openmw-tes3coop/extern/caelum/src/Astronomy.cpp

349 lines
12 KiB
C++

/*
This file is part of Caelum.
See http://www.ogre3d.org/wiki/index.php/Caelum
Copyright (c) 2008 Caelum team. See Contributors.txt for details.
Caelum is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Caelum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with Caelum. If not, see <http://www.gnu.org/licenses/>.
*/
#include "CaelumPrecompiled.h"
#include "Astronomy.h"
namespace Caelum
{
const LongReal Astronomy::PI = 3.1415926535897932384626433832795029L;
const LongReal Astronomy::J2000 = 2451545.0;
LongReal Astronomy::radToDeg (LongReal value)
{
return value * 180 / PI;
}
LongReal Astronomy::degToRad (LongReal value)
{
return value * PI / 180;
}
LongReal Astronomy::sinDeg (LongReal x) {
return std::sin (degToRad (x));
}
LongReal Astronomy::cosDeg (LongReal x) {
return std::cos (degToRad (x));
}
LongReal Astronomy::atan2Deg (LongReal y, LongReal x) {
return radToDeg(std::atan2 (y, x));
}
LongReal Astronomy::normalizeDegrees (LongReal value)
{
value = fmod (value, 360);
if (value < LongReal (0)) {
value += LongReal (360);
}
return value;
}
void Astronomy::convertEclipticToEquatorialRad (
LongReal lon, LongReal lat,
LongReal &rasc, LongReal &decl)
{
double ecl = Astronomy::degToRad(23.439281);
double x = cos(lon) * cos(lat);
double y = cos(ecl) * sin(lon) * cos(lat) - sin(ecl) * sin(lat);
double z = sin(ecl) * sin(lon) * cos(lat) + cos(ecl) * sin(lat);
double r = sqrt(x * x + y * y);
rasc = atan2(y, x);
decl = atan2(z, r);
}
void Astronomy::convertRectangularToSpherical (
LongReal x, LongReal y, LongReal z,
LongReal &rasc, LongReal &decl, LongReal &dist)
{
dist = sqrt (x * x + y * y + z * z);
rasc = atan2Deg (y, x);
decl = atan2Deg (z, sqrt (x * x + y * y));
}
void Astronomy::convertSphericalToRectangular (
LongReal rasc, LongReal decl, LongReal dist,
LongReal &x, LongReal &y, LongReal &z)
{
x = dist * cosDeg (rasc) * cosDeg (decl);
y = dist * sinDeg (rasc) * cosDeg (decl);
z = dist * sinDeg (decl);
}
void Astronomy::convertEquatorialToHorizontal (
LongReal jday,
LongReal longitude, LongReal latitude,
LongReal rasc, LongReal decl,
LongReal &azimuth, LongReal &altitude)
{
LongReal d = jday - 2451543.5;
LongReal w = LongReal (282.9404 + 4.70935E-5 * d);
LongReal M = LongReal (356.0470 + 0.9856002585 * d);
// Sun's mean longitude
LongReal L = w + M;
// Universal time of day in degrees.
LongReal UT = LongReal(fmod(d, 1) * 360);
LongReal hourAngle = longitude + L + LongReal (180) + UT - rasc;
LongReal x = cosDeg (hourAngle) * cosDeg (decl);
LongReal y = sinDeg (hourAngle) * cosDeg (decl);
LongReal z = sinDeg (decl);
LongReal xhor = x * sinDeg (latitude) - z * cosDeg (latitude);
LongReal yhor = y;
LongReal zhor = x * cosDeg (latitude) + z * sinDeg (latitude);
azimuth = atan2Deg (yhor, xhor) + LongReal (180);
altitude = atan2Deg (zhor, sqrt (xhor * xhor + yhor * yhor));
}
void Astronomy::getHorizontalSunPosition (
LongReal jday,
LongReal longitude, LongReal latitude,
LongReal &azimuth, LongReal &altitude)
{
// 2451544.5 == Astronomy::getJulianDayFromGregorianDateTime(2000, 1, 1, 0, 0, 0));
// 2451543.5 == Astronomy::getJulianDayFromGregorianDateTime(1999, 12, 31, 0, 0, 0));
LongReal d = jday - 2451543.5;
// Sun's Orbital elements:
// argument of perihelion
LongReal w = LongReal (282.9404 + 4.70935E-5 * d);
// eccentricity (0=circle, 0-1=ellipse, 1=parabola)
LongReal e = 0.016709 - 1.151E-9 * d;
// mean anomaly (0 at perihelion; increases uniformly with time)
LongReal M = LongReal(356.0470 + 0.9856002585 * d);
// Obliquity of the ecliptic.
//LongReal oblecl = LongReal (23.4393 - 3.563E-7 * d);
// Eccentric anomaly
LongReal E = M + radToDeg(e * sinDeg (M) * (1 + e * cosDeg (M)));
// Sun's Distance(R) and true longitude(L)
LongReal xv = cosDeg (E) - e;
LongReal yv = sinDeg (E) * sqrt (1 - e * e);
//LongReal r = sqrt (xv * xv + yv * yv);
LongReal lon = atan2Deg (yv, xv) + w;
LongReal lat = 0;
LongReal lambda = degToRad(lon);
LongReal beta = degToRad(lat);
LongReal rasc, decl;
convertEclipticToEquatorialRad (lambda, beta, rasc, decl);
rasc = radToDeg(rasc);
decl = radToDeg(decl);
// Horizontal spherical.
Astronomy::convertEquatorialToHorizontal (
jday, longitude, latitude, rasc, decl, azimuth, altitude);
}
void Astronomy::getHorizontalSunPosition (
LongReal jday,
Ogre::Degree longitude, Ogre::Degree latitude,
Ogre::Degree &azimuth, Ogre::Degree &altitude)
{
LongReal az, al;
getHorizontalSunPosition(jday, longitude.valueDegrees (), latitude.valueDegrees (), az, al);
azimuth = Ogre::Degree(az);
altitude = Ogre::Degree(al);
}
void Astronomy::getEclipticMoonPositionRad (
LongReal jday,
LongReal &lon, LongReal &lat)
{
// Julian centuries since January 1, 2000
double T = (jday - 2451545.0L) / 36525.0L;
double lprim = 3.8104L + 8399.7091L * T;
double mprim = 2.3554L + 8328.6911L * T;
double m = 6.2300L + 648.3019L * T;
double d = 5.1985L + 7771.3772L * T;
double f = 1.6280L + 8433.4663L * T;
lon = lprim
+ 0.1098L * sin(mprim)
+ 0.0222L * sin(2.0L * d - mprim)
+ 0.0115L * sin(2.0L * d)
+ 0.0037L * sin(2.0L * mprim)
- 0.0032L * sin(m)
- 0.0020L * sin(2.0L * f)
+ 0.0010L * sin(2.0L * d - 2.0L * mprim)
+ 0.0010L * sin(2.0L * d - m - mprim)
+ 0.0009L * sin(2.0L * d + mprim)
+ 0.0008L * sin(2.0L * d - m)
+ 0.0007L * sin(mprim - m)
- 0.0006L * sin(d)
- 0.0005L * sin(m + mprim);
lat =
+ 0.0895L * sin(f)
+ 0.0049L * sin(mprim + f)
+ 0.0048L * sin(mprim - f)
+ 0.0030L * sin(2.0L * d - f)
+ 0.0010L * sin(2.0L * d + f - mprim)
+ 0.0008 * sin(2.0L * d - f - mprim)
+ 0.0006L * sin(2.0L * d + f);
}
void Astronomy::getHorizontalMoonPosition (
LongReal jday,
LongReal longitude, LongReal latitude,
LongReal &azimuth, LongReal &altitude)
{
// Ecliptic spherical
LongReal lonecl, latecl;
Astronomy::getEclipticMoonPositionRad (jday, lonecl, latecl);
// Equatorial spherical
LongReal rasc, decl;
Astronomy::convertEclipticToEquatorialRad (lonecl, latecl, rasc, decl);
// Radians to degrees (all angles are in radians up to this point)
rasc = radToDeg(rasc);
decl = radToDeg(decl);
// Equatorial to horizontal
Astronomy::convertEquatorialToHorizontal (
jday, longitude, latitude, rasc, decl, azimuth, altitude);
}
void Astronomy::getHorizontalMoonPosition (
LongReal jday,
Ogre::Degree longitude, Ogre::Degree latitude,
Ogre::Degree &azimuth, Ogre::Degree &altitude)
{
LongReal az, al;
getHorizontalMoonPosition(jday, longitude.valueDegrees (), latitude.valueDegrees (), az, al);
azimuth = Ogre::Degree(az);
altitude = Ogre::Degree(al);
}
int Astronomy::getJulianDayFromGregorianDate(
int year, int month, int day)
{
// Formulas from http://en.wikipedia.org/wiki/Julian_day
// These are all integer divisions, but I'm not sure it works
// correctly for negative values.
int a = (14 - month) / 12;
int y = year + 4800 - a;
int m = month + 12 * a - 3;
return day + (153 * m + 2) / 5 + 365 * y + y / 4 - y / 100 + y / 400 - 32045;
}
LongReal Astronomy::getJulianDayFromGregorianDateTime(
int year, int month, int day,
int hour, int minute, LongReal second)
{
ScopedHighPrecissionFloatSwitch precissionSwitch;
int jdn = getJulianDayFromGregorianDate (year, month, day);
// These are NOT integer divisions.
LongReal jd = jdn + (hour - 12) / 24.0 + minute / 1440.0 + second / 86400.0;
return jd;
}
LongReal Astronomy::getJulianDayFromGregorianDateTime(
int year, int month, int day,
LongReal secondsFromMidnight)
{
int jdn = getJulianDayFromGregorianDate(year, month, day);
LongReal jd = jdn + secondsFromMidnight / 86400.0 - 0.5;
return jd;
}
void Astronomy::getGregorianDateFromJulianDay(
int julianDay, int &year, int &month, int &day)
{
// From http://en.wikipedia.org/wiki/Julian_day
int J = julianDay;
int j = J + 32044;
int g = j / 146097;
int dg = j % 146097;
int c = (dg / 36524 + 1) * 3 / 4;
int dc = dg - c * 36524;
int b = dc / 1461;
int db = dc % 1461;
int a = (db / 365 + 1) * 3 / 4;
int da = db - a * 365;
int y = g * 400 + c * 100 + b * 4 + a;
int m = (da * 5 + 308) / 153 - 2;
int d = da - (m + 4) * 153 / 5 + 122;
year = y - 4800 + (m + 2) / 12;
month = (m + 2) % 12 + 1;
day = d + 1;
}
void Astronomy::getGregorianDateTimeFromJulianDay(
LongReal julianDay, int &year, int &month, int &day,
int &hour, int &minute, LongReal &second)
{
// Integer julian days are at noon.
// static_cast<int)(floor( is more precise than Ogre::Math::IFloor.
// Yes, it does matter.
int ijd = static_cast<int>(floor(julianDay + 0.5));
getGregorianDateFromJulianDay(ijd, year, month, day);
LongReal s = (julianDay + 0.5 - ijd) * 86400.0;
hour = static_cast<int>(floor(s / 3600));
s -= hour * 3600;
minute = static_cast<int>(floor(s / 60));
s -= minute * 60;
second = s;
}
void Astronomy::getGregorianDateFromJulianDay(
LongReal julianDay, int &year, int &month, int &day)
{
int hour;
int minute;
LongReal second;
getGregorianDateTimeFromJulianDay(julianDay, year, month, day, hour, minute, second);
}
#if (OGRE_PLATFORM == OGRE_PLATFORM_WIN32) && (OGRE_COMPILER == OGRE_COMPILER_MSVC) && (OGRE_ARCH_TYPE != OGRE_ARCHITECTURE_64)
int Astronomy::enterHighPrecissionFloatingPointMode ()
{
int oldMode = ::_controlfp (0, 0);
::_controlfp (_PC_64, _MCW_PC);
return oldMode;
}
void Astronomy::restoreFloatingPointMode (int oldMode)
{
::_controlfp (oldMode, _MCW_PC);
}
#else
int Astronomy::enterHighPrecissionFloatingPointMode ()
{
// Meaningless
return 0xC0FFEE;
}
void Astronomy::restoreFloatingPointMode (int oldMode)
{
// Useless check.
assert(oldMode == 0xC0FFEE);
}
#endif
}