActor->setInertialForce(osg::Vec3f(0.f, 0.f, 0.f)); else { inertia.z() += time * -627.2f; if (inertia.z() < 0) inertia.z() *= slowFall; if (slowFall < 1.f) { inertia.x() *= slowFall; inertia.y() *= slowFall; } physicActor->setInertialForce(inertia); } physicActor->setOnGround(isOnGround); physicActor->setOnSlope(isOnSlope); newPosition.z() -= halfExtents.z(); // remove what was added at the beginning return newPosition; } }; // --------------------------------------------------------------- class HeightField { public: HeightField(const float* heights, int x, int y, float triSize, float sqrtVerts, float minH, float maxH, const osg::Object* holdObject) { mShape = new btHeightfieldTerrainShape( sqrtVerts, sqrtVerts, heights, 1, minH, maxH, 2, PHY_FLOAT, false ); mShape->setUseDiamondSubdivision(true); mShape->setLocalScaling(btVector3(triSize, triSize, 1)); btTransform transform(btQuaternion::getIdentity(), btVector3((x+0.5f) * triSize * (sqrtVerts-1), (y+0.5f) * triSize * (sqrtVerts-1), (maxH+minH)*0.5f)); mCollisionObject = new btCollisionObject; mCollisionObject->setCollisionShape(mShape); mCollisionObject->setWorldTransform(transform); mHoldObject = holdObject; } ~HeightField() { delete mCollisionObject; delete mShape; } btCollisionObject* getCollisionObject() { return mCollisionObject; } private: btHeightfieldTerrainShape* mShape; btCollisionObject* mCollisionObject; osg::ref_ptr mHoldObject; void operator=(const HeightField&); HeightField(const HeightField&); }; // -------------------------------------------------------------- class Object : public PtrHolder { public: Object(const MWWorld::Ptr& ptr, osg::ref_ptr shapeInstance) : mShapeInstance(shapeInstance) , mSolid(true) { mPtr = ptr; mCollisionObject.reset(new btCollisionObject); mCollisionObject->setCollisionShape(shapeInstance->getCollisionShape()); mCollisionObject->setUserPointer(static_cast(this)); setScale(ptr.getCellRef().getScale()); setRotation(toBullet(ptr.getRefData().getBaseNode()->getAttitude())); const float* pos = ptr.getRefData().getPosition().pos; setOrigin(btVector3(pos[0], pos[1], pos[2])); } const Resource::BulletShapeInstance* getShapeInstance() const { return mShapeInstance.get(); } void setScale(float scale) { mShapeInstance->getCollisionShape()->setLocalScaling(btVector3(scale,scale,scale)); } void setRotation(const btQuaternion& quat) { mCollisionObject->getWorldTransform().setRotation(quat); } void setOrigin(const btVector3& vec) { mCollisionObject->getWorldTransform().setOrigin(vec); } btCollisionObject* getCollisionObject() { return mCollisionObject.get(); } const btCollisionObject* getCollisionObject() const { return mCollisionObject.get(); } /// Return solid flag. Not used by the object itself, true by default. bool isSolid() const { return mSolid; } void setSolid(bool solid) { mSolid = solid; } bool isAnimated() const { return !mShapeInstance->mAnimatedShapes.empty(); } void animateCollisionShapes(btCollisionWorld* collisionWorld) { if (mShapeInstance->mAnimatedShapes.empty()) return; assert (mShapeInstance->getCollisionShape()->isCompound()); btCompoundShape* compound = static_cast(mShapeInstance->getCollisionShape()); for (std::map::const_iterator it = mShapeInstance->mAnimatedShapes.begin(); it != mShapeInstance->mAnimatedShapes.end(); ++it) { int recIndex = it->first; int shapeIndex = it->second; std::map::iterator nodePathFound = mRecIndexToNodePath.find(recIndex); if (nodePathFound == mRecIndexToNodePath.end()) { NifOsg::FindGroupByRecIndex visitor(recIndex); mPtr.getRefData().getBaseNode()->accept(visitor); if (!visitor.mFound) { std::cerr << "Error: animateCollisionShapes can't find node " << recIndex << " for " << mPtr.getCellRef().getRefId() << std::endl; return; } osg::NodePath nodePath = visitor.mFoundPath; nodePath.erase(nodePath.begin()); nodePathFound = mRecIndexToNodePath.insert(std::make_pair(recIndex, nodePath)).first; } osg::NodePath& nodePath = nodePathFound->second; osg::Matrixf matrix = osg::computeLocalToWorld(nodePath); osg::Vec3f scale = matrix.getScale(); matrix.orthoNormalize(matrix); btTransform transform; transform.setOrigin(toBullet(matrix.getTrans()) * compound->getLocalScaling()); for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) transform.getBasis()[i][j] = matrix(j,i); // NB column/row major difference if (compound->getLocalScaling() * toBullet(scale) != compound->getChildShape(shapeIndex)->getLocalScaling()) compound->getChildShape(shapeIndex)->setLocalScaling(compound->getLocalScaling() * toBullet(scale)); if (!(transform == compound->getChildTransform(shapeIndex))) compound->updateChildTransform(shapeIndex, transform); } collisionWorld->updateSingleAabb(mCollisionObject.get()); } private: std::unique_ptr mCollisionObject; osg::ref_ptr mShapeInstance; std::map mRecIndexToNodePath; bool mSolid; }; // --------------------------------------------------------------- PhysicsSystem::PhysicsSystem(Resource::ResourceSystem* resourceSystem, osg::ref_ptr parentNode) : mShapeManager(new Resource::BulletShapeManager(resourceSystem->getVFS(), resourceSystem->getSceneManager(), resourceSystem->getNifFileManager())) , mResourceSystem(resourceSystem) , mDebugDrawEnabled(false) , mTimeAccum(0.0f) , mWaterHeight(0) , mWaterEnabled(false) , mParentNode(parentNode) , mPhysicsDt(1.f / 60.f) { mResourceSystem->addResourceManager(mShapeManager.get()); mCollisionConfiguration = new btDefaultCollisionConfiguration(); mDispatcher = new btCollisionDispatcher(mCollisionConfiguration); mBroadphase = new btDbvtBroadphase(); mCollisionWorld = new btCollisionWorld(mDispatcher, mBroadphase, mCollisionConfiguration); // Don't update AABBs of all objects every frame. Most objects in MW are static, so we don't need this. // Should a "static" object ever be moved, we have to update its AABB manually using DynamicsWorld::updateSingleAabb. mCollisionWorld->setForceUpdateAllAabbs(false); // Check if a user decided to override a physics system FPS const char* env = getenv("OPENMW_PHYSICS_FPS"); if (env) { float physFramerate = std::atof(env); if (physFramerate > 0) { mPhysicsDt = 1.f / physFramerate; std::cerr << "Warning: physics framerate was overridden (a new value is " << physFramerate << ")." << std::endl; } } } PhysicsSystem::~PhysicsSystem() { mResourceSystem->removeResourceManager(mShapeManager.get()); if (mWaterCollisionObject.get()) mCollisionWorld->removeCollisionObject(mWaterCollisionObject.get()); for (HeightFieldMap::iterator it = mHeightFields.begin(); it != mHeightFields.end(); ++it) { mCollisionWorld->removeCollisionObject(it->second->getCollisionObject()); delete it->second; } for (ObjectMap::iterator it = mObjects.begin(); it != mObjects.end(); ++it) { mCollisionWorld->removeCollisionObject(it->second->getCollisionObject()); delete it->second; } for (ActorMap::iterator it = mActors.begin(); it != mActors.end(); ++it) { delete it->second; } delete mCollisionWorld; delete mCollisionConfiguration; delete mDispatcher; delete mBroadphase; } void PhysicsSystem::setUnrefQueue(SceneUtil::UnrefQueue *unrefQueue) { mUnrefQueue = unrefQueue; } Resource::BulletShapeManager *PhysicsSystem::getShapeManager() { return mShapeManager.get(); } bool PhysicsSystem::toggleDebugRendering() { mDebugDrawEnabled = !mDebugDrawEnabled; if (mDebugDrawEnabled && !mDebugDrawer.get()) { mDebugDrawer.reset(new MWRender::DebugDrawer(mParentNode, mCollisionWorld)); mCollisionWorld->setDebugDrawer(mDebugDrawer.get()); mDebugDrawer->setDebugMode(mDebugDrawEnabled); } else if (mDebugDrawer.get()) mDebugDrawer->setDebugMode(mDebugDrawEnabled); return mDebugDrawEnabled; } void PhysicsSystem::markAsNonSolid(const MWWorld::ConstPtr &ptr) { ObjectMap::iterator found = mObjects.find(ptr); if (found == mObjects.end()) return; found->second->setSolid(false); } bool PhysicsSystem::isOnSolidGround (const MWWorld::Ptr& actor) const { const Actor* physactor = getActor(actor); if (!physactor || !physactor->getOnGround()) return false; CollisionMap::const_iterator found = mStandingCollisions.find(actor); if (found == mStandingCollisions.end()) return true; // assume standing on terrain (which is a non-object, so not collision tracked) ObjectMap::const_iterator foundObj = mObjects.find(found->second); if (foundObj == mObjects.end()) return false; if (!foundObj->second->isSolid()) return false; return true; } class DeepestNotMeContactTestResultCallback : public btCollisionWorld::ContactResultCallback { const btCollisionObject* mMe; const std::vector mTargets; // Store the real origin, since the shape's origin is its center btVector3 mOrigin; public: const btCollisionObject *mObject; btVector3 mContactPoint; btScalar mLeastDistSqr; DeepestNotMeContactTestResultCallback(const btCollisionObject* me, const std::vector& targets, const btVector3 &origin) : mMe(me), mTargets(targets), mOrigin(origin), mObject(NULL), mContactPoint(0,0,0), mLeastDistSqr(std::numeric_limits::max()) { } virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* col0Wrap,int partId0,int index0, const btCollisionObjectWrapper* col1Wrap,int partId1,int index1) { const btCollisionObject* collisionObject = col1Wrap->m_collisionObject; if (collisionObject != mMe) { if (!mTargets.empty()) { if ((std::find(mTargets.begin(), mTargets.end(), collisionObject) == mTargets.end())) { PtrHolder* holder = static_cast(collisionObject->getUserPointer()); if (holder && !holder->getPtr().isEmpty() && holder->getPtr().getClass().isActor()) return 0.f; } } btScalar distsqr = mOrigin.distance2(cp.getPositionWorldOnA()); if(!mObject || distsqr < mLeastDistSqr) { mObject = collisionObject; mLeastDistSqr = distsqr; mContactPoint = cp.getPositionWorldOnA(); } } return 0.f; } }; std::pair PhysicsSystem::getHitContact(const MWWorld::ConstPtr& actor, const osg::Vec3f &origin, const osg::Quat &orient, float queryDistance, std::vector targets) { const MWWorld::Store &store = MWBase::Environment::get().getWorld()->getStore().get(); btConeShape shape (osg::DegreesToRadians(store.find("fCombatAngleXY")->getFloat()/2.0f), queryDistance); shape.setLocalScaling(btVector3(1, 1, osg::DegreesToRadians(store.find("fCombatAngleZ")->getFloat()/2.0f) / shape.getRadius())); // The shape origin is its center, so we have to move it forward by half the length. The // real origin will be provided to getFilteredContact to find the closest. osg::Vec3f center = origin + (orient * osg::Vec3f(0.0f, queryDistance*0.5f, 0.0f)); btCollisionObject object; object.setCollisionShape(&shape); object.setWorldTransform(btTransform(toBullet(orient), toBullet(center))); const btCollisionObject* me = NULL; std::vector targetCollisionObjects; const Actor* physactor = getActor(actor); if (physactor) me = physactor->getCollisionObject(); if (!targets.empty()) { for (std::vector::const_iterator it = targets.begin(); it != targets.end(); ++it) { const Actor* physactor2 = getActor(*it); if (physactor2) targetCollisionObjects.push_back(physactor2->getCollisionObject()); } } DeepestNotMeContactTestResultCallback resultCallback(me, targetCollisionObjects, toBullet(origin)); resultCallback.m_collisionFilterGroup = CollisionType_Actor; resultCallback.m_collisionFilterMask = CollisionType_World | CollisionType_Door | CollisionType_HeightMap | CollisionType_Actor; mCollisionWorld->contactTest(&object, resultCallback); if (resultCallback.mObject) { PtrHolder* holder = static_cast(resultCallback.mObject->getUserPointer()); if (holder) return std::make_pair(holder->getPtr(), toOsg(resultCallback.mContactPoint)); } return std::make_pair(MWWorld::Ptr(), osg::Vec3f()); } float PhysicsSystem::getHitDistance(const osg::Vec3f &point, const MWWorld::ConstPtr &target) const { btCollisionObject* targetCollisionObj = NULL; const Actor* actor = getActor(target); if (actor) targetCollisionObj = actor->getCollisionObject(); if (!targetCollisionObj) return 0.f; btTransform rayFrom; rayFrom.setIdentity(); rayFrom.setOrigin(toBullet(point)); // target the collision object's world origin, this should be the center of the collision object btTransform rayTo; rayTo.setIdentity(); rayTo.setOrigin(targetCollisionObj->getWorldTransform().getOrigin()); btCollisionWorld::ClosestRayResultCallback cb(rayFrom.getOrigin(), rayTo.getOrigin()); btCollisionWorld::rayTestSingle(rayFrom, rayTo, targetCollisionObj, targetCollisionObj->getCollisionShape(), targetCollisionObj->getWorldTransform(), cb); if (!cb.hasHit()) { // didn't hit the target. this could happen if point is already inside the collision box return 0.f; } else return (point - toOsg(cb.m_hitPointWorld)).length(); } class ClosestNotMeRayResultCallback : public btCollisionWorld::ClosestRayResultCallback { public: ClosestNotMeRayResultCallback(const btCollisionObject* me, const std::vector& targets, const btVector3& from, const btVector3& to) : btCollisionWorld::ClosestRayResultCallback(from, to) , mMe(me), mTargets(targets) { } virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& rayResult, bool normalInWorldSpace) { if (rayResult.m_collisionObject == mMe) return 1.f; if (!mTargets.empty()) { if ((std::find(mTargets.begin(), mTargets.end(), rayResult.m_collisionObject) == mTargets.end())) { PtrHolder* holder = static_cast(rayResult.m_collisionObject->getUserPointer()); if (holder && !holder->getPtr().isEmpty() && holder->getPtr().getClass().isActor()) return 1.f; } } return btCollisionWorld::ClosestRayResultCallback::addSingleResult(rayResult, normalInWorldSpace); } private: const btCollisionObject* mMe; const std::vector mTargets; }; PhysicsSystem::RayResult PhysicsSystem::castRay(const osg::Vec3f &from, const osg::Vec3f &to, const MWWorld::ConstPtr& ignore, std::vector targets, int mask, int group) const { btVector3 btFrom = toBullet(from); btVector3 btTo = toBullet(to); const btCollisionObject* me = NULL; std::vector targetCollisionObjects; if (!ignore.isEmpty()) { const Actor* actor = getActor(ignore); if (actor) me = actor->getCollisionObject(); else { const Object* object = getObject(ignore); if (object) me = object->getCollisionObject(); } } if (!targets.empty()) { for (std::vector::const_iterator it = targets.begin(); it != targets.end(); ++it) { const Actor* actor = getActor(*it); if (actor) targetCollisionObjects.push_back(actor->getCollisionObject()); } } ClosestNotMeRayResultCallback resultCallback(me, targetCollisionObjects, btFrom, btTo); resultCallback.m_collisionFilterGroup = group; resultCallback.m_collisionFilterMask = mask; mCollisionWorld->rayTest(btFrom, btTo, resultCallback); RayResult result; result.mHit = resultCallback.hasHit(); if (resultCallback.hasHit()) { result.mHitPos = toOsg(resultCallback.m_hitPointWorld); result.mHitNormal = toOsg(resultCallback.m_hitNormalWorld); if (PtrHolder* ptrHolder = static_cast(resultCallback.m_collisionObject->getUserPointer())) result.mHitObject = ptrHolder->getPtr(); } return result; } PhysicsSystem::RayResult PhysicsSystem::castSphere(const osg::Vec3f &from, const osg::Vec3f &to, float radius) { btCollisionWorld::ClosestConvexResultCallback callback(toBullet(from), toBullet(to)); callback.m_collisionFilterGroup = 0xff; callback.m_collisionFilterMask = CollisionType_World|CollisionType_HeightMap|CollisionType_Door; btSphereShape shape(radius); const btQuaternion btrot = btQuaternion::getIdentity(); btTransform from_ (btrot, toBullet(from)); btTransform to_ (btrot, toBullet(to)); mCollisionWorld->convexSweepTest(&shape, from_, to_, callback); RayResult result; result.mHit = callback.hasHit(); if (result.mHit) { result.mHitPos = toOsg(callback.m_hitPointWorld); result.mHitNormal = toOsg(callback.m_hitNormalWorld); } return result; } bool PhysicsSystem::getLineOfSight(const MWWorld::ConstPtr &actor1, const MWWorld::ConstPtr &actor2) const { const Actor* physactor1 = getActor(actor1); const Actor* physactor2 = getActor(actor2); if (!physactor1 || !physactor2) return false; osg::Vec3f pos1 (physactor1->getCollisionObjectPosition() + osg::Vec3f(0,0,physactor1->getHalfExtents().z() * 0.9)); // eye level osg::Vec3f pos2 (physactor2->getCollisionObjectPosition() + osg::Vec3f(0,0,physactor2->getHalfExtents().z() * 0.9)); RayResult result = castRay(pos1, pos2, MWWorld::ConstPtr(), std::vector(), CollisionType_World|CollisionType_HeightMap|CollisionType_Door); return !result.mHit; } bool PhysicsSystem::isOnGround(const MWWorld::Ptr &actor) { Actor* physactor = getActor(actor); return physactor && physactor->getOnGround(); } bool PhysicsSystem::canMoveToWaterSurface(const MWWorld::ConstPtr &actor, const float waterlevel) { const Actor* physicActor = getActor(actor); if (!physicActor) return false; const float halfZ = physicActor->getHalfExtents().z(); const osg::Vec3f actorPosition = physicActor->getPosition(); const osg::Vec3f startingPosition(actorPosition.x(), actorPosition.y(), actorPosition.z() + halfZ); const osg::Vec3f destinationPosition(actorPosition.x(), actorPosition.y(), waterlevel + halfZ); ActorTracer tracer; tracer.doTrace(physicActor->getCollisionObject(), startingPosition, destinationPosition, mCollisionWorld); return (tracer.mFraction >= 1.0f); } osg::Vec3f PhysicsSystem::getHalfExtents(const MWWorld::ConstPtr &actor) const { const Actor* physactor = getActor(actor); if (physactor) return physactor->getHalfExtents(); else return osg::Vec3f(); } osg::Vec3f PhysicsSystem::getRenderingHalfExtents(const MWWorld::ConstPtr &actor) const { const Actor* physactor = getActor(actor); if (physactor) return physactor->getRenderingHalfExtents(); else return osg::Vec3f(); } osg::Vec3f PhysicsSystem::getCollisionObjectPosition(const MWWorld::ConstPtr &actor) const { const Actor* physactor = getActor(actor); if (physactor) return physactor->getCollisionObjectPosition(); else return osg::Vec3f(); } class ContactTestResultCallback : public btCollisionWorld::ContactResultCallback { public: ContactTestResultCallback(const btCollisionObject* testedAgainst) : mTestedAgainst(testedAgainst) { } const btCollisionObject* mTestedAgainst; std::vector mResult; virtual btScalar addSingleResult(btManifoldPoint& cp, const btCollisionObjectWrapper* col0Wrap,int partId0,int index0, const btCollisionObjectWrapper* col1Wrap,int partId1,int index1) { const btCollisionObject* collisionObject = col0Wrap->m_collisionObject; if (collisionObject == mTestedAgainst) collisionObject = col1Wrap->m_collisionObject; PtrHolder* holder = static_cast(collisionObject->getUserPointer()); if (holder) mResult.push_back(holder->getPtr()); return 0.f; } }; std::vector PhysicsSystem::getCollisions(const MWWorld::ConstPtr &ptr, int collisionGroup, int collisionMask) const { btCollisionObject* me = NULL; ObjectMap::const_iterator found = mObjects.find(ptr); if (found != mObjects.end()) me = found->second->getCollisionObject(); else return std::vector(); ContactTestResultCallback resultCallback (me); resultCallback.m_collisionFilterGroup = collisionGroup; resultCallback.m_collisionFilterMask = collisionMask; mCollisionWorld->contactTest(me, resultCallback); return resultCallback.mResult; } osg::Vec3f PhysicsSystem::traceDown(const MWWorld::Ptr &ptr, const osg::Vec3f& position, float maxHeight) { ActorMap::iterator found = mActors.find(ptr); if (found == mActors.end()) return ptr.getRefData().getPosition().asVec3(); else return MovementSolver::traceDown(ptr, position, found->second, mCollisionWorld, maxHeight); } void PhysicsSystem::addHeightField (const float* heights, int x, int y, float triSize, float sqrtVerts, float minH, float maxH, const osg::Object* holdObject) { HeightField *heightfield = new HeightField(heights, x, y, triSize, sqrtVerts, minH, maxH, holdObject); mHeightFields[std::make_pair(x,y)] = heightfield; mCollisionWorld->addCollisionObject(heightfield->getCollisionObject(), CollisionType_HeightMap, CollisionType_Actor|CollisionType_Projectile); } void PhysicsSystem::removeHeightField (int x, int y) { HeightFieldMap::iterator heightfield = mHeightFields.find(std::make_pair(x,y)); if(heightfield != mHeightFields.end()) { mCollisionWorld->removeCollisionObject(heightfield->second->getCollisionObject()); delete heightfield->second; mHeightFields.erase(heightfield); } } void PhysicsSystem::addObject (const MWWorld::Ptr& ptr, const std::string& mesh, int collisionType) { osg::ref_ptr shapeInstance = mShapeManager->getInstance(mesh); if (!shapeInstance || !shapeInstance->getCollisionShape()) return; Object *obj = new Object(ptr, shapeInstance); mObjects.insert(std::make_pair(ptr, obj)); if (obj->isAnimated()) mAnimatedObjects.insert(obj); mCollisionWorld->addCollisionObject(obj->getCollisionObject(), collisionType, CollisionType_Actor|CollisionType_HeightMap|CollisionType_Projectile); } void PhysicsSystem::remove(const MWWorld::Ptr &ptr) { ObjectMap::iterator found = mObjects.find(ptr); if (found != mObjects.end()) { mCollisionWorld->removeCollisionObject(found->second->getCollisionObject()); if (mUnrefQueue.get()) mUnrefQueue->push(found->second->getShapeInstance()); mAnimatedObjects.erase(found->second); delete found->second; mObjects.erase(found); } ActorMap::iterator foundActor = mActors.find(ptr); if (foundActor != mActors.end()) { delete foundActor->second; mActors.erase(foundActor); } } void PhysicsSystem::updateCollisionMapPtr(CollisionMap& map, const MWWorld::Ptr &old, const MWWorld::Ptr &updated) { CollisionMap::iterator found = map.find(old); if (found != map.end()) { map[updated] = found->second; map.erase(found); } for (CollisionMap::iterator it = map.begin(); it != map.end(); ++it) { if (it->second == old) it->second = updated; } } void PhysicsSystem::updatePtr(const MWWorld::Ptr &old, const MWWorld::Ptr &updated) { ObjectMap::iterator found = mObjects.find(old); if (found != mObjects.end()) { Object* obj = found->second; obj->updatePtr(updated); mObjects.erase(found); mObjects.insert(std::make_pair(updated, obj)); } ActorMap::iterator foundActor = mActors.find(old); if (foundActor != mActors.end()) { Actor* actor = foundActor->second; actor->updatePtr(updated); mActors.erase(foundActor); mActors.insert(std::make_pair(updated, actor)); } updateCollisionMapPtr(mStandingCollisions, old, updated); } Actor *PhysicsSystem::getActor(const MWWorld::Ptr &ptr) { ActorMap::iterator found = mActors.find(ptr); if (found != mActors.end()) return found->second; return NULL; } const Actor *PhysicsSystem::getActor(const MWWorld::ConstPtr &ptr) const { ActorMap::const_iterator found = mActors.find(ptr); if (found != mActors.end()) return found->second; return NULL; } const Object* PhysicsSystem::getObject(const MWWorld::ConstPtr &ptr) const { ObjectMap::const_iterator found = mObjects.find(ptr); if (found != mObjects.end()) return found->second; return NULL; } void PhysicsSystem::updateScale(const MWWorld::Ptr &ptr) { ObjectMap::iterator found = mObjects.find(ptr); if (found != mObjects.end()) { float scale = ptr.getCellRef().getScale(); found->second->setScale(scale); mCollisionWorld->updateSingleAabb(found->second->getCollisionObject()); return; } ActorMap::iterator foundActor = mActors.find(ptr); if (foundActor != mActors.end()) { foundActor->second->updateScale(); mCollisionWorld->updateSingleAabb(foundActor->second->getCollisionObject()); return; } } void PhysicsSystem::updateRotation(const MWWorld::Ptr &ptr) { ObjectMap::iterator found = mObjects.find(ptr); if (found != mObjects.end()) { found->second->setRotation(toBullet(ptr.getRefData().getBaseNode()->getAttitude())); mCollisionWorld->updateSingleAabb(found->second->getCollisionObject()); return; } ActorMap::iterator foundActor = mActors.find(ptr); if (foundActor != mActors.end()) { if (!foundActor->second->isRotationallyInvariant()) { foundActor->second->updateRotation(); mCollisionWorld->updateSingleAabb(foundActor->second->getCollisionObject()); } return; } } void PhysicsSystem::updatePosition(const MWWorld::Ptr &ptr) { ObjectMap::iterator found = mObjects.find(ptr); if (found != mObjects.end()) { found->second->setOrigin(toBullet(ptr.getRefData().getPosition().asVec3())); mCollisionWorld->updateSingleAabb(found->second->getCollisionObject()); return; } ActorMap::iterator foundActor = mActors.find(ptr); if (foundActor != mActors.end()) { foundActor->second->updatePosition(); mCollisionWorld->updateSingleAabb(foundActor->second->getCollisionObject()); return; } } void PhysicsSystem::addActor (const MWWorld::Ptr& ptr, const std::string& mesh) { osg::ref_ptr shape = mShapeManager->getShape(mesh); if (!shape) return; Actor* actor = new Actor(ptr, shape, mCollisionWorld); mActors.insert(std::make_pair(ptr, actor)); } bool PhysicsSystem::toggleCollisionMode() { ActorMap::iterator found = mActors.find(MWMechanics::getPlayer()); if (found != mActors.end()) { bool cmode = found->second->getCollisionMode(); cmode = !cmode; found->second->enableCollisionMode(cmode); found->second->enableCollisionBody(cmode); return cmode; } return false; } void PhysicsSystem::queueObjectMovement(const MWWorld::Ptr &ptr, const osg::Vec3f &movement) { PtrVelocityList::iterator iter = mMovementQueue.begin(); for(;iter != mMovementQueue.end();++iter) { if(iter->first == ptr) { iter->second = movement; return; } } mMovementQueue.push_back(std::make_pair(ptr, movement)); } void PhysicsSystem::clearQueuedMovement() { mMovementQueue.clear(); mStandingCollisions.clear(); } const PtrVelocityList& PhysicsSystem::applyQueuedMovement(float dt) { mMovementResults.clear(); mTimeAccum += dt; const int maxAllowedSteps = 20; int numSteps = mTimeAccum / (mPhysicsDt); numSteps = std::min(numSteps, maxAllowedSteps); mTimeAccum -= numSteps * mPhysicsDt; if (numSteps) { // Collision events should be available on every frame mStandingCollisions.clear(); } const MWBase::World *world = MWBase::Environment::get().getWorld(); PtrVelocityList::iterator iter = mMovementQueue.begin(); for(;iter != mMovementQueue.end();++iter) { ActorMap::iterator foundActor = mActors.find(iter->first); if (foundActor == mActors.end()) // actor was already removed from the scene continue; Actor* physicActor = foundActor->second; float waterlevel = -std::numeric_limits::max(); const MWWorld::CellStore *cell = iter->first.getCell(); if(cell->getCell()->hasWater()) waterlevel = cell->getWaterLevel(); const MWMechanics::MagicEffects& effects = iter->first.getClass().getCreatureStats(iter->first).getMagicEffects(); bool waterCollision = false; if (cell->getCell()->hasWater() && effects.get(ESM::MagicEffect::WaterWalking).getMagnitude()) { if (!world->isUnderwater(iter->first.getCell(), osg::Vec3f(iter->first.getRefData().getPosition().asVec3()))) waterCollision = true; else if (physicActor->getCollisionMode() && canMoveToWaterSurface(iter->first, waterlevel)) { const osg::Vec3f actorPosition = physicActor->getPosition(); physicActor->setPosition(osg::Vec3f(actorPosition.x(), actorPosition.y(), waterlevel)); waterCollision = true; } } physicActor->setCanWaterWalk(waterCollision); // Slow fall reduces fall speed by a factor of (effect magnitude / 200) float slowFall = 1.f - std::max(0.f, std::min(1.f, effects.get(ESM::MagicEffect::SlowFall).getMagnitude() * 0.005f)); bool flying = world->isFlying(iter->first); bool wasOnGround = physicActor->getOnGround(); osg::Vec3f position = physicActor->getPosition(); float oldHeight = position.z(); bool positionChanged = false; for (int i=0; igetPtr(), physicActor, iter->second, mPhysicsDt, flying, waterlevel, slowFall, mCollisionWorld, mStandingCollisions); if (position != physicActor->getPosition()) positionChanged = true; physicActor->setPosition(position); // always set even if unchanged to make sure interpolation is correct } if (positionChanged) mCollisionWorld->updateSingleAabb(physicActor->getCollisionObject()); float interpolationFactor = mTimeAccum / mPhysicsDt; osg::Vec3f interpolated = position * interpolationFactor + physicActor->getPreviousPosition() * (1.f - interpolationFactor); float heightDiff = position.z() - oldHeight; MWMechanics::CreatureStats& stats = iter->first.getClass().getCreatureStats(iter->first); if ((wasOnGround && physicActor->getOnGround()) || flying || world->isSwimming(iter->first) || slowFall < 1) stats.land(); else if (heightDiff < 0) stats.addToFallHeight(-heightDiff); mMovementResults.push_back(std::make_pair(iter->first, interpolated)); } mMovementQueue.clear(); return mMovementResults; } void PhysicsSystem::stepSimulation(float dt) { for (std::set::iterator it = mAnimatedObjects.begin(); it != mAnimatedObjects.end(); ++it) (*it)->animateCollisionShapes(mCollisionWorld); #ifndef BT_NO_PROFILE CProfileManager::Reset(); CProfileManager::Increment_Frame_Counter(); #endif } void PhysicsSystem::debugDraw() { if (mDebugDrawer.get()) mDebugDrawer->step(); } bool PhysicsSystem::isActorStandingOn(const MWWorld::Ptr &actor, const MWWorld::ConstPtr &object) const { for (CollisionMap::const_iterator it = mStandingCollisions.begin(); it != mStandingCollisions.end(); ++it) { if (it->first == actor && it->second == object) return true; } return false; } void PhysicsSystem::getActorsStandingOn(const MWWorld::ConstPtr &object, std::vector &out) const { for (CollisionMap::const_iterator it = mStandingCollisions.begin(); it != mStandingCollisions.end(); ++it) { if (it->second == object) out.push_back(it->first); } } bool PhysicsSystem::isActorCollidingWith(const MWWorld::Ptr &actor, const MWWorld::ConstPtr &object) const { std::vector collisions = getCollisions(object, CollisionType_World, CollisionType_Actor); return (std::find(collisions.begin(), collisions.end(), actor) != collisions.end()); } void PhysicsSystem::getActorsCollidingWith(const MWWorld::ConstPtr &object, std::vector &out) const { std::vector collisions = getCollisions(object, CollisionType_World, CollisionType_Actor); out.insert(out.end(), collisions.begin(), collisions.end()); } void PhysicsSystem::disableWater() { if (mWaterEnabled) { mWaterEnabled = false; updateWater(); } } void PhysicsSystem::enableWater(float height) { if (!mWaterEnabled || mWaterHeight != height) { mWaterEnabled = true; mWaterHeight = height; updateWater(); } } void PhysicsSystem::setWaterHeight(float height) { if (mWaterHeight != height) { mWaterHeight = height; updateWater(); } } void PhysicsSystem::updateWater() { if (mWaterCollisionObject.get()) { mCollisionWorld->removeCollisionObject(mWaterCollisionObject.get()); } if (!mWaterEnabled) { mWaterCollisionObject.reset(); return; } mWaterCollisionObject.reset(new btCollisionObject()); mWaterCollisionShape.reset(new btStaticPlaneShape(btVector3(0,0,1), mWaterHeight)); mWaterCollisionObject->setCollisionShape(mWaterCollisionShape.get()); mCollisionWorld->addCollisionObject(mWaterCollisionObject.get(), CollisionType_Water, CollisionType_Actor); } }