You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw-tes3coop/components/esmterrain/storage.cpp

644 lines
23 KiB
C++

#include "storage.hpp"
#include <set>
#include <iostream>
#include <OpenThreads/ScopedLock>
#include <osg/Image>
#include <osg/Plane>
#include <boost/algorithm/string.hpp>
#include <components/misc/resourcehelpers.hpp>
#include <components/vfs/manager.hpp>
namespace ESMTerrain
{
class LandCache
{
public:
typedef std::map<std::pair<int, int>, osg::ref_ptr<const LandObject> > Map;
Map mMap;
};
LandObject::LandObject()
: mLand(nullptr)
, mLoadFlags(0)
{
}
LandObject::LandObject(const ESM::Land *land, int loadFlags)
: mLand(land)
, mLoadFlags(loadFlags)
{
mLand->loadData(mLoadFlags, &mData);
}
LandObject::LandObject(const LandObject &copy, const osg::CopyOp &copyop)
: mLand(nullptr)
, mLoadFlags(0)
{
}
LandObject::~LandObject()
{
}
const ESM::Land::LandData *LandObject::getData(int flags) const
{
if ((mData.mDataLoaded & flags) != flags)
return NULL;
return &mData;
}
int LandObject::getPlugin() const
{
return mLand->mPlugin;
}
const float defaultHeight = ESM::Land::DEFAULT_HEIGHT;
Storage::Storage(const VFS::Manager *vfs, const std::string& normalMapPattern, const std::string& normalHeightMapPattern, bool autoUseNormalMaps, const std::string& specularMapPattern, bool autoUseSpecularMaps)
: mVFS(vfs)
, mNormalMapPattern(normalMapPattern)
, mNormalHeightMapPattern(normalHeightMapPattern)
, mAutoUseNormalMaps(autoUseNormalMaps)
, mSpecularMapPattern(specularMapPattern)
, mAutoUseSpecularMaps(autoUseSpecularMaps)
{
}
bool Storage::getMinMaxHeights(float size, const osg::Vec2f &center, float &min, float &max)
{
assert (size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
int cellX = static_cast<int>(std::floor(origin.x()));
int cellY = static_cast<int>(std::floor(origin.y()));
int startRow = (origin.x() - cellX) * ESM::Land::LAND_SIZE;
int startColumn = (origin.y() - cellY) * ESM::Land::LAND_SIZE;
int endRow = startRow + size * (ESM::Land::LAND_SIZE-1) + 1;
int endColumn = startColumn + size * (ESM::Land::LAND_SIZE-1) + 1;
osg::ref_ptr<const LandObject> land = getLand (cellX, cellY);
const ESM::Land::LandData* data = land ? land->getData(ESM::Land::DATA_VHGT) : 0;
if (data)
{
min = std::numeric_limits<float>::max();
max = -std::numeric_limits<float>::max();
for (int row=startRow; row<endRow; ++row)
{
for (int col=startColumn; col<endColumn; ++col)
{
float h = data->mHeights[col*ESM::Land::LAND_SIZE+row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
min = defaultHeight;
max = defaultHeight;
return false;
}
void Storage::fixNormal (osg::Vec3f& normal, int cellX, int cellY, int col, int row, LandCache& cache)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
const LandObject* land = getLand(cellX, cellY, cache);
const ESM::Land::LandData* data = land ? land->getData(ESM::Land::DATA_VNML) : 0;
if (data)
{
normal.x() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
}
void Storage::averageNormal(osg::Vec3f &normal, int cellX, int cellY, int col, int row, LandCache& cache)
{
osg::Vec3f n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row, cache);
fixNormal(n2, cellX, cellY, col-1, row, cache);
fixNormal(n3, cellX, cellY, col, row+1, cache);
fixNormal(n4, cellX, cellY, col, row-1, cache);
normal = (n1+n2+n3+n4);
normal.normalize();
}
void Storage::fixColour (osg::Vec4f& color, int cellX, int cellY, int col, int row, LandCache& cache)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
const LandObject* land = getLand(cellX, cellY, cache);
const ESM::Land::LandData* data = land ? land->getData(ESM::Land::DATA_VCLR) : 0;
if (data)
{
color.r() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r() = 1;
color.g() = 1;
color.b() = 1;
}
}
void Storage::fillVertexBuffers (int lodLevel, float size, const osg::Vec2f& center,
osg::ref_ptr<osg::Vec3Array> positions,
osg::ref_ptr<osg::Vec3Array> normals,
osg::ref_ptr<osg::Vec4Array> colours)
{
// LOD level n means every 2^n-th vertex is kept
size_t increment = static_cast<size_t>(1) << lodLevel;
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
int startCellX = static_cast<int>(std::floor(origin.x()));
int startCellY = static_cast<int>(std::floor(origin.y()));
size_t numVerts = static_cast<size_t>(size*(ESM::Land::LAND_SIZE - 1) / increment + 1);
positions->resize(numVerts*numVerts);
normals->resize(numVerts*numVerts);
colours->resize(numVerts*numVerts);
osg::Vec3f normal;
osg::Vec4f color;
float vertY = 0;
float vertX = 0;
LandCache cache;
float vertY_ = 0; // of current cell corner
for (int cellY = startCellY; cellY < startCellY + std::ceil(size); ++cellY)
{
float vertX_ = 0; // of current cell corner
for (int cellX = startCellX; cellX < startCellX + std::ceil(size); ++cellX)
{
const LandObject* land = getLand(cellX, cellY, cache);
const ESM::Land::LandData *heightData = 0;
const ESM::Land::LandData *normalData = 0;
const ESM::Land::LandData *colourData = 0;
if (land)
{
heightData = land->getData(ESM::Land::DATA_VHGT);
normalData = land->getData(ESM::Land::DATA_VNML);
colourData = land->getData(ESM::Land::DATA_VCLR);
}
int rowStart = 0;
int colStart = 0;
// Skip the first row / column unless we're at a chunk edge,
// since this row / column is already contained in a previous cell
// This is only relevant if we're creating a chunk spanning multiple cells
if (vertY_ != 0)
colStart += increment;
if (vertX_ != 0)
rowStart += increment;
// Only relevant for chunks smaller than (contained in) one cell
rowStart += (origin.x() - startCellX) * ESM::Land::LAND_SIZE;
colStart += (origin.y() - startCellY) * ESM::Land::LAND_SIZE;
int rowEnd = std::min(static_cast<int>(rowStart + std::min(1.f, size) * (ESM::Land::LAND_SIZE-1) + 1), static_cast<int>(ESM::Land::LAND_SIZE));
int colEnd = std::min(static_cast<int>(colStart + std::min(1.f, size) * (ESM::Land::LAND_SIZE-1) + 1), static_cast<int>(ESM::Land::LAND_SIZE));
vertY = vertY_;
for (int col=colStart; col<colEnd; col += increment)
{
vertX = vertX_;
for (int row=rowStart; row<rowEnd; row += increment)
{
int srcArrayIndex = col*ESM::Land::LAND_SIZE*3+row*3;
assert(row >= 0 && row < ESM::Land::LAND_SIZE);
assert(col >= 0 && col < ESM::Land::LAND_SIZE);
assert (vertX < numVerts);
assert (vertY < numVerts);
float height = defaultHeight;
if (heightData)
height = heightData->mHeights[col*ESM::Land::LAND_SIZE + row];
(*positions)[static_cast<unsigned int>(vertX*numVerts + vertY)]
= osg::Vec3f((vertX / float(numVerts - 1) - 0.5f) * size * 8192,
(vertY / float(numVerts - 1) - 0.5f) * size * 8192,
height);
if (normalData)
{
for (int i=0; i<3; ++i)
normal[i] = normalData->mNormals[srcArrayIndex+i];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
// Normals apparently don't connect seamlessly between cells
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixNormal(normal, cellX, cellY, col, row, cache);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
averageNormal(normal, cellX, cellY, col, row, cache);
assert(normal.z() > 0);
(*normals)[static_cast<unsigned int>(vertX*numVerts + vertY)] = normal;
if (colourData)
{
for (int i=0; i<3; ++i)
color[i] = colourData->mColours[srcArrayIndex+i] / 255.f;
}
else
{
color.r() = 1;
color.g() = 1;
color.b() = 1;
}
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixColour(color, cellX, cellY, col, row, cache);
color.a() = 1;
(*colours)[static_cast<unsigned int>(vertX*numVerts + vertY)] = color;
++vertX;
}
++vertY;
}
vertX_ = vertX;
}
vertY_ = vertY;
assert(vertX_ == numVerts); // Ensure we covered whole area
}
assert(vertY_ == numVerts); // Ensure we covered whole area
}
Storage::UniqueTextureId Storage::getVtexIndexAt(int cellX, int cellY,
int x, int y, LandCache& cache)
{
// For the first/last row/column, we need to get the texture from the neighbour cell
// to get consistent blending at the borders
--x;
if (x < 0)
{
--cellX;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
while (x >= ESM::Land::LAND_TEXTURE_SIZE)
{
++cellX;
x -= ESM::Land::LAND_TEXTURE_SIZE;
}
while (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
{
++cellY;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
const LandObject* land = getLand(cellX, cellY, cache);
const ESM::Land::LandData *data = land ? land->getData(ESM::Land::DATA_VTEX) : 0;
if (data)
{
int tex = data->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
return std::make_pair(tex, land->getPlugin());
}
return std::make_pair(0,0);
}
std::string Storage::getTextureName(UniqueTextureId id)
{
// Goes under used terrain blend transitions
static const std::string baseTexture = "textures\\tx_black_01.dds";
if (id.first == -1)
return baseTexture;
static const std::string defaultTexture = "textures\\_land_default.dds";
if (id.first == 0)
return defaultTexture; // Not sure if the default texture really is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
if (!ltex)
{
std::cerr << "Warning: Unable to find land texture index " << id.first-1 << " in plugin " << id.second << ", using default texture instead" << std::endl;
return defaultTexture;
}
// this is needed due to MWs messed up texture handling
std::string texture = Misc::ResourceHelpers::correctTexturePath(ltex->mTexture, mVFS);
return texture;
}
void Storage::getBlendmaps(float chunkSize, const osg::Vec2f &chunkCenter,
bool pack, ImageVector &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
{
osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize/2.f, chunkSize/2.f);
int cellX = static_cast<int>(std::floor(origin.x()));
int cellY = static_cast<int>(std::floor(origin.y()));
int realTextureSize = ESM::Land::LAND_TEXTURE_SIZE+1; // add 1 to wrap around next cell
int rowStart = (origin.x() - cellX) * realTextureSize;
int colStart = (origin.y() - cellY) * realTextureSize;
int rowEnd = rowStart + chunkSize * (realTextureSize-1) + 1;
int colEnd = colStart + chunkSize * (realTextureSize-1) + 1;
// Save the used texture indices so we know the total number of textures
// and number of required blend maps
std::set<UniqueTextureId> textureIndices;
// Due to the way the blending works, the base layer will bleed between texture transitions so we want it to be a black texture
// The subsequent passes are added instead of blended, so this gives the correct result
textureIndices.insert(std::make_pair(-1,0)); // -1 goes to tx_black_01
LandCache cache;
for (int y=colStart; y<colEnd; ++y)
for (int x=rowStart; x<rowEnd; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y, cache);
textureIndices.insert(id);
}
// Makes sure the indices are sorted, or rather,
// retrieved as sorted. This is important to keep the splatting order
// consistent across cells.
std::map<UniqueTextureId, int> textureIndicesMap;
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
{
int size = textureIndicesMap.size();
textureIndicesMap[*it] = size;
layerList.push_back(getLayerInfo(getTextureName(*it)));
}
int numTextures = textureIndices.size();
// numTextures-1 since the base layer doesn't need blending
int numBlendmaps = pack ? static_cast<int>(std::ceil((numTextures - 1) / 4.f)) : (numTextures - 1);
int channels = pack ? 4 : 1;
// Second iteration - create and fill in the blend maps
const int blendmapSize = (realTextureSize-1) * chunkSize + 1;
// We need to upscale the blendmap 2x with nearest neighbor sampling to look like Vanilla
const int imageScaleFactor = 2;
const int blendmapImageSize = blendmapSize * imageScaleFactor;
for (int i=0; i<numBlendmaps; ++i)
{
GLenum format = pack ? GL_RGBA : GL_ALPHA;
osg::ref_ptr<osg::Image> image (new osg::Image);
image->allocateImage(blendmapImageSize, blendmapImageSize, 1, format, GL_UNSIGNED_BYTE);
unsigned char* pData = image->data();
for (int y=0; y<blendmapSize; ++y)
{
for (int x=0; x<blendmapSize; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x+rowStart, y+colStart, cache);
assert(textureIndicesMap.find(id) != textureIndicesMap.end());
int layerIndex = textureIndicesMap.find(id)->second;
int blendIndex = (pack ? static_cast<int>(std::floor((layerIndex - 1) / 4.f)) : layerIndex - 1);
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
int alpha = (blendIndex == i) ? 255 : 0;
int realY = (blendmapSize - y - 1)*imageScaleFactor;
int realX = x*imageScaleFactor;
pData[((realY+0)*blendmapImageSize + realX + 0)*channels + channel] = alpha;
pData[((realY+1)*blendmapImageSize + realX + 0)*channels + channel] = alpha;
pData[((realY+0)*blendmapImageSize + realX + 1)*channels + channel] = alpha;
pData[((realY+1)*blendmapImageSize + realX + 1)*channels + channel] = alpha;
}
}
blendmaps.push_back(image);
}
}
float Storage::getHeightAt(const osg::Vec3f &worldPos)
{
int cellX = static_cast<int>(std::floor(worldPos.x() / 8192.f));
int cellY = static_cast<int>(std::floor(worldPos.y() / 8192.f));
osg::ref_ptr<const LandObject> land = getLand(cellX, cellY);
if (!land)
return defaultHeight;
const ESM::Land::LandData* data = land->getData(ESM::Land::DATA_VHGT);
if (!data)
return defaultHeight;
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x() - (cellX * 8192))/8192.f;
float nY = (worldPos.y() - (cellY * 8192))/8192.f;
// get left / bottom points (rounded down)
float factor = ESM::Land::LAND_SIZE - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
endX = std::min(endX, ESM::Land::LAND_SIZE-1);
endY = std::min(endY, ESM::Land::LAND_SIZE-1);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
osg::Vec3f v0 (startXTS, startYTS, getVertexHeight(data, startX, startY) / 8192.f);
osg::Vec3f v1 (endXTS, startYTS, getVertexHeight(data, endX, startY) / 8192.f);
osg::Vec3f v2 (endXTS, endYTS, getVertexHeight(data, endX, endY) / 8192.f);
osg::Vec3f v3 (startXTS, endYTS, getVertexHeight(data, startX, endY) / 8192.f);
// define this plane in terrain space
osg::Plane plane;
// FIXME: deal with differing triangle alignment
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane = osg::Plane(v0, v1, v3);
else
plane = osg::Plane(v1, v2, v3);
}
/*
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
*/
// Solve plane equation for z
return (-plane.getNormal().x() * nX
-plane.getNormal().y() * nY
- plane[3]) / plane.getNormal().z() * 8192;
}
float Storage::getVertexHeight(const ESM::Land::LandData* data, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return data->mHeights[y * ESM::Land::LAND_SIZE + x];
}
const LandObject* Storage::getLand(int cellX, int cellY, LandCache& cache)
{
LandCache::Map::iterator found = cache.mMap.find(std::make_pair(cellX, cellY));
if (found != cache.mMap.end())
return found->second;
else
{
found = cache.mMap.insert(std::make_pair(std::make_pair(cellX, cellY), getLand(cellX, cellY))).first;
return found->second;
}
}
Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture)
{
OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mLayerInfoMutex);
// Already have this cached?
std::map<std::string, Terrain::LayerInfo>::iterator found = mLayerInfoMap.find(texture);
if (found != mLayerInfoMap.end())
return found->second;
Terrain::LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = texture;
if (mAutoUseNormalMaps)
{
std::string texture_ = texture;
boost::replace_last(texture_, ".", mNormalHeightMapPattern + ".");
if (mVFS->exists(texture_))
{
info.mNormalMap = texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
boost::replace_last(texture_, ".", mNormalMapPattern + ".");
if (mVFS->exists(texture_))
info.mNormalMap = texture_;
}
}
if (mAutoUseSpecularMaps)
{
std::string texture_ = texture;
boost::replace_last(texture_, ".", mSpecularMapPattern + ".");
if (mVFS->exists(texture_))
{
info.mDiffuseMap = texture_;
info.mSpecular = true;
}
}
mLayerInfoMap[texture] = info;
return info;
}
float Storage::getCellWorldSize()
{
return static_cast<float>(ESM::Land::REAL_SIZE);
}
int Storage::getCellVertices()
{
return ESM::Land::LAND_SIZE;
}
int Storage::getBlendmapScale(float chunkSize)
{
return ESM::Land::LAND_TEXTURE_SIZE*chunkSize;
}
}