openmw-tes3coop/components/nifosg/nifloader.cpp

1395 lines
63 KiB
C++

#include "nifloader.hpp"
#include <osg/Matrixf>
#include <osg/MatrixTransform>
#include <osg/Geode>
#include <osg/Geometry>
#include <osg/Array>
// resource
#include <components/bsa/bsa_file.hpp>
#include <osgDB/Registry>
#include <osg/io_utils>
#include <components/misc/stringops.hpp>
#include <components/misc/resourcehelpers.hpp>
// skel
#include <osgAnimation/Skeleton>
#include <osgAnimation/Bone>
#include <osgAnimation/RigGeometry>
#include <osgAnimation/MorphGeometry>
// particle
#include <osgParticle/ParticleSystem>
#include <osgParticle/ParticleSystemUpdater>
#include <osgParticle/ConstantRateCounter>
#include <osgParticle/ModularEmitter>
#include <osgParticle/Shooter>
#include <osgParticle/BoxPlacer>
#include <osgParticle/ModularProgram>
#include <osg/BlendFunc>
#include <osg/AlphaFunc>
#include <osg/Depth>
#include <osg/PolygonMode>
#include <osg/FrontFace>
#include <osg/Stencil>
#include <osg/Material>
#include <osg/Texture2D>
#include <osg/TexEnv>
#include <osg/TexEnvCombine>
#include <components/nif/node.hpp>
#include "particle.hpp"
#include "userdata.hpp"
namespace
{
osg::Matrixf toMatrix(const Nif::Transformation& nifTrafo)
{
osg::Matrixf transform;
transform.setTrans(nifTrafo.pos);
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
transform(j,i) = nifTrafo.rotation.mValues[i][j] * nifTrafo.scale; // NB column/row major difference
return transform;
}
osg::Matrixf getWorldTransform(const Nif::Node* node)
{
if(node->parent != NULL)
return toMatrix(node->trafo) * getWorldTransform(node->parent);
return toMatrix(node->trafo);
}
void getAllNiNodes(const Nif::Node* node, std::vector<int>& outIndices)
{
const Nif::NiNode* ninode = dynamic_cast<const Nif::NiNode*>(node);
if (ninode)
{
outIndices.push_back(ninode->recIndex);
for (unsigned int i=0; i<ninode->children.length(); ++i)
if (!ninode->children[i].empty())
getAllNiNodes(ninode->children[i].getPtr(), outIndices);
}
}
osg::BlendFunc::BlendFuncMode getBlendMode(int mode)
{
switch(mode)
{
case 0: return osg::BlendFunc::ONE;
case 1: return osg::BlendFunc::ZERO;
case 2: return osg::BlendFunc::SRC_COLOR;
case 3: return osg::BlendFunc::ONE_MINUS_SRC_COLOR;
case 4: return osg::BlendFunc::DST_COLOR;
case 5: return osg::BlendFunc::ONE_MINUS_DST_COLOR;
case 6: return osg::BlendFunc::SRC_ALPHA;
case 7: return osg::BlendFunc::ONE_MINUS_SRC_ALPHA;
case 8: return osg::BlendFunc::DST_ALPHA;
case 9: return osg::BlendFunc::ONE_MINUS_DST_ALPHA;
case 10: return osg::BlendFunc::SRC_ALPHA_SATURATE;
default:
std::cerr<< "Unexpected blend mode: "<< mode << std::endl;
return osg::BlendFunc::SRC_ALPHA;
}
}
osg::AlphaFunc::ComparisonFunction getTestMode(int mode)
{
switch (mode)
{
case 0: return osg::AlphaFunc::ALWAYS;
case 1: return osg::AlphaFunc::LESS;
case 2: return osg::AlphaFunc::EQUAL;
case 3: return osg::AlphaFunc::LEQUAL;
case 4: return osg::AlphaFunc::GREATER;
case 5: return osg::AlphaFunc::NOTEQUAL;
case 6: return osg::AlphaFunc::GEQUAL;
case 7: return osg::AlphaFunc::NEVER;
default:
std::cerr << "Unexpected blend mode: " << mode << std::endl;
return osg::AlphaFunc::LEQUAL;
}
}
osg::Stencil::Function getStencilFunction(int func)
{
switch (func)
{
case 0: return osg::Stencil::NEVER;
case 1: return osg::Stencil::LESS;
case 2: return osg::Stencil::EQUAL;
case 3: return osg::Stencil::LEQUAL;
case 4: return osg::Stencil::GREATER;
case 5: return osg::Stencil::NOTEQUAL;
case 6: return osg::Stencil::GEQUAL;
case 7: return osg::Stencil::NEVER; // NifSkope says this is GL_ALWAYS, but in MW it's GL_NEVER
default:
std::cerr << "Unexpected stencil function: " << func << std::endl;
return osg::Stencil::NEVER;
}
}
osg::Stencil::Operation getStencilOperation(int op)
{
switch (op)
{
case 0: return osg::Stencil::KEEP;
case 1: return osg::Stencil::ZERO;
case 2: return osg::Stencil::REPLACE;
case 3: return osg::Stencil::INCR;
case 4: return osg::Stencil::DECR;
case 5: return osg::Stencil::INVERT;
default:
std::cerr << "Unexpected stencil operation: " << op << std::endl;
return osg::Stencil::KEEP;
}
}
// Collect all properties affecting the given node that should be applied to an osg::Material.
void collectMaterialProperties(const Nif::Node* nifNode, std::vector<const Nif::Property*>& out)
{
const Nif::PropertyList& props = nifNode->props;
for (size_t i = 0; i <props.length();++i)
{
if (!props[i].empty())
{
switch (props[i]->recType)
{
case Nif::RC_NiMaterialProperty:
case Nif::RC_NiVertexColorProperty:
case Nif::RC_NiSpecularProperty:
out.push_back(props[i].getPtr());
break;
default:
break;
}
}
}
if (nifNode->parent)
collectMaterialProperties(nifNode->parent, out);
}
// NodeCallback used to update the bone matrices in skeleton space as needed for skinning.
// Must be set on a Bone.
class UpdateBone : public osg::NodeCallback
{
public:
UpdateBone() {}
UpdateBone(const UpdateBone& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY)
: osg::Object(copy, copyop), osg::NodeCallback(copy, copyop)
{
}
META_Object(NifOsg, UpdateBone)
// Callback method called by the NodeVisitor when visiting a node.
void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR)
{
osgAnimation::Bone* b = dynamic_cast<osgAnimation::Bone*>(node);
if (!b)
{
OSG_WARN << "Warning: UpdateBone set on non-Bone object." << std::endl;
return;
}
osgAnimation::Bone* parent = b->getBoneParent();
if (parent)
b->setMatrixInSkeletonSpace(b->getMatrixInBoneSpace() * parent->getMatrixInSkeletonSpace());
else
b->setMatrixInSkeletonSpace(b->getMatrixInBoneSpace());
}
traverse(node,nv);
}
};
// Custom node used to have a transform always oriented towards the camera. Can have translation and scale
// set just like a regular MatrixTransform, but the rotation set will be overridden in order to face the camera.
class BillboardNode : public osg::MatrixTransform
{
public:
BillboardNode() : osg::MatrixTransform() {}
BillboardNode(const BillboardNode& copy, const osg::CopyOp& copyop)
: osg::MatrixTransform(copy, copyop) {}
BillboardNode(const osg::Matrix& matrix)
: osg::MatrixTransform(matrix) {}
META_Node(NifOsg, BillboardNode)
virtual bool computeLocalToWorldMatrix(osg::Matrix& matrix, osg::NodeVisitor*) const
{
if (_referenceFrame==RELATIVE_RF)
{
const NifOsg::NodeUserData* userdata = static_cast<const NifOsg::NodeUserData*>(getUserDataContainer()->getUserObject(0));
matrix.preMult(_matrix);
matrix.setRotate(osg::Quat());
matrix(0,0) = userdata->mScale;
matrix(1,1) = userdata->mScale;
matrix(2,2) = userdata->mScale;
}
else // absolute
{
matrix = _matrix;
}
return true;
}
};
// NodeCallback used to set the inverse of the parent bone's matrix in skeleton space
// on the MatrixTransform that the NodeCallback is attached to. This is used so we can
// attach skinned meshes to their actual parent node, while still having the skinning
// work in skeleton space as expected.
// Must be set on a MatrixTransform.
class InvertBoneMatrix : public osg::NodeCallback
{
public:
InvertBoneMatrix() {}
InvertBoneMatrix(const InvertBoneMatrix& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY)
: osg::Object(copy, copyop), osg::NodeCallback(copy, copyop) {}
META_Object(NifOsg, InvertBoneMatrix)
void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR)
{
osg::NodePath path = nv->getNodePath();
path.pop_back();
osg::MatrixTransform* trans = dynamic_cast<osg::MatrixTransform*>(node);
for (osg::NodePath::iterator it = path.begin(); it != path.end(); ++it)
{
if (dynamic_cast<osgAnimation::Skeleton*>(*it))
{
path.erase(path.begin(), it+1);
// the bone's transform in skeleton space
osg::Matrix boneMat = osg::computeLocalToWorld( path );
trans->setMatrix(osg::Matrix::inverse(boneMat));
break;
}
}
}
traverse(node,nv);
}
};
// NodeVisitor that adds keyframe controllers to an existing scene graph, used when loading .kf files
class LoadKfVisitor : public osg::NodeVisitor
{
public:
LoadKfVisitor(std::map<std::string, const Nif::NiKeyframeController*> map, int sourceIndex)
: osg::NodeVisitor(TRAVERSE_ALL_CHILDREN)
, mMap(map)
, mSourceIndex(sourceIndex)
{
}
void apply(osg::Node &node)
{
std::map<std::string, const Nif::NiKeyframeController*>::const_iterator found = mMap.find(node.getName());
if (found != mMap.end())
{
const Nif::NiKeyframeController* keyframectrl = found->second;
osg::ref_ptr<NifOsg::SourcedKeyframeController> callback(new NifOsg::SourcedKeyframeController(keyframectrl->data.getPtr(), mSourceIndex));
callback->mFunction = boost::shared_ptr<NifOsg::ControllerFunction>(new NifOsg::ControllerFunction(keyframectrl, false));
// Insert in front of the callback list, to make sure UpdateBone is last.
// The order of SourcedKeyframeControllers doesn't matter since only one of them should be enabled at a time.
osg::ref_ptr<osg::NodeCallback> old = node.getUpdateCallback();
node.setUpdateCallback(callback);
callback->setNestedCallback(old);
}
traverse(node);
}
private:
std::map<std::string, const Nif::NiKeyframeController*> mMap;
int mSourceIndex;
};
void extractTextKeys(const Nif::NiTextKeyExtraData *tk, NifOsg::TextKeyMap &textkeys)
{
for(size_t i = 0;i < tk->list.size();i++)
{
const std::string &str = tk->list[i].text;
std::string::size_type pos = 0;
while(pos < str.length())
{
if(::isspace(str[pos]))
{
pos++;
continue;
}
std::string::size_type nextpos = std::min(str.find('\r', pos), str.find('\n', pos));
if(nextpos != std::string::npos)
{
do {
nextpos--;
} while(nextpos > pos && ::isspace(str[nextpos]));
nextpos++;
}
else if(::isspace(*str.rbegin()))
{
std::string::const_iterator last = str.end();
do {
--last;
} while(last != str.begin() && ::isspace(*last));
nextpos = std::distance(str.begin(), ++last);
}
std::string result = str.substr(pos, nextpos-pos);
textkeys.insert(std::make_pair(tk->list[i].time, Misc::StringUtils::toLower(result)));
pos = nextpos;
}
}
}
}
namespace NifOsg
{
bool Loader::sShowMarkers = false;
void Loader::setShowMarkers(bool show)
{
sShowMarkers = show;
}
class LoaderImpl
{
public:
const VFS::Manager* mResourceManager;
bool mShowMarkers;
LoaderImpl(const VFS::Manager* resourceManager, bool showMarkers)
: mResourceManager(resourceManager)
, mShowMarkers(showMarkers)
{
}
void loadKf(Nif::NIFFilePtr nif, osg::Node *rootNode, int sourceIndex, TextKeyMap& textKeys)
{
if(nif->numRoots() < 1)
{
nif->warn("Found no root nodes");
return;
}
const Nif::Record *r = nif->getRoot(0);
assert(r != NULL);
if(r->recType != Nif::RC_NiSequenceStreamHelper)
{
nif->warn("First root was not a NiSequenceStreamHelper, but a "+
r->recName+".");
return;
}
const Nif::NiSequenceStreamHelper *seq = static_cast<const Nif::NiSequenceStreamHelper*>(r);
Nif::ExtraPtr extra = seq->extra;
if(extra.empty() || extra->recType != Nif::RC_NiTextKeyExtraData)
{
nif->warn("First extra data was not a NiTextKeyExtraData, but a "+
(extra.empty() ? std::string("nil") : extra->recName)+".");
return;
}
extractTextKeys(static_cast<const Nif::NiTextKeyExtraData*>(extra.getPtr()), textKeys);
std::map<std::string, const Nif::NiKeyframeController*> controllerMap;
extra = extra->extra;
Nif::ControllerPtr ctrl = seq->controller;
for(;!extra.empty() && !ctrl.empty();(extra=extra->extra),(ctrl=ctrl->next))
{
if(extra->recType != Nif::RC_NiStringExtraData || ctrl->recType != Nif::RC_NiKeyframeController)
{
nif->warn("Unexpected extra data "+extra->recName+" with controller "+ctrl->recName);
continue;
}
if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active))
continue;
const Nif::NiStringExtraData *strdata = static_cast<const Nif::NiStringExtraData*>(extra.getPtr());
const Nif::NiKeyframeController *key = static_cast<const Nif::NiKeyframeController*>(ctrl.getPtr());
if(key->data.empty())
continue;
controllerMap[strdata->string] = key;
}
LoadKfVisitor visitor(controllerMap, sourceIndex);
rootNode->accept(visitor);
}
osg::ref_ptr<osg::Node> load(Nif::NIFFilePtr nif, TextKeyMap* textKeys)
{
if (nif->numRoots() < 1)
nif->fail("Found no root nodes");
const Nif::Record* r = nif->getRoot(0);
const Nif::Node* nifNode = dynamic_cast<const Nif::Node*>(r);
if (nifNode == NULL)
nif->fail("First root was not a node, but a " + r->recName);
osg::ref_ptr<osg::Node> created = handleNode(nifNode, false, std::map<int, int>(), 0, 0, false, textKeys);
return created;
}
osg::ref_ptr<osg::Node> loadAsSkeleton(Nif::NIFFilePtr nif, TextKeyMap* textKeys)
{
if (nif->numRoots() < 1)
nif->fail("Found no root nodes");
const Nif::Record* r = nif->getRoot(0);
assert(r != NULL);
const Nif::Node* nifNode = dynamic_cast<const Nif::Node*>(r);
if (nifNode == NULL)
nif->fail("First root was not a node, but a " + r->recName);
osg::ref_ptr<osgAnimation::Skeleton> skel = new osgAnimation::Skeleton;
skel->addChild(handleNode(nifNode, true, std::map<int, int>(), 0, 0, false, textKeys));
return skel;
}
void applyNodeProperties(const Nif::Node *nifNode, osg::Node *applyTo, std::map<int, int>& boundTextures, int animflags)
{
const Nif::PropertyList& props = nifNode->props;
for (size_t i = 0; i <props.length();++i)
{
if (!props[i].empty())
handleProperty(props[i].getPtr(), applyTo, boundTextures, animflags);
}
}
void setupController(const Nif::Controller* ctrl, Controller* toSetup, int animflags)
{
// TODO: uncomment this, currently commented for easier testing
//bool autoPlay = animflags & Nif::NiNode::AnimFlag_AutoPlay;
//if (autoPlay)
toSetup->mSource = boost::shared_ptr<ControllerSource>(new FrameTimeSource);
toSetup->mFunction = boost::shared_ptr<ControllerFunction>(new ControllerFunction(ctrl, 1 /*autoPlay*/));
}
osg::ref_ptr<osg::Node> handleNode(const Nif::Node* nifNode, bool createSkeleton,
std::map<int, int> boundTextures, int animflags, int particleflags, bool skipMeshes, TextKeyMap* textKeys, osg::Node* rootNode=NULL)
{
osg::ref_ptr<osg::MatrixTransform> transformNode;
if (nifNode->recType == Nif::RC_NiBillboardNode)
{
transformNode = new BillboardNode(toMatrix(nifNode->trafo));
}
else if (createSkeleton)
{
osgAnimation::Bone* bone = new osgAnimation::Bone;
transformNode = bone;
bone->setMatrix(toMatrix(nifNode->trafo));
bone->setName(nifNode->name);
bone->setInvBindMatrixInSkeletonSpace(osg::Matrixf::inverse(getWorldTransform(nifNode)));
}
else
{
transformNode = new osg::MatrixTransform(toMatrix(nifNode->trafo));
}
if (!rootNode)
rootNode = transformNode;
// Ignoring name for non-bone nodes for now. We might need it later in isolated cases, e.g. AttachLight.
// UserData used for a variety of features:
// - finding the correct emitter node for a particle system
// - establishing connections to the animated collision shapes, which are handled in a separate loader
// - finding a random child NiNode in NiBspArrayController
// - storing the previous 3x3 rotation and scale values for when a KeyframeController wants to
// change only certain elements of the 4x4 transform
transformNode->getOrCreateUserDataContainer()->addUserObject(
new NodeUserData(nifNode->recIndex, nifNode->trafo.scale, nifNode->trafo.rotation));
for (Nif::ExtraPtr e = nifNode->extra; !e.empty(); e = e->extra)
{
if(e->recType == Nif::RC_NiTextKeyExtraData && textKeys)
{
const Nif::NiTextKeyExtraData *tk = static_cast<const Nif::NiTextKeyExtraData*>(e.getPtr());
extractTextKeys(tk, *textKeys);
}
else if(e->recType == Nif::RC_NiStringExtraData)
{
const Nif::NiStringExtraData *sd = static_cast<const Nif::NiStringExtraData*>(e.getPtr());
// String markers may contain important information
// affecting the entire subtree of this obj
if(sd->string == "MRK" && !mShowMarkers)
{
// Marker objects. These meshes are only visible in the editor.
skipMeshes = true;
}
}
}
if (nifNode->recType == Nif::RC_NiBSAnimationNode)
animflags |= nifNode->flags;
if (nifNode->recType == Nif::RC_NiBSParticleNode)
particleflags |= nifNode->flags;
// Hide collision shapes, but don't skip the subgraph
// We still need to animate the hidden bones so the physics system can access them
if (nifNode->recType == Nif::RC_RootCollisionNode)
{
skipMeshes = true;
// Leave mask for UpdateVisitor enabled
transformNode->setNodeMask(0x1);
}
// We could probably skip hidden nodes entirely if they don't have a VisController that
// might make them visible later
if (nifNode->flags & Nif::NiNode::Flag_Hidden)
transformNode->setNodeMask(0x1); // Leave mask for UpdateVisitor enabled
applyNodeProperties(nifNode, transformNode, boundTextures, animflags);
if (nifNode->recType == Nif::RC_NiTriShape && !skipMeshes)
{
const Nif::NiTriShape* triShape = static_cast<const Nif::NiTriShape*>(nifNode);
if (!createSkeleton || triShape->skin.empty())
handleTriShape(triShape, transformNode, boundTextures, animflags);
else
handleSkinnedTriShape(triShape, transformNode, boundTextures, animflags);
if (!nifNode->controller.empty())
handleMeshControllers(nifNode, transformNode, boundTextures, animflags);
}
if(nifNode->recType == Nif::RC_NiAutoNormalParticles || nifNode->recType == Nif::RC_NiRotatingParticles)
handleParticleSystem(nifNode, transformNode, animflags, particleflags, rootNode);
if (!nifNode->controller.empty())
handleNodeControllers(nifNode, transformNode, animflags);
// Added last so the changes from KeyframeControllers are taken into account
if (osgAnimation::Bone* bone = dynamic_cast<osgAnimation::Bone*>(transformNode.get()))
bone->addUpdateCallback(new UpdateBone);
const Nif::NiNode *ninode = dynamic_cast<const Nif::NiNode*>(nifNode);
if(ninode)
{
const Nif::NodeList &children = ninode->children;
for(size_t i = 0;i < children.length();++i)
{
if(!children[i].empty())
{
// Insert bones at position 0 to prevent update order problems (see comment in osg Skeleton.cpp)
transformNode->insertChild(0,
handleNode(children[i].getPtr(), createSkeleton, boundTextures, animflags, particleflags, skipMeshes, textKeys, rootNode));
}
}
}
return transformNode;
}
void handleMeshControllers(const Nif::Node *nifNode, osg::MatrixTransform *transformNode, const std::map<int, int> &boundTextures, int animflags)
{
for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next)
{
if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active))
continue;
if (ctrl->recType == Nif::RC_NiUVController)
{
const Nif::NiUVController *uvctrl = static_cast<const Nif::NiUVController*>(ctrl.getPtr());
std::set<int> texUnits;
for (std::map<int, int>::const_iterator it = boundTextures.begin(); it != boundTextures.end(); ++it)
texUnits.insert(it->first);
osg::ref_ptr<UVController> ctrl = new UVController(uvctrl->data.getPtr(), texUnits);
setupController(uvctrl, ctrl, animflags);
transformNode->getOrCreateStateSet()->setDataVariance(osg::StateSet::DYNAMIC);
transformNode->addUpdateCallback(ctrl);
}
}
}
void handleNodeControllers(const Nif::Node* nifNode, osg::MatrixTransform* transformNode, int animflags)
{
for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next)
{
if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active))
continue;
if (ctrl->recType == Nif::RC_NiKeyframeController)
{
const Nif::NiKeyframeController *key = static_cast<const Nif::NiKeyframeController*>(ctrl.getPtr());
if(!key->data.empty())
{
osg::ref_ptr<KeyframeController> callback(new KeyframeController(key->data.getPtr()));
setupController(key, callback, animflags);
transformNode->addUpdateCallback(callback);
}
}
else if (ctrl->recType == Nif::RC_NiVisController)
{
const Nif::NiVisController* visctrl = static_cast<const Nif::NiVisController*>(ctrl.getPtr());
osg::ref_ptr<VisController> callback(new VisController(visctrl->data.getPtr()));
setupController(visctrl, callback, animflags);
transformNode->addUpdateCallback(callback);
}
}
}
void handleMaterialControllers(const Nif::Property *materialProperty, osg::Node* node, osg::StateSet *stateset, int animflags)
{
for (Nif::ControllerPtr ctrl = materialProperty->controller; !ctrl.empty(); ctrl = ctrl->next)
{
if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active))
continue;
if (ctrl->recType == Nif::RC_NiAlphaController)
{
const Nif::NiAlphaController* alphactrl = static_cast<const Nif::NiAlphaController*>(ctrl.getPtr());
osg::ref_ptr<AlphaController> ctrl(new AlphaController(alphactrl->data.getPtr()));
setupController(alphactrl, ctrl, animflags);
stateset->setDataVariance(osg::StateSet::DYNAMIC);
node->addUpdateCallback(ctrl);
}
else if (ctrl->recType == Nif::RC_NiMaterialColorController)
{
const Nif::NiMaterialColorController* matctrl = static_cast<const Nif::NiMaterialColorController*>(ctrl.getPtr());
osg::ref_ptr<MaterialColorController> ctrl(new MaterialColorController(matctrl->data.getPtr()));
setupController(matctrl, ctrl, animflags);
stateset->setDataVariance(osg::StateSet::DYNAMIC);
node->addUpdateCallback(ctrl);
}
else
std::cerr << "Unexpected material controller " << ctrl->recType << std::endl;
}
}
void handleTextureControllers(const Nif::Property *texProperty, osg::Node* node, osg::StateSet *stateset, int animflags)
{
for (Nif::ControllerPtr ctrl = texProperty->controller; !ctrl.empty(); ctrl = ctrl->next)
{
if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active))
continue;
if (ctrl->recType == Nif::RC_NiFlipController)
{
const Nif::NiFlipController* flipctrl = static_cast<const Nif::NiFlipController*>(ctrl.getPtr());
std::vector<osg::ref_ptr<osg::Image> > textures;
for (unsigned int i=0; i<flipctrl->mSources.length(); ++i)
{
Nif::NiSourceTexturePtr st = flipctrl->mSources[i];
if (st.empty())
continue;
std::string filename = Misc::ResourceHelpers::correctTexturePath(st->filename, mResourceManager);
// TODO: replace with texture manager
// tx_creature_werewolf.dds isn't loading in the correct format without this option
osgDB::Options* opts = new osgDB::Options;
opts->setOptionString("dds_dxt1_detect_rgba");
osgDB::ReaderWriter* reader = osgDB::Registry::instance()->getReaderWriterForExtension("dds");
osgDB::ReaderWriter::ReadResult result = reader->readImage(*mResourceManager->get(filename.c_str()), opts);
textures.push_back(osg::ref_ptr<osg::Image>(result.getImage()));
}
osg::ref_ptr<FlipController> callback(new FlipController(flipctrl, textures));
setupController(ctrl.getPtr(), callback, animflags);
stateset->setDataVariance(osg::StateSet::DYNAMIC);
node->addUpdateCallback(callback);
}
else
std::cerr << "Unexpected texture controller " << ctrl->recName << std::endl;
}
}
void handleParticleAffectors(Nif::ExtraPtr e, osg::Group *attachTo, osgParticle::ParticleSystem* partsys, osgParticle::ParticleProcessor::ReferenceFrame rf)
{
osgParticle::ModularProgram* program = new osgParticle::ModularProgram;
attachTo->addChild(program);
program->setParticleSystem(partsys);
program->setReferenceFrame(rf);
for (; !e.empty(); e = e->extra)
{
if (e->recType == Nif::RC_NiParticleGrowFade)
{
const Nif::NiParticleGrowFade *gf = static_cast<const Nif::NiParticleGrowFade*>(e.getPtr());
GrowFadeAffector* affector = new GrowFadeAffector(gf->growTime, gf->fadeTime);
program->addOperator(affector);
}
else if (e->recType == Nif::RC_NiGravity)
{
const Nif::NiGravity* gr = static_cast<const Nif::NiGravity*>(e.getPtr());
GravityAffector* affector = new GravityAffector(gr);
program->addOperator(affector);
}
else if (e->recType == Nif::RC_NiParticleColorModifier)
{
const Nif::NiParticleColorModifier *cl = static_cast<const Nif::NiParticleColorModifier*>(e.getPtr());
const Nif::NiColorData *clrdata = cl->data.getPtr();
ParticleColorAffector* affector = new ParticleColorAffector(clrdata);
program->addOperator(affector);
}
else if (e->recType == Nif::RC_NiParticleRotation)
{
// TODO: Implement?
}
else
std::cerr << "Unhandled particle modifier " << e->recName << std::endl;
}
}
// Load the initial state of the particle system, i.e. the initial particles and their positions, velocity and colors.
void handleParticleInitialState(const Nif::Node* nifNode, osgParticle::ParticleSystem* partsys, const Nif::NiParticleSystemController* partctrl,
osgParticle::ParticleProcessor::ReferenceFrame rf)
{
// TODO: also take into account the transform by placement in the scene (should be done post-load)
osg::Matrix particletransform;
if (rf == osgParticle::ParticleProcessor::ABSOLUTE_RF)
particletransform = getWorldTransform(nifNode);
const Nif::NiAutoNormalParticlesData *particledata = NULL;
if(nifNode->recType == Nif::RC_NiAutoNormalParticles)
particledata = static_cast<const Nif::NiAutoNormalParticles*>(nifNode)->data.getPtr();
else if(nifNode->recType == Nif::RC_NiRotatingParticles)
particledata = static_cast<const Nif::NiRotatingParticles*>(nifNode)->data.getPtr();
else
return;
int i=0;
for (std::vector<Nif::NiParticleSystemController::Particle>::const_iterator it = partctrl->particles.begin();
i<particledata->activeCount && it != partctrl->particles.end(); ++it, ++i)
{
const Nif::NiParticleSystemController::Particle& particle = *it;
ParticleAgeSetter particletemplate(std::max(0.f, particle.lifetime));
osgParticle::Particle* created = partsys->createParticle(&particletemplate);
created->setLifeTime(std::max(0.f, particle.lifespan));
osg::Vec4f adjustedVelocity = osg::Vec4f(particle.velocity, 0.f) * particletransform;
created->setVelocity(osg::Vec3f(adjustedVelocity.x(), adjustedVelocity.y(), adjustedVelocity.z()));
created->setPosition(particledata->vertices.at(particle.vertex) * particletransform);
osg::Vec4f partcolor (1.f,1.f,1.f,1.f);
if (particle.vertex < int(particledata->colors.size()))
partcolor = particledata->colors.at(particle.vertex);
float size = particledata->sizes.at(particle.vertex) * partctrl->size;
created->setSizeRange(osgParticle::rangef(size, size));
}
}
osg::ref_ptr<Emitter> handleParticleEmitter(const Nif::NiParticleSystemController* partctrl)
{
std::vector<int> targets;
if (partctrl->recType == Nif::RC_NiBSPArrayController)
{
getAllNiNodes(partctrl->emitter.getPtr(), targets);
}
osg::ref_ptr<Emitter> emitter = new Emitter(targets);
osgParticle::ConstantRateCounter* counter = new osgParticle::ConstantRateCounter;
if (partctrl->emitFlags & Nif::NiParticleSystemController::NoAutoAdjust)
counter->setNumberOfParticlesPerSecondToCreate(partctrl->emitRate);
else
counter->setNumberOfParticlesPerSecondToCreate(partctrl->numParticles / (partctrl->lifetime + partctrl->lifetimeRandom/2));
emitter->setCounter(counter);
ParticleShooter* shooter = new ParticleShooter(partctrl->velocity - partctrl->velocityRandom*0.5f,
partctrl->velocity + partctrl->velocityRandom*0.5f,
partctrl->horizontalDir, partctrl->horizontalAngle,
partctrl->verticalDir, partctrl->verticalAngle,
partctrl->lifetime, partctrl->lifetimeRandom);
emitter->setShooter(shooter);
osgParticle::BoxPlacer* placer = new osgParticle::BoxPlacer;
placer->setXRange(-partctrl->offsetRandom.x(), partctrl->offsetRandom.x());
placer->setYRange(-partctrl->offsetRandom.y(), partctrl->offsetRandom.y());
placer->setZRange(-partctrl->offsetRandom.z(), partctrl->offsetRandom.z());
emitter->setPlacer(placer);
return emitter;
}
void handleParticleSystem(const Nif::Node *nifNode, osg::Group *parentNode, int animflags, int particleflags, osg::Node* rootNode)
{
osg::ref_ptr<ParticleSystem> partsys (new ParticleSystem);
partsys->setSortMode(osgParticle::ParticleSystem::SORT_BACK_TO_FRONT);
const Nif::NiParticleSystemController* partctrl = NULL;
for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next)
{
if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active))
continue;
if(ctrl->recType == Nif::RC_NiParticleSystemController || ctrl->recType == Nif::RC_NiBSPArrayController)
partctrl = static_cast<Nif::NiParticleSystemController*>(ctrl.getPtr());
}
if (!partctrl)
{
std::cerr << "No particle controller found " << std::endl;
return;
}
osgParticle::ParticleProcessor::ReferenceFrame rf = (particleflags & Nif::NiNode::ParticleFlag_LocalSpace)
? osgParticle::ParticleProcessor::RELATIVE_RF
: osgParticle::ParticleProcessor::ABSOLUTE_RF;
handleParticleInitialState(nifNode, partsys, partctrl, rf);
partsys->setQuota(partctrl->numParticles);
partsys->getDefaultParticleTemplate().setSizeRange(osgParticle::rangef(partctrl->size, partctrl->size));
partsys->getDefaultParticleTemplate().setColorRange(osgParticle::rangev4(osg::Vec4f(1.f,1.f,1.f,1.f), osg::Vec4f(1.f,1.f,1.f,1.f)));
partsys->getDefaultParticleTemplate().setAlphaRange(osgParticle::rangef(1.f, 1.f));
osg::ref_ptr<Emitter> emitter = handleParticleEmitter(partctrl);
emitter->setParticleSystem(partsys);
emitter->setReferenceFrame(osgParticle::ParticleProcessor::RELATIVE_RF);
// Note: we assume that the Emitter node is placed *before* the Particle node in the scene graph.
// This seems to be true for all NIF files in the game that I've checked, suggesting that NIFs work similar to OSG with regards to update order.
// If something ever violates this assumption, the worst that could happen is the culling being one frame late, which wouldn't be a disaster.
// Creating emitters will need to be changed when cloning a scenegraph is implemented, the particleSystem pointer would become invalid
FindRecIndexVisitor find (partctrl->emitter->recIndex);
rootNode->accept(find);
if (!find.mFound)
{
std::cerr << "can't find emitter node, wrong node order?" << std::endl;
return;
}
osg::Group* emitterNode = find.mFound;
// Emitter attached to the emitter node. Note one side effect of the emitter using the CullVisitor is that hiding its node
// actually causes the emitter to stop firing. Convenient, because MW behaves this way too!
emitterNode->addChild(emitter);
osg::ref_ptr<ParticleSystemController> callback(new ParticleSystemController(partctrl));
setupController(partctrl, callback, animflags);
emitter->setUpdateCallback(callback);
// affectors must be attached *after* the emitter in the scene graph for correct update order
handleParticleAffectors(partctrl->extra, emitterNode, partsys.get(), rf);
osg::ref_ptr<osg::Geode> geode (new osg::Geode);
geode->addDrawable(partsys);
std::vector<const Nif::Property*> materialProps;
collectMaterialProperties(nifNode, materialProps);
applyMaterialProperties(geode, materialProps, true, animflags);
partsys->getOrCreateStateSet()->setMode(GL_LIGHTING, osg::StateAttribute::OFF);
partsys->getOrCreateStateSet()->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);
// particle system updater (after the emitters and affectors in the scene graph)
// I think for correct culling needs to be *before* the ParticleSystem, though osg examples do it the other way
osg::ref_ptr<osgParticle::ParticleSystemUpdater> updater = new osgParticle::ParticleSystemUpdater;
updater->addParticleSystem(partsys);
parentNode->addChild(updater);
if (rf == osgParticle::ParticleProcessor::RELATIVE_RF)
parentNode->addChild(geode);
else
{
osg::MatrixTransform* trans = new osg::MatrixTransform;
trans->setUpdateCallback(new InverseWorldMatrix);
trans->addChild(geode);
parentNode->addChild(trans);
}
}
void triShapeToGeometry(const Nif::NiTriShape *triShape, osg::Geometry *geometry, osg::Geode* parentGeode, const std::map<int, int>& boundTextures, int animflags)
{
const Nif::NiTriShapeData* data = triShape->data.getPtr();
const Nif::NiSkinInstance *skin = (triShape->skin.empty() ? NULL : triShape->skin.getPtr());
if (skin)
{
// Convert vertices and normals to bone space from bind position. It would be
// better to transform the bones into bind position, but there doesn't seem to
// be a reliable way to do that.
osg::ref_ptr<osg::Vec3Array> newVerts (new osg::Vec3Array(data->vertices.size()));
osg::ref_ptr<osg::Vec3Array> newNormals (new osg::Vec3Array(data->normals.size()));
const Nif::NiSkinData *skinData = skin->data.getPtr();
const Nif::NodeList &bones = skin->bones;
for(size_t b = 0;b < bones.length();b++)
{
osg::Matrixf mat = toMatrix(skinData->bones[b].trafo);
mat = mat * getWorldTransform(bones[b].getPtr());
const std::vector<Nif::NiSkinData::VertWeight> &weights = skinData->bones[b].weights;
for(size_t i = 0;i < weights.size();i++)
{
size_t index = weights[i].vertex;
float weight = weights[i].weight;
osg::Vec4f mult = (osg::Vec4f(data->vertices.at(index),1.f) * mat) * weight;
(*newVerts)[index] += osg::Vec3f(mult.x(),mult.y(),mult.z());
if(newNormals->size() > index)
{
osg::Vec4 normal(data->normals[index].x(), data->normals[index].y(), data->normals[index].z(), 0.f);
normal = (normal * mat) * weight;
(*newNormals)[index] += osg::Vec3f(normal.x(),normal.y(),normal.z());
}
}
}
// Interpolating normalized normals doesn't necessarily give you a normalized result
// Currently we're using GL_NORMALIZE, so this isn't needed
//for (unsigned int i=0;i<newNormals->size();++i)
// (*newNormals)[i].normalize();
geometry->setVertexArray(newVerts);
if (!data->normals.empty())
geometry->setNormalArray(newNormals, osg::Array::BIND_PER_VERTEX);
}
else
{
geometry->setVertexArray(new osg::Vec3Array(data->vertices.size(), &data->vertices[0]));
if (!data->normals.empty())
geometry->setNormalArray(new osg::Vec3Array(data->normals.size(), &data->normals[0]), osg::Array::BIND_PER_VERTEX);
}
for (std::map<int, int>::const_iterator it = boundTextures.begin(); it != boundTextures.end(); ++it)
{
int textureStage = it->first;
int uvSet = it->second;
if (uvSet >= (int)data->uvlist.size())
{
// Occurred in "ascendedsleeper.nif", but only for hidden Shadow nodes, apparently
//std::cerr << "Warning: using an undefined UV set " << uvSet << " on TriShape " << triShape->name << std::endl;
continue;
}
geometry->setTexCoordArray(textureStage, new osg::Vec2Array(data->uvlist[uvSet].size(), &data->uvlist[uvSet][0]), osg::Array::BIND_PER_VERTEX);
}
if (!data->colors.empty())
geometry->setColorArray(new osg::Vec4Array(data->colors.size(), &data->colors[0]), osg::Array::BIND_PER_VERTEX);
geometry->addPrimitiveSet(new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES,
data->triangles.size(),
(unsigned short*)&data->triangles[0]));
// osg::Material properties are handled here for two reasons:
// - if there are no vertex colors, we need to disable colorMode.
// - there are 3 "overlapping" nif properties that all affect the osg::Material, handling them
// above the actual renderable would be tedious.
std::vector<const Nif::Property*> materialProps;
collectMaterialProperties(triShape, materialProps);
applyMaterialProperties(parentGeode, materialProps, !data->colors.empty(), animflags);
}
void handleTriShape(const Nif::NiTriShape* triShape, osg::Group* parentNode, const std::map<int, int>& boundTextures, int animflags)
{
osg::ref_ptr<osg::Geometry> geometry;
if(!triShape->controller.empty())
{
Nif::ControllerPtr ctrl = triShape->controller;
do {
if(ctrl->recType == Nif::RC_NiGeomMorpherController && ctrl->flags & Nif::NiNode::ControllerFlag_Active)
{
geometry = handleMorphGeometry(static_cast<const Nif::NiGeomMorpherController*>(ctrl.getPtr()));
osg::ref_ptr<GeomMorpherController> morphctrl = new GeomMorpherController(
static_cast<const Nif::NiGeomMorpherController*>(ctrl.getPtr())->data.getPtr());
setupController(ctrl.getPtr(), morphctrl, animflags);
geometry->setUpdateCallback(morphctrl);
break;
}
} while(!(ctrl=ctrl->next).empty());
}
if (!geometry.get())
geometry = new osg::Geometry;
osg::ref_ptr<osg::Geode> geode (new osg::Geode);
geode->setName(triShape->name); // name will be used for part filtering
triShapeToGeometry(triShape, geometry, geode, boundTextures, animflags);
geode->addDrawable(geometry);
parentNode->addChild(geode);
}
osg::ref_ptr<osg::Geometry> handleMorphGeometry(const Nif::NiGeomMorpherController* morpher)
{
osg::ref_ptr<osgAnimation::MorphGeometry> morphGeom = new osgAnimation::MorphGeometry;
morphGeom->setMethod(osgAnimation::MorphGeometry::RELATIVE);
// No normals available in the MorphData
morphGeom->setMorphNormals(false);
const std::vector<Nif::NiMorphData::MorphData>& morphs = morpher->data.getPtr()->mMorphs;
// Note we are not interested in morph 0, which just contains the original vertices
for (unsigned int i = 1; i < morphs.size(); ++i)
{
osg::ref_ptr<osg::Geometry> morphTarget = new osg::Geometry;
morphTarget->setVertexArray(new osg::Vec3Array(morphs[i].mVertices.size(), &morphs[i].mVertices[0]));
morphGeom->addMorphTarget(morphTarget, 0.f);
}
return morphGeom;
}
void handleSkinnedTriShape(const Nif::NiTriShape *triShape, osg::Group *parentNode, const std::map<int, int>& boundTextures, int animflags)
{
osg::ref_ptr<osg::Geode> geode (new osg::Geode);
geode->setName(triShape->name); // name will be used for part filtering
osg::ref_ptr<osg::Geometry> geometry (new osg::Geometry);
triShapeToGeometry(triShape, geometry, geode, boundTextures, animflags);
osg::ref_ptr<osgAnimation::RigGeometry> rig(new osgAnimation::RigGeometry);
rig->setSourceGeometry(geometry);
// Slightly expand the bounding box to account for movement of the bones
// For more accuracy the skinning should be relative to the parent of the first skinned bone,
// rather than the root bone.
osg::BoundingBox box = geometry->getBound();
box.expandBy(box._min-(box._max-box._min)/2);
box.expandBy(box._max+(box._max-box._min)/2);
rig->setInitialBound(box);
const Nif::NiSkinInstance *skin = triShape->skin.getPtr();
// Assign bone weights
osg::ref_ptr<osgAnimation::VertexInfluenceMap> map (new osgAnimation::VertexInfluenceMap);
const Nif::NiSkinData *data = skin->data.getPtr();
const Nif::NodeList &bones = skin->bones;
for(size_t i = 0;i < bones.length();i++)
{
std::string boneName = bones[i].getPtr()->name;
osgAnimation::VertexInfluence influence;
influence.setName(boneName);
const std::vector<Nif::NiSkinData::VertWeight> &weights = data->bones[i].weights;
influence.reserve(weights.size());
for(size_t j = 0;j < weights.size();j++)
{
osgAnimation::VertexIndexWeight indexWeight = std::make_pair(weights[j].vertex, weights[j].weight);
influence.push_back(indexWeight);
}
map->insert(std::make_pair(boneName, influence));
}
rig->setInfluenceMap(map);
osg::ref_ptr<osg::MatrixTransform> trans(new osg::MatrixTransform);
trans->setUpdateCallback(new InvertBoneMatrix());
geode->addDrawable(rig);
trans->addChild(geode);
parentNode->addChild(trans);
}
void handleProperty(const Nif::Property *property,
osg::Node *node, std::map<int, int>& boundTextures, int animflags)
{
osg::StateSet* stateset = node->getOrCreateStateSet();
switch (property->recType)
{
case Nif::RC_NiStencilProperty:
{
const Nif::NiStencilProperty* stencilprop = static_cast<const Nif::NiStencilProperty*>(property);
osg::FrontFace* frontFace = new osg::FrontFace;
switch (stencilprop->data.drawMode)
{
case 1:
frontFace->setMode(osg::FrontFace::CLOCKWISE);
break;
case 0:
case 2:
default:
frontFace->setMode(osg::FrontFace::COUNTER_CLOCKWISE);
break;
}
stateset->setAttribute(frontFace, osg::StateAttribute::ON);
stateset->setMode(GL_CULL_FACE, stencilprop->data.drawMode == 3 ? osg::StateAttribute::OFF
: osg::StateAttribute::ON);
if (stencilprop->data.enabled != 0)
{
osg::Stencil* stencil = new osg::Stencil;
stencil->setFunction(getStencilFunction(stencilprop->data.compareFunc), stencilprop->data.stencilRef, stencilprop->data.stencilMask);
stencil->setStencilFailOperation(getStencilOperation(stencilprop->data.failAction));
stencil->setStencilPassAndDepthFailOperation(getStencilOperation(stencilprop->data.zFailAction));
stencil->setStencilPassAndDepthPassOperation(getStencilOperation(stencilprop->data.zPassAction));
stateset->setAttributeAndModes(stencil, osg::StateAttribute::ON);
}
break;
}
case Nif::RC_NiWireframeProperty:
{
const Nif::NiWireframeProperty* wireprop = static_cast<const Nif::NiWireframeProperty*>(property);
osg::PolygonMode* mode = new osg::PolygonMode;
mode->setMode(osg::PolygonMode::FRONT_AND_BACK, wireprop->flags == 0 ? osg::PolygonMode::FILL
: osg::PolygonMode::LINE);
stateset->setAttributeAndModes(mode, osg::StateAttribute::ON);
break;
}
case Nif::RC_NiZBufferProperty:
{
const Nif::NiZBufferProperty* zprop = static_cast<const Nif::NiZBufferProperty*>(property);
// VER_MW doesn't support a DepthFunction according to NifSkope
osg::Depth* depth = new osg::Depth;
depth->setWriteMask((zprop->flags>>1)&1);
stateset->setAttributeAndModes(depth, osg::StateAttribute::ON);
break;
}
// OSG groups the material properties that NIFs have separate, so we have to parse them all again when one changed
case Nif::RC_NiMaterialProperty:
case Nif::RC_NiVertexColorProperty:
case Nif::RC_NiSpecularProperty:
{
// Handled in handleTriShape so we know whether vertex colors are available
break;
}
case Nif::RC_NiAlphaProperty:
{
const Nif::NiAlphaProperty* alphaprop = static_cast<const Nif::NiAlphaProperty*>(property);
osg::BlendFunc* blendfunc = new osg::BlendFunc;
if (alphaprop->flags&1)
{
blendfunc->setFunction(getBlendMode((alphaprop->flags>>1)&0xf),
getBlendMode((alphaprop->flags>>5)&0xf));
stateset->setAttributeAndModes(blendfunc, osg::StateAttribute::ON);
bool noSort = (alphaprop->flags>>13)&1;
if (!noSort)
{
stateset->setNestRenderBins(false);
stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN);
}
}
else
{
stateset->setAttributeAndModes(blendfunc, osg::StateAttribute::OFF);
stateset->setNestRenderBins(false);
stateset->setRenderingHint(osg::StateSet::OPAQUE_BIN);
}
osg::AlphaFunc* alphafunc = new osg::AlphaFunc;
if((alphaprop->flags>>9)&1)
{
alphafunc->setFunction(getTestMode((alphaprop->flags>>10)&0x7), alphaprop->data.threshold/255.f);
stateset->setAttributeAndModes(alphafunc, osg::StateAttribute::ON);
}
else
stateset->setAttributeAndModes(alphafunc, osg::StateAttribute::OFF);
break;
}
case Nif::RC_NiTexturingProperty:
{
const Nif::NiTexturingProperty* texprop = static_cast<const Nif::NiTexturingProperty*>(property);
for (int i=0; i<Nif::NiTexturingProperty::NumTextures; ++i)
{
if (texprop->textures[i].inUse)
{
if (i != Nif::NiTexturingProperty::BaseTexture
&& i != Nif::NiTexturingProperty::GlowTexture
&& i != Nif::NiTexturingProperty::DarkTexture
&& i != Nif::NiTexturingProperty::DetailTexture)
{
std::cerr << "Warning: unhandled texture stage " << i << std::endl;
continue;
}
const Nif::NiTexturingProperty::Texture& tex = texprop->textures[i];
if(tex.texture.empty())
{
std::cerr << "Warning: texture layer " << i << " is in use but empty " << std::endl;
continue;
}
const Nif::NiSourceTexture *st = tex.texture.getPtr();
if (!st->external)
{
std::cerr << "Warning: unhandled internal texture " << std::endl;
continue;
}
std::string filename = Misc::ResourceHelpers::correctTexturePath(st->filename, mResourceManager);
// TODO: replace with texture manager
// tx_creature_werewolf.dds isn't loading in the correct format without this option
osgDB::Options* opts = new osgDB::Options;
opts->setOptionString("dds_dxt1_detect_rgba");
osgDB::ReaderWriter* reader = osgDB::Registry::instance()->getReaderWriterForExtension("dds");
osgDB::ReaderWriter::ReadResult result = reader->readImage(*mResourceManager->get(filename.c_str()), opts);
osg::Image* image = result.getImage();
osg::Texture2D* texture2d = new osg::Texture2D;
texture2d->setUnRefImageDataAfterApply(true);
texture2d->setImage(image);
unsigned int clamp = static_cast<unsigned int>(tex.clamp);
int wrapT = (clamp) & 0x1;
int wrapS = (clamp >> 1) & 0x1;
texture2d->setWrap(osg::Texture::WRAP_S, wrapS ? osg::Texture::REPEAT : osg::Texture::CLAMP);
texture2d->setWrap(osg::Texture::WRAP_T, wrapT ? osg::Texture::REPEAT : osg::Texture::CLAMP);
stateset->setTextureAttributeAndModes(i, texture2d, osg::StateAttribute::ON);
if (i == Nif::NiTexturingProperty::GlowTexture)
{
osg::TexEnv* texEnv = new osg::TexEnv;
texEnv->setMode(osg::TexEnv::ADD);
stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON);
}
else if (i == Nif::NiTexturingProperty::DarkTexture)
{
// untested
osg::TexEnv* texEnv = new osg::TexEnv;
texEnv->setMode(osg::TexEnv::MODULATE);
stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON);
}
else if (i == Nif::NiTexturingProperty::DetailTexture)
{
// untested
osg::TexEnvCombine* texEnv = new osg::TexEnvCombine;
texEnv->setScale_RGB(2.f);
texEnv->setCombine_Alpha(GL_MODULATE);
texEnv->setOperand0_Alpha(GL_SRC_ALPHA);
texEnv->setOperand1_Alpha(GL_SRC_ALPHA);
texEnv->setSource0_Alpha(GL_PREVIOUS);
texEnv->setSource1_Alpha(GL_TEXTURE);
texEnv->setCombine_RGB(GL_MODULATE);
texEnv->setOperand0_RGB(GL_SRC_COLOR);
texEnv->setOperand1_RGB(GL_SRC_COLOR);
texEnv->setSource0_RGB(GL_PREVIOUS);
texEnv->setSource1_RGB(GL_TEXTURE);
stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON);
}
boundTextures[i] = tex.uvSet;
}
else if (boundTextures.find(i) != boundTextures.end())
{
stateset->setTextureAttributeAndModes(i, new osg::Texture2D, osg::StateAttribute::OFF);
boundTextures.erase(i);
}
handleTextureControllers(texprop, node, stateset, animflags);
}
break;
}
// unused by mw
case Nif::RC_NiShadeProperty:
case Nif::RC_NiDitherProperty:
{
break;
}
default:
std::cerr << "Unhandled " << property->recName << std::endl;
break;
}
}
void applyMaterialProperties(osg::Node* node, const std::vector<const Nif::Property*>& properties,
bool hasVertexColors, int animflags)
{
osg::StateSet* stateset = node->getOrCreateStateSet();
int specFlags = 0; // Specular is disabled by default, even if there's a specular color in the NiMaterialProperty
osg::Material* mat = new osg::Material;
mat->setColorMode(hasVertexColors ? osg::Material::AMBIENT_AND_DIFFUSE : osg::Material::OFF);
// NIF material defaults don't match OpenGL defaults
mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(1,1,1,1));
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(1,1,1,1));
for (std::vector<const Nif::Property*>::const_reverse_iterator it = properties.rbegin(); it != properties.rend(); ++it)
{
const Nif::Property* property = *it;
switch (property->recType)
{
case Nif::RC_NiSpecularProperty:
{
specFlags = property->flags;
break;
}
case Nif::RC_NiMaterialProperty:
{
const Nif::NiMaterialProperty* matprop = static_cast<const Nif::NiMaterialProperty*>(property);
mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.diffuse, matprop->data.alpha));
mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.ambient, 1.f));
mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.emissive, 1.f));
mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.specular, 1.f));
mat->setShininess(osg::Material::FRONT_AND_BACK, matprop->data.glossiness);
if (!matprop->controller.empty())
handleMaterialControllers(matprop, node, stateset, animflags);
break;
}
case Nif::RC_NiVertexColorProperty:
{
const Nif::NiVertexColorProperty* vertprop = static_cast<const Nif::NiVertexColorProperty*>(property);
if (!hasVertexColors)
break;
switch (vertprop->flags)
{
case 0:
mat->setColorMode(osg::Material::OFF);
break;
case 1:
mat->setColorMode(osg::Material::EMISSION);
break;
case 2:
mat->setColorMode(osg::Material::AMBIENT_AND_DIFFUSE);
break;
}
}
}
}
if (specFlags == 0)
mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f,0.f,0.f,0.f));
stateset->setAttributeAndModes(mat, osg::StateAttribute::ON);
}
};
osg::ref_ptr<osg::Node> Loader::load(Nif::NIFFilePtr file, TextKeyMap *textKeys)
{
LoaderImpl loader(resourceManager, sShowMarkers);
return loader.load(file, textKeys);
}
osg::ref_ptr<osg::Node> Loader::loadAsSkeleton(Nif::NIFFilePtr file, TextKeyMap *textKeys)
{
LoaderImpl loader(resourceManager, sShowMarkers);
return loader.loadAsSkeleton(file, textKeys);
}
void Loader::loadKf(Nif::NIFFilePtr kf, osg::Node *rootNode, int sourceIndex, TextKeyMap &textKeys)
{
LoaderImpl loader(resourceManager, sShowMarkers);
loader.loadKf(kf, rootNode, sourceIndex, textKeys);
}
}