openmw-tes3coop/apps/openmw/mwmechanics/pathfinding.cpp
2014-04-03 22:49:22 +11:00

666 lines
24 KiB
C++

#include "pathfinding.hpp"
#include <map>
#include "OgreMath.h"
#include "OgreVector3.h"
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwworld/esmstore.hpp"
#include "../mwworld/cellstore.hpp"
namespace
{
float distanceZCorrected(ESM::Pathgrid::Point point, float x, float y, float z)
{
x -= point.mX;
y -= point.mY;
z -= point.mZ;
return sqrt(x * x + y * y + 0.1 * z * z);
}
float distance(ESM::Pathgrid::Point point, float x, float y, float z)
{
x -= point.mX;
y -= point.mY;
z -= point.mZ;
return sqrt(x * x + y * y + z * z);
}
float distance(ESM::Pathgrid::Point a, ESM::Pathgrid::Point b)
{
float x = a.mX - b.mX;
float y = a.mY - b.mY;
float z = a.mZ - b.mZ;
return sqrt(x * x + y * y + z * z);
}
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
//
// One of the smallest cost in Seyda Neen is between points 77 & 78:
// pt x y
// 77 = 8026, 4480
// 78 = 7986, 4218
//
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
// starting point for experiments. If in doubt, just use value 1.
//
// The distance between 3 & 4 are pretty small, too.
// 3 = 5435, 223
// 4 = 5948, 193
//
// Approx. 514 Euclidean distance and 533 Manhattan distance.
//
float manhattan(const ESM::Pathgrid::Point a, const ESM::Pathgrid::Point b)
{
return 300 * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
}
// Choose a heuristics - Note that these may not be the best for directed
// graphs with non-uniform edge costs.
//
// distance:
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
// - slower but more accurate
//
// Manhattan:
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
// - faster but not the shortest path
float costAStar(const ESM::Pathgrid::Point a, const ESM::Pathgrid::Point b)
{
//return distance(a, b);
return manhattan(a, b);
}
// Slightly cheaper version for comparisons.
// Caller needs to be careful for very short distances (i.e. less than 1)
// or when accumuating the results i.e. (a + b)^2 != a^2 + b^2
//
float distanceSquared(ESM::Pathgrid::Point point, Ogre::Vector3 pos)
{
return Ogre::Vector3(point.mX, point.mY, point.mZ).squaredDistance(pos);
}
// Return the closest pathgrid point index from the specified position co
// -ordinates. NOTE: Does not check if there is a sensible way to get there
// (e.g. a cliff in front).
//
// NOTE: pos is expected to be in local co-ordinates, as is grid->mPoints
//
int getClosestPoint(const ESM::Pathgrid* grid, Ogre::Vector3 pos)
{
if(!grid || grid->mPoints.empty())
return -1;
float distanceBetween = distanceSquared(grid->mPoints[0], pos);
int closestIndex = 0;
// TODO: if this full scan causes performance problems mapping pathgrid
// points to a quadtree may help
for(unsigned int counter = 1; counter < grid->mPoints.size(); counter++)
{
float potentialDistBetween = distanceSquared(grid->mPoints[counter], pos);
if(potentialDistBetween < distanceBetween)
{
distanceBetween = potentialDistBetween;
closestIndex = counter;
}
}
return closestIndex;
}
// Chooses a reachable end pathgrid point. start is assumed reachable.
std::pair<int, bool> getClosestReachablePoint(const ESM::Pathgrid* grid,
const MWWorld::CellStore *cell,
Ogre::Vector3 pos, int start)
{
if(!grid || grid->mPoints.empty())
return std::pair<int, bool> (-1, false);
float distanceBetween = distanceSquared(grid->mPoints[0], pos);
int closestIndex = 0;
int closestReachableIndex = 0;
// TODO: if this full scan causes performance problems mapping pathgrid
// points to a quadtree may help
for(unsigned int counter = 1; counter < grid->mPoints.size(); counter++)
{
float potentialDistBetween = distanceSquared(grid->mPoints[counter], pos);
if(potentialDistBetween < distanceBetween)
{
// found a closer one
distanceBetween = potentialDistBetween;
closestIndex = counter;
if (cell->isPointConnected(start, counter))
{
closestReachableIndex = counter;
}
}
}
if(start == closestReachableIndex)
closestReachableIndex = -1; // couldn't find anyting other than start
return std::pair<int, bool>
(closestReachableIndex, closestReachableIndex == closestIndex);
}
}
namespace MWMechanics
{
PathFinder::PathFinder()
: mIsPathConstructed(false),
mPathgrid(NULL),
mCell(NULL)
{
}
void PathFinder::clearPath()
{
if(!mPath.empty())
mPath.clear();
mIsPathConstructed = false;
}
/*
* NOTE: This method may fail to find a path. The caller must check the
* result before using it. If there is no path the AI routies need to
* implement some other heuristics to reach the target.
*
* NOTE: It may be desirable to simply go directly to the endPoint if for
* example there are no pathgrids in this cell.
*
* NOTE: startPoint & endPoint are in world co-ordinates
*
* Updates mPath using aStarSearch() or ray test (if shortcut allowed).
* mPath consists of pathgrid points, except the last element which is
* endPoint. This may be useful where the endPoint is not on a pathgrid
* point (e.g. combat). However, if the caller has already chosen a
* pathgrid point (e.g. wander) then it may be worth while to call
* pop_back() to remove the redundant entry.
*
* mPathConstructed is set true if successful, false if not
*
* NOTE: co-ordinates must be converted prior to calling getClosestPoint()
*
* |
* | cell
* | +-----------+
* | | |
* | | |
* | | @ |
* | i | j |
* |<--->|<---->| |
* | +-----------+
* | k
* |<---------->| world
* +-----------------------------
*
* i = x value of cell itself (multiply by ESM::Land::REAL_SIZE to convert)
* j = @.x in local co-ordinates (i.e. within the cell)
* k = @.x in world co-ordinates
*/
void PathFinder::buildPath(const ESM::Pathgrid::Point &startPoint,
const ESM::Pathgrid::Point &endPoint,
const MWWorld::CellStore* cell,
bool allowShortcuts)
{
mPath.clear();
if(allowShortcuts)
{
// if there's a ray cast hit, can't take a direct path
if(!MWBase::Environment::get().getWorld()->castRay(startPoint.mX, startPoint.mY, startPoint.mZ,
endPoint.mX, endPoint.mY, endPoint.mZ))
{
mPath.push_back(endPoint);
mIsPathConstructed = true;
return;
}
}
if(mCell != cell || !mPathgrid)
{
mCell = cell;
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*mCell->getCell());
}
// Refer to AiWander reseach topic on openmw forums for some background.
// Maybe there is no pathgrid for this cell. Just go to destination and let
// physics take care of any blockages.
if(!mPathgrid || mPathgrid->mPoints.empty())
{
mPath.push_back(endPoint);
mIsPathConstructed = true;
return;
}
// NOTE: getClosestPoint expects local co-ordinates
float xCell = 0;
float yCell = 0;
if (mCell->isExterior())
{
xCell = mCell->getCell()->mData.mX * ESM::Land::REAL_SIZE;
yCell = mCell->getCell()->mData.mY * ESM::Land::REAL_SIZE;
}
// NOTE: It is possible that getClosestPoint returns a pathgrind point index
// that is unreachable in some situations. e.g. actor is standing
// outside an area enclosed by walls, but there is a pathgrid
// point right behind the wall that is closer than any pathgrid
// point outside the wall
int startNode = getClosestPoint(mPathgrid,
Ogre::Vector3(startPoint.mX - xCell, startPoint.mY - yCell, startPoint.mZ));
// Some cells don't have any pathgrids at all
if(startNode != -1)
{
std::pair<int, bool> endNode = getClosestReachablePoint(mPathgrid, cell,
Ogre::Vector3(endPoint.mX - xCell, endPoint.mY - yCell, endPoint.mZ),
startNode);
// this shouldn't really happen, but just in case
if(endNode.first != -1)
{
mPath = mCell->aStarSearch(startNode, endNode.first, mCell->isExterior());
if(!mPath.empty())
{
mIsPathConstructed = true;
// Add the destination (which may be different to the closest
// pathgrid point). However only add if endNode was the closest
// point to endPoint.
//
// This logic can fail in the opposite situate, e.g. endPoint may
// have been reachable but happened to be very close to an
// unreachable pathgrid point.
//
// The AI routines will have to deal with such situations.
if(endNode.second)
mPath.push_back(endPoint);
}
else
mIsPathConstructed = false;
}
else
mIsPathConstructed = false;
}
else
mIsPathConstructed = false;
return;
}
float PathFinder::getZAngleToNext(float x, float y) const
{
// This should never happen (programmers should have an if statement checking
// mIsPathConstructed that prevents this call if otherwise).
if(mPath.empty())
return 0.;
const ESM::Pathgrid::Point &nextPoint = *mPath.begin();
float directionX = nextPoint.mX - x;
float directionY = nextPoint.mY - y;
float directionResult = sqrt(directionX * directionX + directionY * directionY);
return Ogre::Radian(Ogre::Math::ACos(directionY / directionResult) * sgn(Ogre::Math::ASin(directionX / directionResult))).valueDegrees();
}
// Used by AiCombat, use Euclidean distance
float PathFinder::getDistToNext(float x, float y, float z)
{
ESM::Pathgrid::Point nextPoint = *mPath.begin();
return distance(nextPoint, x, y, z);
}
bool PathFinder::checkWaypoint(float x, float y, float z)
{
if(mPath.empty())
return true;
ESM::Pathgrid::Point nextPoint = *mPath.begin();
if(distanceZCorrected(nextPoint, x, y, z) < 64)
{
mPath.pop_front();
if(mPath.empty()) mIsPathConstructed = false;
return true;
}
return false;
}
bool PathFinder::checkPathCompleted(float x, float y, float z)
{
if(mPath.empty())
return true;
ESM::Pathgrid::Point nextPoint = *mPath.begin();
if(distanceZCorrected(nextPoint, x, y, z) < 64)
{
mPath.pop_front();
if(mPath.empty())
{
mIsPathConstructed = false;
return true;
}
}
return false;
}
// used by AiCombat, see header for the rationale
void PathFinder::syncStart(const std::list<ESM::Pathgrid::Point> &path)
{
if (mPath.size() < 2)
return; //nothing to pop
std::list<ESM::Pathgrid::Point>::const_iterator oldStart = path.begin();
std::list<ESM::Pathgrid::Point>::iterator iter = ++mPath.begin();
if( (*iter).mX == oldStart->mX
&& (*iter).mY == oldStart->mY
&& (*iter).mZ == oldStart->mZ
&& (*iter).mAutogenerated == oldStart->mAutogenerated
&& (*iter).mConnectionNum == oldStart->mConnectionNum )
{
mPath.pop_front();
}
}
// TODO: Any multi threading concerns?
PathgridGraph::PathgridGraph()
: mCell(NULL)
, mIsGraphConstructed(false)
, mPathgrid(NULL)
, mGraph(0)
, mSCCId(0)
, mSCCIndex(0)
{
}
/*
* mGraph is populated with the cost of each allowed edge.
*
* The data structure is based on the code in buildPath2() but modified.
* Please check git history if interested.
*
* mGraph[v].edges[i].index = w
*
* v = point index of location "from"
* i = index of edges from point v
* w = point index of location "to"
*
*
* Example: (notice from p(0) to p(2) is not allowed in this example)
*
* mGraph[0].edges[0].index = 1
* .edges[1].index = 3
*
* mGraph[1].edges[0].index = 0
* .edges[1].index = 2
* .edges[2].index = 3
*
* mGraph[2].edges[0].index = 1
*
* (etc, etc)
*
*
* low
* cost
* p(0) <---> p(1) <------------> p(2)
* ^ ^
* | |
* | +-----> p(3)
* +---------------->
* high cost
*/
bool PathgridGraph::initPathgridGraph(const ESM::Cell* cell)
{
if(!cell)
return false;
mCell = cell;
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*cell);
if(!mPathgrid)
return false;
mGraph.resize(mPathgrid->mPoints.size());
for(int i = 0; i < static_cast<int> (mPathgrid->mEdges.size()); i++)
{
ConnectedPoint neighbour;
neighbour.cost = costAStar(mPathgrid->mPoints[mPathgrid->mEdges[i].mV0],
mPathgrid->mPoints[mPathgrid->mEdges[i].mV1]);
// forward path of the edge
neighbour.index = mPathgrid->mEdges[i].mV1;
mGraph[mPathgrid->mEdges[i].mV0].edges.push_back(neighbour);
// reverse path of the edge
// NOTE: These are redundant, ESM already contains the required reverse paths
//neighbour.index = mPathgrid->mEdges[i].mV0;
//mGraph[mPathgrid->mEdges[i].mV1].edges.push_back(neighbour);
}
buildConnectedPoints();
mIsGraphConstructed = true;
#if 0
std::cout << "loading pathgrid " <<
+"\""+ mPathgrid->mCell +"\""
+", "+ std::to_string(mPathgrid->mData.mX)
+", "+ std::to_string(mPathgrid->mData.mY)
<< std::endl;
#endif
return true;
}
// v is the pathgrid point index (some call them vertices)
void PathgridGraph::recursiveStrongConnect(int v)
{
mSCCPoint[v].first = mSCCIndex; // index
mSCCPoint[v].second = mSCCIndex; // lowlink
mSCCIndex++;
mSCCStack.push_back(v);
int w;
for(int i = 0; i < static_cast<int> (mGraph[v].edges.size()); i++)
{
w = mGraph[v].edges[i].index;
if(mSCCPoint[w].first == -1) // not visited
{
recursiveStrongConnect(w); // recurse
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].second);
}
else
{
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
mSCCPoint[w].first);
}
}
if(mSCCPoint[v].second == mSCCPoint[v].first)
{ // new component
do
{
w = mSCCStack.back();
mSCCStack.pop_back();
mGraph[w].componentId = mSCCId;
}
while(w != v);
mSCCId++;
}
return;
}
/*
* mGraph contains the strongly connected component group id's along
* with pre-calculated edge costs.
*
* A cell can have disjointed pathgrids, e.g. Seyda Neen has 3
*
* mGraph for Seyda Neen will therefore have 3 different values. When
* selecting a random pathgrid point for AiWander, mGraph can be checked
* for quickly finding whether the destination is reachable.
*
* Otherwise, buildPath can automatically select a closest reachable end
* pathgrid point (reachable from the closest start point).
*
* Using Tarjan's algorithm:
*
* mGraph | graph G |
* mSCCPoint | V | derived from mPoints
* mGraph[v].edges | E (for v) |
* mSCCIndex | index | tracking smallest unused index
* mSCCStack | S |
* mGraph[v].edges[i].index | w |
*
*/
void PathgridGraph::buildConnectedPoints()
{
// both of these are set to zero in the constructor
//mSCCId = 0; // how many strongly connected components in this cell
//mSCCIndex = 0;
int pointsSize = mPathgrid->mPoints.size();
mSCCPoint.resize(pointsSize, std::pair<int, int> (-1, -1));
mSCCStack.reserve(pointsSize);
for(int v = 0; v < static_cast<int> (pointsSize); v++)
{
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
recursiveStrongConnect(v);
}
#if 0
std::cout << "components: " << std::to_string(mSCCId)
+", "+ mPathgrid->mCell
<< std::endl;
#endif
}
bool PathgridGraph::isPointConnected(const int start, const int end) const
{
return (mGraph[start].componentId == mGraph[end].componentId);
}
/*
* NOTE: Based on buildPath2(), please check git history if interested
* Should consider using a 3rd party library version (e.g. boost)
*
* Find the shortest path to the target goal using a well known algorithm.
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
* that mGraph is already constructed.
*
* Should be possible to make this MT safe.
*
* Returns path (a list of pathgrid point indexes) which may be empty.
*
* Input params:
* start, goal - pathgrid point indexes (for this cell)
* isExterior - used to determine whether to convert to world co-ordinates
*
* Variables:
* openset - point indexes to be traversed, lowest cost at the front
* closedset - point indexes already traversed
* gScore - past accumulated costs vector indexed by point index
* fScore - future estimated costs vector indexed by point index
*
* TODO: An intersting exercise might be to cache the paths created for a
* start/goal pair. To cache the results the paths need to be in
* pathgrid points form (currently they are converted to world
* co-ordinates). Essentially trading speed w/ memory.
*/
std::list<ESM::Pathgrid::Point> PathgridGraph::aStarSearch(const int start,
const int goal,
bool isExterior) const
{
std::list<ESM::Pathgrid::Point> path;
if(!isPointConnected(start, goal))
{
return path; // there is no path, return an empty path
}
int graphSize = mGraph.size();
std::vector<float> gScore;
gScore.resize(graphSize, -1);
std::vector<float> fScore;
fScore.resize(graphSize, -1);
std::vector<int> graphParent;
graphParent.resize(graphSize, -1);
// gScore & fScore keep costs for each pathgrid point in mPoints
gScore[start] = 0;
fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]);
std::list<int> openset;
std::list<int> closedset;
openset.push_back(start);
int current = -1;
while(!openset.empty())
{
current = openset.front(); // front has the lowest cost
openset.pop_front();
if(current == goal)
break;
closedset.push_back(current); // remember we've been here
// check all edges for the current point index
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
{
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].index) ==
closedset.end())
{
// not in closedset - i.e. have not traversed this edge destination
int dest = mGraph[current].edges[j].index;
float tentative_g = gScore[current] + mGraph[current].edges[j].cost;
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
if(!isInOpenSet
|| tentative_g < gScore[dest])
{
graphParent[dest] = current;
gScore[dest] = tentative_g;
fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest],
mPathgrid->mPoints[goal]);
if(!isInOpenSet)
{
// add this edge to openset, lowest cost goes to the front
// TODO: if this causes performance problems a hash table may help
std::list<int>::iterator it = openset.begin();
for(it = openset.begin(); it!= openset.end(); it++)
{
if(fScore[*it] > fScore[dest])
break;
}
openset.insert(it, dest);
}
}
} // if in closedset, i.e. traversed this edge already, try the next edge
}
}
if(current != goal)
return path; // for some reason couldn't build a path
// reconstruct path to return, using world co-ordinates
float xCell = 0;
float yCell = 0;
if (isExterior)
{
xCell = mPathgrid->mData.mX * ESM::Land::REAL_SIZE;
yCell = mPathgrid->mData.mY * ESM::Land::REAL_SIZE;
}
while(graphParent[current] != -1)
{
ESM::Pathgrid::Point pt = mPathgrid->mPoints[current];
pt.mX += xCell;
pt.mY += yCell;
path.push_front(pt);
current = graphParent[current];
}
return path;
}
}