openmw-tes3coop/components/nifogre/ogrenifloader.cpp

1344 lines
47 KiB
C++

/*
OpenMW - The completely unofficial reimplementation of Morrowind
Copyright (C) 2008-2010 Nicolay Korslund
Email: < korslund@gmail.com >
WWW: http://openmw.sourceforge.net/
This file (ogre_nif_loader.cpp) is part of the OpenMW package.
OpenMW is distributed as free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 3, as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
version 3 along with this program. If not, see
http://www.gnu.org/licenses/ .
*/
#include "ogrenifloader.hpp"
#include <algorithm>
#include <OgreMaterialManager.h>
#include <OgreMeshManager.h>
#include <OgreHardwareBufferManager.h>
#include <OgreSkeletonManager.h>
#include <OgreTechnique.h>
#include <OgreSubMesh.h>
#include <OgreRoot.h>
#include <OgreEntity.h>
#include <OgreSubEntity.h>
#include <OgreTagPoint.h>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/functional/hash.hpp>
#include <extern/shiny/Main/Factory.hpp>
#include <components/nif/node.hpp>
#include <components/misc/stringops.hpp>
#include <components/settings/settings.hpp>
#include <components/nifoverrides/nifoverrides.hpp>
typedef unsigned char ubyte;
namespace std
{
// TODO: Do something useful
ostream& operator<<(ostream &o, const NifOgre::TextKeyMap&)
{ return o; }
}
namespace NifOgre
{
// Helper class that computes the bounding box and of a mesh
class BoundsFinder
{
struct MaxMinFinder
{
float max, min;
MaxMinFinder()
{
min = std::numeric_limits<float>::infinity();
max = -min;
}
void add(float f)
{
if (f > max) max = f;
if (f < min) min = f;
}
// Return Max(max**2, min**2)
float getMaxSquared()
{
float m1 = max*max;
float m2 = min*min;
if (m1 >= m2) return m1;
return m2;
}
};
MaxMinFinder X, Y, Z;
public:
// Add 'verts' vertices to the calculation. The 'data' pointer is
// expected to point to 3*verts floats representing x,y,z for each
// point.
void add(float *data, int verts)
{
for (int i=0;i<verts;i++)
{
X.add(*(data++));
Y.add(*(data++));
Z.add(*(data++));
}
}
// True if this structure has valid values
bool isValid()
{
return
minX() <= maxX() &&
minY() <= maxY() &&
minZ() <= maxZ();
}
// Compute radius
float getRadius()
{
assert(isValid());
// The radius is computed from the origin, not from the geometric
// center of the mesh.
return sqrt(X.getMaxSquared() + Y.getMaxSquared() + Z.getMaxSquared());
}
float minX() {
return X.min;
}
float maxX() {
return X.max;
}
float minY() {
return Y.min;
}
float maxY() {
return Y.max;
}
float minZ() {
return Z.min;
}
float maxZ() {
return Z.max;
}
};
/** Manual resource loader for NIF skeletons. This is the main class
responsible for translating the internal NIF skeleton structure into
something Ogre can use (includes animations and node TextKeyData).
*/
class NIFSkeletonLoader : public Ogre::ManualResourceLoader
{
static void warn(const std::string &msg)
{
std::cerr << "NIFSkeletonLoader: Warn: " << msg << std::endl;
}
static void fail(const std::string &msg)
{
std::cerr << "NIFSkeletonLoader: Fail: "<< msg << std::endl;
abort();
}
static void buildAnimation(Ogre::Skeleton *skel, const std::string &name, const std::vector<const Nif::NiKeyframeController*> &ctrls, const std::vector<std::string> &targets, float startTime, float stopTime)
{
Ogre::Animation *anim = skel->createAnimation(name, stopTime-startTime);
for(size_t i = 0;i < ctrls.size();i++)
{
const Nif::NiKeyframeController *kfc = ctrls[i];
if(kfc->data.empty())
continue;
const Nif::NiKeyframeData *kf = kfc->data.getPtr();
/* Get the keyframes and make sure they're sorted first to last */
const Nif::QuaternionKeyList &quatkeys = kf->mRotations;
const Nif::Vector3KeyList &trankeys = kf->mTranslations;
const Nif::FloatKeyList &scalekeys = kf->mScales;
Nif::QuaternionKeyList::VecType::const_iterator quatiter = quatkeys.mKeys.begin();
Nif::Vector3KeyList::VecType::const_iterator traniter = trankeys.mKeys.begin();
Nif::FloatKeyList::VecType::const_iterator scaleiter = scalekeys.mKeys.begin();
Ogre::Bone *bone = skel->getBone(targets[i]);
// NOTE: For some reason, Ogre doesn't like the node track ID being different from
// the bone ID
Ogre::NodeAnimationTrack *nodetrack = anim->hasNodeTrack(bone->getHandle()) ?
anim->getNodeTrack(bone->getHandle()) :
anim->createNodeTrack(bone->getHandle(), bone);
Ogre::Quaternion lastquat, curquat;
Ogre::Vector3 lasttrans(0.0f), curtrans(0.0f);
Ogre::Vector3 lastscale(1.0f), curscale(1.0f);
if(quatiter != quatkeys.mKeys.end())
lastquat = curquat = quatiter->mValue;
if(traniter != trankeys.mKeys.end())
lasttrans = curtrans = traniter->mValue;
if(scaleiter != scalekeys.mKeys.end())
lastscale = curscale = Ogre::Vector3(scaleiter->mValue);
float begTime = std::max(kfc->timeStart, startTime);
float endTime = std::min(kfc->timeStop, stopTime);
bool didlast = false;
while(!didlast)
{
float curtime = std::numeric_limits<float>::max();
//Get latest time
if(quatiter != quatkeys.mKeys.end())
curtime = std::min(curtime, quatiter->mTime);
if(traniter != trankeys.mKeys.end())
curtime = std::min(curtime, traniter->mTime);
if(scaleiter != scalekeys.mKeys.end())
curtime = std::min(curtime, scaleiter->mTime);
curtime = std::max(curtime, begTime);
if(curtime >= endTime)
{
didlast = true;
curtime = endTime;
}
// Get the latest quaternions, translations, and scales for the
// current time
while(quatiter != quatkeys.mKeys.end() && curtime >= quatiter->mTime)
{
lastquat = curquat;
if(++quatiter != quatkeys.mKeys.end())
curquat = quatiter->mValue;
}
while(traniter != trankeys.mKeys.end() && curtime >= traniter->mTime)
{
lasttrans = curtrans;
if(++traniter != trankeys.mKeys.end())
curtrans = traniter->mValue;
}
while(scaleiter != scalekeys.mKeys.end() && curtime >= scaleiter->mTime)
{
lastscale = curscale;
if(++scaleiter != scalekeys.mKeys.end())
curscale = Ogre::Vector3(scaleiter->mValue);
}
Ogre::TransformKeyFrame *kframe;
kframe = nodetrack->createNodeKeyFrame(curtime-startTime);
if(quatiter == quatkeys.mKeys.end() || quatiter == quatkeys.mKeys.begin())
kframe->setRotation(curquat);
else
{
Nif::QuaternionKeyList::VecType::const_iterator last = quatiter-1;
float diff = (curtime-last->mTime) / (quatiter->mTime-last->mTime);
kframe->setRotation(Ogre::Quaternion::nlerp(diff, lastquat, curquat));
}
if(traniter == trankeys.mKeys.end() || traniter == trankeys.mKeys.begin())
kframe->setTranslate(curtrans);
else
{
Nif::Vector3KeyList::VecType::const_iterator last = traniter-1;
float diff = (curtime-last->mTime) / (traniter->mTime-last->mTime);
kframe->setTranslate(lasttrans + ((curtrans-lasttrans)*diff));
}
if(scaleiter == scalekeys.mKeys.end() || scaleiter == scalekeys.mKeys.begin())
kframe->setScale(curscale);
else
{
Nif::FloatKeyList::VecType::const_iterator last = scaleiter-1;
float diff = (curtime-last->mTime) / (scaleiter->mTime-last->mTime);
kframe->setScale(lastscale + ((curscale-lastscale)*diff));
}
}
}
anim->optimise();
}
static TextKeyMap extractTextKeys(const Nif::NiTextKeyExtraData *tk)
{
TextKeyMap textkeys;
for(size_t i = 0;i < tk->list.size();i++)
{
const std::string &str = tk->list[i].text;
std::string::size_type pos = 0;
while(pos < str.length())
{
if(::isspace(str[pos]))
{
pos++;
continue;
}
std::string::size_type nextpos = std::min(str.find('\r', pos), str.find('\n', pos));
std::string result = str.substr(pos, nextpos-pos);
textkeys.insert(std::make_pair(tk->list[i].time, Misc::StringUtils::toLower(result)));
pos = nextpos;
}
}
return textkeys;
}
void buildBones(Ogre::Skeleton *skel, const Nif::Node *node, Ogre::Bone *&animroot, TextKeyMap &textkeys, std::vector<Nif::NiKeyframeController const*> &ctrls, Ogre::Bone *parent=NULL)
{
Ogre::Bone *bone;
if(!skel->hasBone(node->name))
bone = skel->createBone(node->name);
else
bone = skel->createBone();
if(parent) parent->addChild(bone);
bone->setOrientation(node->trafo.rotation);
bone->setPosition(node->trafo.pos);
bone->setScale(Ogre::Vector3(node->trafo.scale));
bone->setBindingPose();
if(!(node->recType == Nif::RC_NiNode || /* Nothing special; children traversed below */
node->recType == Nif::RC_RootCollisionNode || /* handled in nifbullet (hopefully) */
node->recType == Nif::RC_NiTriShape /* Handled in the mesh loader */
))
warn("Unhandled "+node->recName+" "+node->name+" in "+skel->getName());
Nif::ControllerPtr ctrl = node->controller;
while(!ctrl.empty())
{
if(ctrl->recType == Nif::RC_NiKeyframeController)
ctrls.push_back(static_cast<const Nif::NiKeyframeController*>(ctrl.getPtr()));
else
warn("Unhandled "+ctrl->recName+" from node "+node->name+" in "+skel->getName());
ctrl = ctrl->next;
}
Nif::ExtraPtr e = node->extra;
while(!e.empty())
{
if(e->recType == Nif::RC_NiTextKeyExtraData && !animroot)
{
const Nif::NiTextKeyExtraData *tk = static_cast<const Nif::NiTextKeyExtraData*>(e.getPtr());
textkeys = extractTextKeys(tk);
animroot = bone;
}
e = e->extra;
}
const Nif::NiNode *ninode = dynamic_cast<const Nif::NiNode*>(node);
if(ninode)
{
const Nif::NodeList &children = ninode->children;
for(size_t i = 0;i < children.length();i++)
{
if(!children[i].empty())
buildBones(skel, children[i].getPtr(), animroot, textkeys, ctrls, bone);
}
}
}
typedef std::map<std::string,NIFSkeletonLoader> LoaderMap;
static LoaderMap sLoaders;
public:
void loadResource(Ogre::Resource *resource)
{
Ogre::Skeleton *skel = dynamic_cast<Ogre::Skeleton*>(resource);
OgreAssert(skel, "Attempting to load a skeleton into a non-skeleton resource!");
Nif::NIFFile::ptr nif(Nif::NIFFile::create(skel->getName()));
const Nif::Node *node = static_cast<const Nif::Node*>(nif->getRecord(0));
std::vector<const Nif::NiKeyframeController*> ctrls;
Ogre::Bone *animroot = NULL;
TextKeyMap textkeys;
try {
buildBones(skel, node, animroot, textkeys, ctrls);
}
catch(std::exception &e) {
std::cerr<< "Exception while loading "<<skel->getName() <<std::endl;
std::cerr<< e.what() <<std::endl;
return;
}
std::vector<std::string> targets;
// TODO: If ctrls.size() == 0, check for a .kf file sharing the name of the .nif file
if(ctrls.size() == 0) // No animations? Then we're done.
return;
float maxtime = 0.0f;
for(size_t i = 0;i < ctrls.size();i++)
{
const Nif::NiKeyframeController *ctrl = ctrls[i];
maxtime = std::max(maxtime, ctrl->timeStop);
Nif::Named *target = dynamic_cast<Nif::Named*>(ctrl->target.getPtr());
if(target != NULL)
targets.push_back(target->name);
}
if(targets.size() != ctrls.size())
{
warn("Target size mismatch ("+Ogre::StringConverter::toString(targets.size())+" targets, "+
Ogre::StringConverter::toString(ctrls.size())+" controllers)");
return;
}
if(!animroot)
{
warn(Ogre::StringConverter::toString(ctrls.size())+" animated node(s) in "+
skel->getName()+", but no text keys.");
return;
}
Ogre::UserObjectBindings &bindings = animroot->getUserObjectBindings();
bindings.setUserAny(sTextKeyExtraDataID, Ogre::Any(true));
std::string currentgroup;
TextKeyMap::const_iterator keyiter = textkeys.begin();
for(keyiter = textkeys.begin();keyiter != textkeys.end();keyiter++)
{
std::string::size_type sep = keyiter->second.find(':');
if((sep == currentgroup.length() && keyiter->second.compare(0, sep, currentgroup) == 0) ||
(sep == sizeof("soundgen")-1 && keyiter->second.compare(0, sep, "soundgen") == 0) ||
(sep == sizeof("sound")-1 && keyiter->second.compare(0, sep, "sound") == 0))
continue;
currentgroup = keyiter->second.substr(0, sep);
if(skel->hasAnimation(currentgroup))
continue;
TextKeyMap::const_iterator lastkeyiter = textkeys.end();
while((--lastkeyiter)->first > keyiter->first)
{
if(lastkeyiter->second.find(':') == currentgroup.length() &&
lastkeyiter->second.compare(0, currentgroup.length(), currentgroup) == 0)
break;
}
buildAnimation(skel, currentgroup, ctrls, targets, keyiter->first, lastkeyiter->first);
TextKeyMap::const_iterator insiter = keyiter;
TextKeyMap groupkeys;
do {
sep = insiter->second.find(':');
if(sep == currentgroup.length() && insiter->second.compare(0, sep, currentgroup) == 0)
groupkeys.insert(std::make_pair(insiter->first - keyiter->first,
insiter->second.substr(sep+2)));
else if((sep == sizeof("soundgen")-1 && insiter->second.compare(0, sep, "soundgen") == 0) ||
(sep == sizeof("sound")-1 && insiter->second.compare(0, sep, "sound") == 0))
groupkeys.insert(std::make_pair(insiter->first - keyiter->first, insiter->second));
} while(insiter++ != lastkeyiter);
bindings.setUserAny(std::string(sTextKeyExtraDataID)+"@"+currentgroup, Ogre::Any(groupkeys));
}
}
static Ogre::SkeletonPtr createSkeleton(const std::string &name, const std::string &group, const Nif::Node *node)
{
/* We need to be a little aggressive here, since some NIFs have a crap-ton
* of nodes and Ogre only supports 256 bones. We will skip a skeleton if:
* There are no bones used for skinning, there are no controllers on non-
* NiTriShape nodes, there are no nodes named "AttachLight", and the tree
* consists of NiNode, NiTriShape, and RootCollisionNode types only.
*/
if(!node->boneTrafo)
{
if(node->recType == Nif::RC_NiTriShape)
return Ogre::SkeletonPtr();
if(node->controller.empty() && node->name != "AttachLight")
{
if(node->recType == Nif::RC_NiNode || node->recType == Nif::RC_RootCollisionNode)
{
const Nif::NiNode *ninode = static_cast<const Nif::NiNode*>(node);
const Nif::NodeList &children = ninode->children;
for(size_t i = 0;i < children.length();i++)
{
if(!children[i].empty())
{
Ogre::SkeletonPtr skel = createSkeleton(name, group, children[i].getPtr());
if(!skel.isNull())
return skel;
}
}
return Ogre::SkeletonPtr();
}
}
}
Ogre::SkeletonManager &skelMgr = Ogre::SkeletonManager::getSingleton();
return skelMgr.create(name, group, true, &sLoaders[name]);
}
};
NIFSkeletonLoader::LoaderMap NIFSkeletonLoader::sLoaders;
// Conversion of blend / test mode from NIF
static const char *getBlendFactor(int mode)
{
switch(mode)
{
case 0: return "one";
case 1: return "zero";
case 2: return "src_colour";
case 3: return "one_minus_src_colour";
case 4: return "dest_colour";
case 5: return "one_minus_dest_colour";
case 6: return "src_alpha";
case 7: return "one_minus_src_alpha";
case 8: return "dest_alpha";
case 9: return "one_minus_dest_alpha";
case 10: return "src_alpha_saturate";
}
std::cerr<< "Unexpected blend mode: "<<mode <<std::endl;
return "src_alpha";
}
static const char *getTestMode(int mode)
{
switch(mode)
{
case 0: return "always_pass";
case 1: return "less";
case 2: return "equal";
case 3: return "less_equal";
case 4: return "greater";
case 5: return "not_equal";
case 6: return "greater_equal";
case 7: return "always_fail";
}
std::cerr<< "Unexpected test mode: "<<mode <<std::endl;
return "less_equal";
}
class NIFMaterialLoader {
static std::map<size_t,std::string> MaterialMap;
static void warn(const std::string &msg)
{
std::cerr << "NIFMeshLoader: Warn: " << msg << std::endl;
}
static void fail(const std::string &msg)
{
std::cerr << "NIFMeshLoader: Fail: "<< msg << std::endl;
abort();
}
public:
static Ogre::String getMaterial(const Nif::NiTriShape *shape, const Ogre::String &name, const Ogre::String &group)
{
Ogre::MaterialManager &matMgr = Ogre::MaterialManager::getSingleton();
Ogre::MaterialPtr material = matMgr.getByName(name);
if(!material.isNull())
return name;
Ogre::Vector3 ambient(1.0f);
Ogre::Vector3 diffuse(1.0f);
Ogre::Vector3 specular(0.0f);
Ogre::Vector3 emissive(0.0f);
float glossiness = 0.0f;
float alpha = 1.0f;
int alphaFlags = 0;
int alphaTest = 0;
Ogre::String texName;
bool vertexColour = (shape->data->colors.size() != 0);
// These are set below if present
const Nif::NiTexturingProperty *t = NULL;
const Nif::NiMaterialProperty *m = NULL;
const Nif::NiAlphaProperty *a = NULL;
// Scan the property list for material information
const Nif::PropertyList &list = shape->props;
for (size_t i = 0;i < list.length();i++)
{
// Entries may be empty
if (list[i].empty()) continue;
const Nif::Property *pr = list[i].getPtr();
if (pr->recType == Nif::RC_NiTexturingProperty)
t = static_cast<const Nif::NiTexturingProperty*>(pr);
else if (pr->recType == Nif::RC_NiMaterialProperty)
m = static_cast<const Nif::NiMaterialProperty*>(pr);
else if (pr->recType == Nif::RC_NiAlphaProperty)
a = static_cast<const Nif::NiAlphaProperty*>(pr);
else if (pr->recType == Nif::RC_NiStencilProperty)
/* unused */;
else
warn("Skipped property type: "+pr->recName);
}
// Texture
if (t && t->textures[0].inUse)
{
Nif::NiSourceTexture *st = t->textures[0].texture.getPtr();
if (st->external)
{
/* Bethesda at some point converted all their BSA
* textures from tga to dds for increased load speed, but all
* texture file name references were kept as .tga.
*/
static const char path[] = "textures\\";
texName = st->filename;
Misc::StringUtils::toLower(texName);
if(texName.compare(0, sizeof(path)-1, path) != 0)
texName = path + texName;
Ogre::String::size_type pos = texName.rfind('.');
if(pos != Ogre::String::npos && texName.compare(pos, texName.length() - pos, ".dds") != 0)
{
// since we know all (GOTY edition or less) textures end
// in .dds, we change the extension
texName.replace(pos, texName.length(), ".dds");
// if it turns out that the above wasn't true in all cases (not for vanilla, but maybe mods)
// verify, and revert if false (this call succeeds quickly, but fails slowly)
if(!Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup(texName))
{
texName = st->filename;
Misc::StringUtils::toLower(texName);
if(texName.compare(0, sizeof(path)-1, path) != 0)
texName = path + texName;
}
}
}
else warn("Found internal texture, ignoring.");
}
// Alpha modifiers
if (a)
{
alphaFlags = a->flags;
alphaTest = a->data.threshold;
}
// Material
if(m)
{
ambient = m->data.ambient;
diffuse = m->data.diffuse;
emissive = m->data.emissive;
// Vanilla does not handle specular. TODO: Add an engine (or ESX file) configuration option
// to re-enable specular for future mods. Will also need to specify light specular colors somewhere.
// Also, not sure if glossiness value here is actually correct. OGRE expects 0-255 value, not sure what range this one is.
//glossiness = m->data.glossiness;
//specular = m->data.specular;
glossiness = 0;
specular = Ogre::Vector3(0,0,0);
alpha = m->data.alpha;
}
Ogre::String matname = name;
if (m || !texName.empty())
{
// Generate a hash out of all properties that can affect the material.
size_t h = 0;
boost::hash_combine(h, ambient.x);
boost::hash_combine(h, ambient.y);
boost::hash_combine(h, ambient.z);
boost::hash_combine(h, diffuse.x);
boost::hash_combine(h, diffuse.y);
boost::hash_combine(h, diffuse.z);
boost::hash_combine(h, specular.x);
boost::hash_combine(h, specular.y);
boost::hash_combine(h, specular.z);
boost::hash_combine(h, emissive.x);
boost::hash_combine(h, emissive.y);
boost::hash_combine(h, emissive.z);
boost::hash_combine(h, texName);
boost::hash_combine(h, vertexColour);
boost::hash_combine(h, alphaFlags);
boost::hash_combine(h, alphaTest);
std::map<size_t,std::string>::iterator itr = MaterialMap.find(h);
if (itr != MaterialMap.end())
{
// a suitable material exists already - use it
return itr->second;
}
// not found, create a new one
MaterialMap.insert(std::make_pair(h, matname));
}
// No existing material like this. Create a new one.
sh::MaterialInstance* instance = sh::Factory::getInstance ().createMaterialInstance (matname, "openmw_objects_base");
instance->setProperty ("ambient", sh::makeProperty<sh::Vector3> (
new sh::Vector3(ambient.x, ambient.y, ambient.z)));
instance->setProperty ("diffuse", sh::makeProperty<sh::Vector4> (
new sh::Vector4(diffuse.x, diffuse.y, diffuse.z, alpha)));
instance->setProperty ("specular", sh::makeProperty<sh::Vector4> (
new sh::Vector4(specular.x, specular.y, specular.z, glossiness*255.0f)));
instance->setProperty ("emissive", sh::makeProperty<sh::Vector3> (
new sh::Vector3(emissive.x, emissive.y, emissive.z)));
instance->setProperty ("diffuseMap", sh::makeProperty(texName));
if (vertexColour)
instance->setProperty ("has_vertex_colour", sh::makeProperty<sh::BooleanValue>(new sh::BooleanValue(true)));
// Add transparency if NiAlphaProperty was present
NifOverrides::TransparencyResult result = NifOverrides::Overrides::getTransparencyOverride(texName);
if (result.first)
{
alphaFlags = (1<<9) | (6<<10); /* alpha_rejection enabled, greater_equal */
alphaTest = result.second;
}
if((alphaFlags&1))
{
std::string blend_mode;
blend_mode += getBlendFactor((alphaFlags>>1)&0xf);
blend_mode += " ";
blend_mode += getBlendFactor((alphaFlags>>5)&0xf);
instance->setProperty("scene_blend", sh::makeProperty(new sh::StringValue(blend_mode)));
}
else
instance->getMaterial()->setShadowCasterMaterial("openmw_shadowcaster_noalpha");
if((alphaFlags>>9)&1)
{
std::string reject;
reject += getTestMode((alphaFlags>>10)&0x7);
reject += " ";
reject += Ogre::StringConverter::toString(alphaTest);
instance->setProperty("alpha_rejection", sh::makeProperty(new sh::StringValue(reject)));
}
instance->setProperty("transparent_sorting", sh::makeProperty(new sh::StringValue(((alphaFlags>>13)&1) ?
"off" : "on")));
sh::Factory::getInstance()._ensureMaterial(matname, "Default");
return matname;
}
};
std::map<size_t,std::string> NIFMaterialLoader::MaterialMap;
/** Manual resource loader for NIF meshes. This is the main class
responsible for translating the internal NIF mesh structure into
something Ogre can use.
*/
class NIFMeshLoader : Ogre::ManualResourceLoader
{
std::string mName;
std::string mGroup;
size_t mShapeIndex;
std::string mMaterialName;
void warn(const std::string &msg)
{
std::cerr << "NIFMeshLoader: Warn: " << msg << std::endl;
}
void fail(const std::string &msg)
{
std::cerr << "NIFMeshLoader: Fail: "<< msg << std::endl;
abort();
}
// Convert NiTriShape to Ogre::SubMesh
void handleNiTriShape(Ogre::Mesh *mesh, Nif::NiTriShape const *shape)
{
Ogre::SkeletonPtr skel;
const Nif::NiTriShapeData *data = shape->data.getPtr();
const Nif::NiSkinInstance *skin = (shape->skin.empty() ? NULL : shape->skin.getPtr());
std::vector<Ogre::Vector3> srcVerts = data->vertices;
std::vector<Ogre::Vector3> srcNorms = data->normals;
if(skin != NULL)
{
// Only set a skeleton when skinning. Unskinned meshes with a skeleton will be
// explicitly attached later.
mesh->setSkeletonName(mName);
// Get the skeleton resource, so vertices can be transformed into the bones' initial state.
Ogre::SkeletonManager *skelMgr = Ogre::SkeletonManager::getSingletonPtr();
skel = skelMgr->getByName(mName);
// Convert vertices and normals to bone space from bind position. It would be
// better to transform the bones into bind position, but there doesn't seem to
// be a reliable way to do that.
std::vector<Ogre::Vector3> newVerts(srcVerts.size(), Ogre::Vector3(0.0f));
std::vector<Ogre::Vector3> newNorms(srcNorms.size(), Ogre::Vector3(0.0f));
const Nif::NiSkinData *data = skin->data.getPtr();
const Nif::NodeList &bones = skin->bones;
for(size_t b = 0;b < bones.length();b++)
{
Ogre::Bone *bone = skel->getBone(bones[b]->name);
Ogre::Matrix4 mat;
mat.makeTransform(data->bones[b].trafo.trans, Ogre::Vector3(data->bones[b].trafo.scale),
Ogre::Quaternion(data->bones[b].trafo.rotation));
mat = bone->_getFullTransform() * mat;
const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[b].weights;
for(size_t i = 0;i < weights.size();i++)
{
size_t index = weights[i].vertex;
float weight = weights[i].weight;
newVerts.at(index) += (mat*srcVerts[index]) * weight;
if(newNorms.size() > index)
{
Ogre::Vector4 vec4(srcNorms[index][0], srcNorms[index][1], srcNorms[index][2], 0.0f);
vec4 = mat*vec4 * weight;
newNorms[index] += Ogre::Vector3(&vec4[0]);
}
}
}
srcVerts = newVerts;
srcNorms = newNorms;
}
else
{
Ogre::SkeletonManager *skelMgr = Ogre::SkeletonManager::getSingletonPtr();
if(skelMgr->getByName(mName).isNull())
{
// No skinning and no skeleton, so just transform the vertices and
// normals into position.
Ogre::Matrix4 mat4 = shape->getWorldTransform();
for(size_t i = 0;i < srcVerts.size();i++)
{
Ogre::Vector4 vec4(srcVerts[i].x, srcVerts[i].y, srcVerts[i].z, 1.0f);
vec4 = mat4*vec4;
srcVerts[i] = Ogre::Vector3(&vec4[0]);
}
for(size_t i = 0;i < srcNorms.size();i++)
{
Ogre::Vector4 vec4(srcNorms[i].x, srcNorms[i].y, srcNorms[i].z, 0.0f);
vec4 = mat4*vec4;
srcNorms[i] = Ogre::Vector3(&vec4[0]);
}
}
}
// Set the bounding box first
BoundsFinder bounds;
bounds.add(&srcVerts[0][0], srcVerts.size());
if(!bounds.isValid())
{
float v[3] = { 0.0f, 0.0f, 0.0f };
bounds.add(&v[0], 1);
}
mesh->_setBounds(Ogre::AxisAlignedBox(bounds.minX()-0.5f, bounds.minY()-0.5f, bounds.minZ()-0.5f,
bounds.maxX()+0.5f, bounds.maxY()+0.5f, bounds.maxZ()+0.5f));
mesh->_setBoundingSphereRadius(bounds.getRadius());
// This function is just one long stream of Ogre-barf, but it works
// great.
Ogre::HardwareBufferManager *hwBufMgr = Ogre::HardwareBufferManager::getSingletonPtr();
Ogre::HardwareVertexBufferSharedPtr vbuf;
Ogre::HardwareIndexBufferSharedPtr ibuf;
Ogre::VertexBufferBinding *bind;
Ogre::VertexDeclaration *decl;
int nextBuf = 0;
Ogre::SubMesh *sub = mesh->createSubMesh();
// Add vertices
sub->useSharedVertices = false;
sub->vertexData = new Ogre::VertexData();
sub->vertexData->vertexStart = 0;
sub->vertexData->vertexCount = srcVerts.size();
decl = sub->vertexData->vertexDeclaration;
bind = sub->vertexData->vertexBufferBinding;
if(srcVerts.size())
{
vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
srcVerts.size(), Ogre::HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY,
true);
vbuf->writeData(0, vbuf->getSizeInBytes(), &srcVerts[0][0], true);
decl->addElement(nextBuf, 0, Ogre::VET_FLOAT3, Ogre::VES_POSITION);
bind->setBinding(nextBuf++, vbuf);
}
// Vertex normals
if(srcNorms.size())
{
vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT3),
srcNorms.size(), Ogre::HardwareBuffer::HBU_DYNAMIC_WRITE_ONLY,
true);
vbuf->writeData(0, vbuf->getSizeInBytes(), &srcNorms[0][0], true);
decl->addElement(nextBuf, 0, Ogre::VET_FLOAT3, Ogre::VES_NORMAL);
bind->setBinding(nextBuf++, vbuf);
}
// Vertex colors
const std::vector<Ogre::Vector4> &colors = data->colors;
if(colors.size())
{
Ogre::RenderSystem* rs = Ogre::Root::getSingleton().getRenderSystem();
std::vector<Ogre::RGBA> colorsRGB(colors.size());
for(size_t i = 0;i < colorsRGB.size();i++)
{
Ogre::ColourValue clr(colors[i][0], colors[i][1], colors[i][2], colors[i][3]);
rs->convertColourValue(clr, &colorsRGB[i]);
}
vbuf = hwBufMgr->createVertexBuffer(Ogre::VertexElement::getTypeSize(Ogre::VET_COLOUR),
colorsRGB.size(), Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY,
true);
vbuf->writeData(0, vbuf->getSizeInBytes(), &colorsRGB[0], true);
decl->addElement(nextBuf, 0, Ogre::VET_COLOUR, Ogre::VES_DIFFUSE);
bind->setBinding(nextBuf++, vbuf);
}
// Texture UV coordinates
size_t numUVs = data->uvlist.size();
if(numUVs)
{
size_t elemSize = Ogre::VertexElement::getTypeSize(Ogre::VET_FLOAT2);
vbuf = hwBufMgr->createVertexBuffer(elemSize, srcVerts.size()*numUVs,
Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY, true);
for(size_t i = 0;i < numUVs;i++)
{
const std::vector<Ogre::Vector2> &uvlist = data->uvlist[i];
vbuf->writeData(i*srcVerts.size()*elemSize, elemSize*srcVerts.size(), &uvlist[0], true);
decl->addElement(nextBuf, i*srcVerts.size()*elemSize, Ogre::VET_FLOAT2,
Ogre::VES_TEXTURE_COORDINATES, i);
}
bind->setBinding(nextBuf++, vbuf);
}
// Triangle faces
const std::vector<short> &srcIdx = data->triangles;
if(srcIdx.size())
{
ibuf = hwBufMgr->createIndexBuffer(Ogre::HardwareIndexBuffer::IT_16BIT, srcIdx.size(),
Ogre::HardwareBuffer::HBU_STATIC_WRITE_ONLY);
ibuf->writeData(0, ibuf->getSizeInBytes(), &srcIdx[0], true);
sub->indexData->indexBuffer = ibuf;
sub->indexData->indexCount = srcIdx.size();
sub->indexData->indexStart = 0;
}
// Assign bone weights for this TriShape
if(skin != NULL)
{
const Nif::NiSkinData *data = skin->data.getPtr();
const Nif::NodeList &bones = skin->bones;
for(size_t i = 0;i < bones.length();i++)
{
Ogre::VertexBoneAssignment boneInf;
boneInf.boneIndex = skel->getBone(bones[i]->name)->getHandle();
const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[i].weights;
for(size_t j = 0;j < weights.size();j++)
{
boneInf.vertexIndex = weights[j].vertex;
boneInf.weight = weights[j].weight;
sub->addBoneAssignment(boneInf);
}
}
}
if(mMaterialName.length() > 0)
sub->setMaterialName(mMaterialName);
}
bool findTriShape(Ogre::Mesh *mesh, Nif::Node const *node)
{
if(node->recType == Nif::RC_NiTriShape && mShapeIndex == node->recIndex)
{
handleNiTriShape(mesh, dynamic_cast<const Nif::NiTriShape*>(node));
return true;
}
const Nif::NiNode *ninode = dynamic_cast<const Nif::NiNode*>(node);
if(ninode)
{
Nif::NodeList const &children = ninode->children;
for(size_t i = 0;i < children.length();i++)
{
if(!children[i].empty())
{
if(findTriShape(mesh, children[i].getPtr()))
return true;
}
}
}
return false;
}
typedef std::map<std::string,NIFMeshLoader> LoaderMap;
static LoaderMap sLoaders;
public:
NIFMeshLoader()
{ }
NIFMeshLoader(const std::string &name, const std::string &group)
: mName(name), mGroup(group), mShapeIndex(~(size_t)0)
{ }
virtual void loadResource(Ogre::Resource *resource)
{
Ogre::Mesh *mesh = dynamic_cast<Ogre::Mesh*>(resource);
OgreAssert(mesh, "Attempting to load a mesh into a non-mesh resource!");
Nif::NIFFile::ptr nif = Nif::NIFFile::create(mName);
if(mShapeIndex >= nif->numRecords())
{
Ogre::SkeletonManager *skelMgr = Ogre::SkeletonManager::getSingletonPtr();
if(!skelMgr->getByName(mName).isNull())
mesh->setSkeletonName(mName);
return;
}
Nif::Node const *node = dynamic_cast<const Nif::Node*>(nif->getRecord(mShapeIndex));
findTriShape(mesh, node);
}
void createMeshes(const Nif::Node *node, MeshInfoList &meshes, int flags=0)
{
// Do not create meshes for the collision shape (includes all children)
if(node->recType == Nif::RC_RootCollisionNode)
return;
flags |= node->flags;
// Marker objects: just skip the entire node
/// \todo don't do this in the editor
if (node->name.find("marker") != std::string::npos)
return;
Nif::ExtraPtr e = node->extra;
while(!e.empty())
{
Nif::NiStringExtraData *sd;
if((sd=dynamic_cast<Nif::NiStringExtraData*>(e.getPtr())) != NULL)
{
// String markers may contain important information
// affecting the entire subtree of this obj
if(sd->string == "MRK")
{
// Marker objects. These are only visible in the
// editor.
flags |= 0x01;
}
}
e = e->extra;
}
if(node->recType == Nif::RC_NiTriShape && !(flags&0x01)) // Not hidden
{
const Nif::NiTriShape *shape = dynamic_cast<const Nif::NiTriShape*>(node);
Ogre::MeshManager &meshMgr = Ogre::MeshManager::getSingleton();
std::string fullname = mName+"@index="+Ogre::StringConverter::toString(shape->recIndex);
if(shape->name.length() > 0)
fullname += "@shape="+shape->name;
Misc::StringUtils::toLower(fullname);
Ogre::MeshPtr mesh = meshMgr.getByName(fullname);
if(mesh.isNull())
{
NIFMeshLoader *loader = &sLoaders[fullname];
*loader = *this;
loader->mShapeIndex = shape->recIndex;
loader->mMaterialName = NIFMaterialLoader::getMaterial(shape, fullname, mGroup);
mesh = meshMgr.createManual(fullname, mGroup, loader);
mesh->setAutoBuildEdgeLists(false);
}
meshes.push_back(MeshInfo(mesh->getName(), shape->name));
}
const Nif::NiNode *ninode = dynamic_cast<const Nif::NiNode*>(node);
if(ninode)
{
const Nif::NodeList &children = ninode->children;
for(size_t i = 0;i < children.length();i++)
{
if(!children[i].empty())
createMeshes(children[i].getPtr(), meshes, flags);
}
}
}
void createEmptyMesh(const Nif::Node *node, MeshInfoList &meshes)
{
/* This creates an empty mesh to which a skeleton gets attached. This
* is to ensure we have an entity with a skeleton instance, even if all
* other meshes are hidden or entities attached to a specific node
* instead of skinned. */
std::string fullname = mName;
Misc::StringUtils::toLower(fullname);
Ogre::MeshManager &meshMgr = Ogre::MeshManager::getSingleton();
Ogre::MeshPtr mesh = meshMgr.getByName(fullname);
if(mesh.isNull())
{
NIFMeshLoader *loader = &sLoaders[fullname];
*loader = *this;
mesh = meshMgr.createManual(fullname, mGroup, loader);
mesh->setAutoBuildEdgeLists(false);
}
meshes.push_back(MeshInfo(mesh->getName(), node->name));
}
};
NIFMeshLoader::LoaderMap NIFMeshLoader::sLoaders;
typedef std::map<std::string,MeshInfoList> MeshInfoMap;
static MeshInfoMap sMeshInfoMap;
MeshInfoList Loader::load(const std::string &name, const std::string &group)
{
MeshInfoMap::const_iterator meshiter = sMeshInfoMap.find(name);
if(meshiter != sMeshInfoMap.end())
return meshiter->second;
MeshInfoList &meshes = sMeshInfoMap[name];
Nif::NIFFile::ptr pnif = Nif::NIFFile::create(name);
Nif::NIFFile &nif = *pnif.get();
if(nif.numRecords() < 1)
{
nif.warn("Found no NIF records in "+name+".");
return meshes;
}
// The first record is assumed to be the root node
Nif::Record const *r = nif.getRecord(0);
assert(r != NULL);
Nif::Node const *node = dynamic_cast<Nif::Node const *>(r);
if(node == NULL)
{
nif.warn("First record in "+name+" was not a node, but a "+
r->recName+".");
return meshes;
}
bool hasSkel = Ogre::SkeletonManager::getSingleton().resourceExists(name);
if(!hasSkel)
hasSkel = !NIFSkeletonLoader::createSkeleton(name, group, node).isNull();
NIFMeshLoader meshldr(name, group);
if(hasSkel)
meshldr.createEmptyMesh(node, meshes);
meshldr.createMeshes(node, meshes, 0);
return meshes;
}
EntityList Loader::createEntities(Ogre::SceneNode *parentNode, std::string name, const std::string &group)
{
EntityList entitylist;
Misc::StringUtils::toLower(name);
MeshInfoList meshes = load(name, group);
if(meshes.size() == 0)
return entitylist;
Ogre::SceneManager *sceneMgr = parentNode->getCreator();
for(size_t i = 0;i < meshes.size();i++)
{
entitylist.mEntities.push_back(sceneMgr->createEntity(meshes[i].mMeshName));
Ogre::Entity *entity = entitylist.mEntities.back();
if(!entitylist.mSkelBase && entity->hasSkeleton())
entitylist.mSkelBase = entity;
}
if(entitylist.mSkelBase)
{
parentNode->attachObject(entitylist.mSkelBase);
for(size_t i = 0;i < entitylist.mEntities.size();i++)
{
Ogre::Entity *entity = entitylist.mEntities[i];
if(entity != entitylist.mSkelBase && entity->hasSkeleton())
{
entity->shareSkeletonInstanceWith(entitylist.mSkelBase);
parentNode->attachObject(entity);
}
else if(entity != entitylist.mSkelBase)
entitylist.mSkelBase->attachObjectToBone(meshes[i].mTargetNode, entity);
}
}
else
{
for(size_t i = 0;i < entitylist.mEntities.size();i++)
parentNode->attachObject(entitylist.mEntities[i]);
}
return entitylist;
}
EntityList Loader::createEntities(Ogre::Entity *parent, const std::string &bonename,
Ogre::SceneNode *parentNode,
std::string name, const std::string &group)
{
EntityList entitylist;
Misc::StringUtils::toLower(name);
MeshInfoList meshes = load(name, group);
if(meshes.size() == 0)
return entitylist;
bool isskinned = false;
Ogre::SceneManager *sceneMgr = parentNode->getCreator();
std::string filter = "@shape=tri "+bonename;
Misc::StringUtils::toLower(filter);
for(size_t i = 0;i < meshes.size();i++)
{
Ogre::Entity *ent = sceneMgr->createEntity(meshes[i].mMeshName);
if(!entitylist.mSkelBase)
{
if(ent->hasSkeleton())
entitylist.mSkelBase = ent;
}
else if(!isskinned && ent->hasSkeleton())
isskinned = true;
entitylist.mEntities.push_back(ent);
}
Ogre::Vector3 scale(1.0f);
if(bonename.find("Left") != std::string::npos)
scale.x *= -1.0f;
if(isskinned)
{
for(size_t i = 0;i < entitylist.mEntities.size();i++)
{
Ogre::Entity *entity = entitylist.mEntities[i];
if(entity->hasSkeleton())
{
if(entity != entitylist.mSkelBase)
entity->shareSkeletonInstanceWith(entitylist.mSkelBase);
if(entity->getMesh()->getName().find(filter) != std::string::npos)
parentNode->attachObject(entity);
}
else
{
if(entity->getMesh()->getName().find(filter) != std::string::npos)
entitylist.mSkelBase->attachObjectToBone(meshes[i].mTargetNode, entity);
}
}
}
else
{
for(size_t i = 0;i < entitylist.mEntities.size();i++)
{
Ogre::TagPoint *tag = parent->attachObjectToBone(bonename, entitylist.mEntities[i]);
tag->setScale(scale);
}
}
return entitylist;
}
Ogre::SkeletonPtr Loader::getSkeleton(std::string name, const std::string &group)
{
Ogre::SkeletonPtr skel;
Misc::StringUtils::toLower(name);
skel = Ogre::SkeletonManager::getSingleton().getByName(name);
if(!skel.isNull())
return skel;
Nif::NIFFile::ptr nif = Nif::NIFFile::create(name);
if(nif->numRecords() < 1)
{
nif->warn("Found no NIF records in "+name+".");
return skel;
}
// The first record is assumed to be the root node
const Nif::Record *r = nif->getRecord(0);
assert(r != NULL);
const Nif::Node *node = dynamic_cast<const Nif::Node*>(r);
if(node == NULL)
{
nif->warn("First record in "+name+" was not a node, but a "+
r->recName+".");
return skel;
}
return NIFSkeletonLoader::createSkeleton(name, group, node);
}
/* More code currently not in use, from the old D source. This was
used in the first attempt at loading NIF meshes, where each submesh
in the file was given a separate bone in a skeleton. Unfortunately
the OGRE skeletons can't hold more than 256 bones, and some NIFs go
way beyond that. The code might be of use if we implement animated
submeshes like this (the part of the NIF that is animated is
usually much less than the entire file, but the method might still
not be water tight.)
// Insert a raw RGBA image into the texture system.
extern "C" void ogre_insertTexture(char* name, uint32_t width, uint32_t height, void *data)
{
TexturePtr texture = TextureManager::getSingleton().createManual(
name, // name
"General", // group
TEX_TYPE_2D, // type
width, height, // width & height
0, // number of mipmaps
PF_BYTE_RGBA, // pixel format
TU_DEFAULT); // usage; should be TU_DYNAMIC_WRITE_ONLY_DISCARDABLE for
// textures updated very often (e.g. each frame)
// Get the pixel buffer
HardwarePixelBufferSharedPtr pixelBuffer = texture->getBuffer();
// Lock the pixel buffer and get a pixel box
pixelBuffer->lock(HardwareBuffer::HBL_NORMAL); // for best performance use HBL_DISCARD!
const PixelBox& pixelBox = pixelBuffer->getCurrentLock();
void *dest = pixelBox.data;
// Copy the data
memcpy(dest, data, width*height*4);
// Unlock the pixel buffer
pixelBuffer->unlock();
}
*/
} // nsmaepace NifOgre