openmw-tes3coop/apps/openmw/mwmechanics/pathfinding.cpp

394 lines
13 KiB
C++

#include "pathfinding.hpp"
#include <map>
#include "OgreMath.h"
#include "OgreVector3.h"
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwworld/esmstore.hpp"
#include "../mwworld/cellstore.hpp"
namespace
{
float distanceZCorrected(ESM::Pathgrid::Point point, float x, float y, float z)
{
x -= point.mX;
y -= point.mY;
z -= point.mZ;
return sqrt(x * x + y * y + 0.1 * z * z);
}
float distance(ESM::Pathgrid::Point point, float x, float y, float z)
{
x -= point.mX;
y -= point.mY;
z -= point.mZ;
return sqrt(x * x + y * y + z * z);
}
float distance(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
{
float x = a.mX - b.mX;
float y = a.mY - b.mY;
float z = a.mZ - b.mZ;
return sqrt(x * x + y * y + z * z);
}
int getClosestPoint(const ESM::Pathgrid* grid, float x, float y, float z)
{
if(!grid || grid->mPoints.empty())
return -1;
float distanceBetween = distance(grid->mPoints[0], x, y, z);
int closestIndex = 0;
for(unsigned int counter = 1; counter < grid->mPoints.size(); counter++)
{
if(distance(grid->mPoints[counter], x, y, z) < distanceBetween)
{
distanceBetween = distance(grid->mPoints[counter], x, y, z);
closestIndex = counter;
}
}
return closestIndex;
}
}
namespace MWMechanics
{
PathFinder::PathFinder()
: mIsPathConstructed(false),
mIsGraphConstructed(false),
mCell(NULL)
{
}
void PathFinder::clearPath()
{
if(!mPath.empty())
mPath.clear();
mIsPathConstructed = false;
}
/*
* NOTE: based on buildPath2(), please check git history if interested
*
* Populate mGraph with the cost of each allowed edge (measured in distance ^2)
* Any existing data in mGraph is wiped clean first. The node's parent is
* set with initial value of -1. The parent values are populated by aStarSearch().
* mGSore and mFScore are also resized.
*
*
* mGraph[f].edges[n].destination = t
*
* f = point index of location "from"
* t = point index of location "to"
* n = index of edges from point f
*
*
* Example: (note from p(0) to p(2) not allowed)
*
* mGraph[0].edges[0].destination = 1
* .edges[1].destination = 3
*
* mGraph[1].edges[0].destination = 0
* .edges[1].destination = 2
* .edges[2].destination = 3
*
* mGraph[2].edges[0].destination = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
void PathFinder::buildPathgridGraph(const ESM::Pathgrid* pathGrid)
{
mGraph.clear();
// resize lists
mGScore.resize(pathGrid->mPoints.size(), -1);
mFScore.resize(pathGrid->mPoints.size(), -1);
Node defaultNode;
defaultNode.label = -1;
defaultNode.parent = -1;
mGraph.resize(pathGrid->mPoints.size(),defaultNode);
// initialise mGraph
for(unsigned int i = 0; i < pathGrid->mPoints.size(); i++)
{
Node node;
node.label = i;
node.parent = -1;
mGraph[i] = node; // TODO: old code used push_back(node), check if any difference
}
// store the costs (measured in distance ^2) of each edge, in both directions
for(unsigned int i = 0; i < pathGrid->mEdges.size(); i++)
{
Edge edge;
edge.cost = distance(pathGrid->mPoints[pathGrid->mEdges[i].mV0],
pathGrid->mPoints[pathGrid->mEdges[i].mV1]);
// forward path of the edge
edge.destination = pathGrid->mEdges[i].mV1;
mGraph[pathGrid->mEdges[i].mV0].edges.push_back(edge);
// reverse path of the edge
// NOTE: These are redundant, ESM already contains the required reverse paths
//edge.destination = pathGrid->mEdges[i].mV0;
//mGraph[pathGrid->mEdges[i].mV1].edges.push_back(edge);
}
mIsGraphConstructed = true;
}
void PathFinder::cleanUpAStar()
{
for(int i = 0; i < static_cast<int> (mGraph.size()); i++)
{
mGraph[i].parent = -1;
mGScore[i] = -1;
mFScore[i] = -1;
}
}
/*
* NOTE: based on buildPath2(), please check git history if interested
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed. The caller, i.e. buildPath(), needs
* to ensure this.
*
* Returns path (a list of pathgrid point indexes) which may be empty.
*
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
*
* mGScore - past accumulated costs vector indexed by point index
* mFScore - future estimated costs vector indexed by point index
* these are resized by buildPathgridGraph()
*
* The heuristics used is distance^2 from current position to the final goal.
*/
std::list<ESM::Pathgrid::Point> PathFinder::aStarSearch(const ESM::Pathgrid* pathGrid,int start,int goal,float xCell, float yCell)
{
cleanUpAStar();
mGScore[start] = 0;
mFScore[start] = distance(pathGrid->mPoints[start],pathGrid->mPoints[goal]);
std::list<int> openset;
std::list<int> closedset;
openset.push_back(start);
int current = -1;
while(!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if(current == goal) break;
closedset.push_back(current);
// check all edges for the "current" point index
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
{
if(std::find(closedset.begin(),closedset.end(),mGraph[current].edges[j].destination) == closedset.end())
{
// not in closedset - i.e. have not traversed this edge destination
int dest = mGraph[current].edges[j].destination;
float tentative_g = mGScore[current] + mGraph[current].edges[j].cost;
bool isInOpenSet = std::find(openset.begin(),openset.end(),dest) != openset.end();
if(!isInOpenSet
|| tentative_g < mGScore[dest] )
{
mGraph[dest].parent = current;
mGScore[dest] = tentative_g;
mFScore[dest] = tentative_g + distance(pathGrid->mPoints[dest],pathGrid->mPoints[goal]);
if(!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help (apparently)
std::list<int>::iterator it = openset.begin();
for(it = openset.begin();it!= openset.end();it++)
{
if(mGScore[*it] > mGScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
// reconstruct path to return
std::list<ESM::Pathgrid::Point> path;
while(mGraph[current].parent != -1)
{
//std::cout << "not empty" << xCell;
ESM::Pathgrid::Point pt = pathGrid->mPoints[current];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
current = mGraph[current].parent;
}
// TODO: Is this a bug? If path is empty the destination is inserted.
// Commented out pending further testing.
#if 0
if(path.empty())
{
ESM::Pathgrid::Point pt = pathGrid->mPoints[goal];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
}
#endif
return path;
}
/*
* NOTE: This method may fail to find a path. The caller must check the result before using it.
* If there is no path the AI routies need to implement some other heuristics to reach the target.
*
* Updates mPath using aStarSearch().
* mPathConstructed is set true if successful, false if not
*
* May update mGraph by calling buildPathgridGraph() if it isn't constructed yet.
*/
void PathFinder::buildPath(const ESM::Pathgrid::Point &startPoint, const ESM::Pathgrid::Point &endPoint,
const MWWorld::CellStore* cell, bool allowShortcuts)
{
mPath.clear();
if(mCell != cell) mIsGraphConstructed = false;
mCell = cell;
if(allowShortcuts)
{
if(MWBase::Environment::get().getWorld()->castRay(startPoint.mX, startPoint.mY, startPoint.mZ,
endPoint.mX, endPoint.mY, endPoint.mZ))
allowShortcuts = false;
}
if(!allowShortcuts)
{
const ESM::Pathgrid *pathGrid =
MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*mCell->getCell());
float xCell = 0;
float yCell = 0;
if (mCell->isExterior())
{
xCell = mCell->getCell()->mData.mX * ESM::Land::REAL_SIZE;
yCell = mCell->getCell()->mData.mY * ESM::Land::REAL_SIZE;
}
int startNode = getClosestPoint(pathGrid, startPoint.mX - xCell, startPoint.mY - yCell,startPoint.mZ);
int endNode = getClosestPoint(pathGrid, endPoint.mX - xCell, endPoint.mY - yCell, endPoint.mZ);
if(startNode != -1 && endNode != -1)
{
if(!mIsGraphConstructed) buildPathgridGraph(pathGrid);
mPath = aStarSearch(pathGrid,startNode,endNode,xCell,yCell);
if(!mPath.empty())
{
mIsPathConstructed = true;
}
}
}
else
{
mPath.push_back(endPoint);
mIsPathConstructed = true;
}
if(mPath.empty())
mIsPathConstructed = false;
}
float PathFinder::getZAngleToNext(float x, float y) const
{
// This should never happen (programmers should have an if statement checking
// mIsPathConstructed that prevents this call if otherwise).
if(mPath.empty())
return 0.;
const ESM::Pathgrid::Point &nextPoint = *mPath.begin();
float directionX = nextPoint.mX - x;
float directionY = nextPoint.mY - y;
float directionResult = sqrt(directionX * directionX + directionY * directionY);
return Ogre::Radian(Ogre::Math::ACos(directionY / directionResult) * sgn(Ogre::Math::ASin(directionX / directionResult))).valueDegrees();
}
float PathFinder::getDistToNext(float x, float y, float z)
{
ESM::Pathgrid::Point nextPoint = *mPath.begin();
return distance(nextPoint, x, y, z);
}
bool PathFinder::checkWaypoint(float x, float y, float z)
{
if(mPath.empty())
return true;
ESM::Pathgrid::Point nextPoint = *mPath.begin();
if(distanceZCorrected(nextPoint, x, y, z) < 64)
{
mPath.pop_front();
if(mPath.empty()) mIsPathConstructed = false;
return true;
}
return false;
}
bool PathFinder::checkPathCompleted(float x, float y, float z)
{
if(mPath.empty())
return true;
ESM::Pathgrid::Point nextPoint = *mPath.begin();
if(distanceZCorrected(nextPoint, x, y, z) < 64)
{
mPath.pop_front();
if(mPath.empty())
{
mIsPathConstructed = false;
return true;
}
}
return false;
}
void PathFinder::syncStart(const std::list<ESM::Pathgrid::Point> &path)
{
if (mPath.size() < 2)
return; //nothing to pop
std::list<ESM::Pathgrid::Point>::const_iterator oldStart = path.begin();
std::list<ESM::Pathgrid::Point>::iterator iter = ++mPath.begin();
if( (*iter).mX == oldStart->mX
&& (*iter).mY == oldStart->mY
&& (*iter).mZ == oldStart->mZ
&& (*iter).mAutogenerated == oldStart->mAutogenerated
&& (*iter).mConnectionNum == oldStart->mConnectionNum )
{
mPath.pop_front();
}
}
}