openmw-tes3coop/components/esmterrain/storage.cpp
scrawl 29556a1802 More consistent wording of errors/warnings
A Warning indicates a potential problem in the content file(s) that the user told OpenMW to load. E.g. this might cause an object to not display at all or as intended, however the rest of the game will run fine.

An Error, however, is more likely to be a bug with the engine itself - it means that basic assumptions have been violated and the engine might not run correctly anymore.

The above mostly applies to errors/warnings during game-play; startup issues are handled differently: when a file is completely invalid/corrupted to the point that the engine can not start, that might cause messages that are worded as Error due to the severity of the issue but are not necessarily the engine's fault.

Hopefully, being a little more consistent here will alleviate confusion among users as to when a log message should be reported and to whom.
2017-03-04 21:48:31 +01:00

573 lines
21 KiB
C++

#include "storage.hpp"
#include <set>
#include <iostream>
#include <OpenThreads/ScopedLock>
#include <osg/Image>
#include <osg/Plane>
#include <boost/algorithm/string.hpp>
#include <components/misc/resourcehelpers.hpp>
#include <components/vfs/manager.hpp>
namespace ESMTerrain
{
const float defaultHeight = ESM::Land::DEFAULT_HEIGHT;
Storage::Storage(const VFS::Manager *vfs, const std::string& normalMapPattern, const std::string& normalHeightMapPattern, bool autoUseNormalMaps, const std::string& specularMapPattern, bool autoUseSpecularMaps)
: mVFS(vfs)
, mNormalMapPattern(normalMapPattern)
, mNormalHeightMapPattern(normalHeightMapPattern)
, mAutoUseNormalMaps(autoUseNormalMaps)
, mSpecularMapPattern(specularMapPattern)
, mAutoUseSpecularMaps(autoUseSpecularMaps)
{
}
const ESM::Land::LandData *Storage::getLandData (int cellX, int cellY, int flags)
{
if (const ESM::Land *land = getLand (cellX, cellY))
return land->getLandData (flags);
return 0;
}
bool Storage::getMinMaxHeights(float size, const osg::Vec2f &center, float &min, float &max)
{
assert (size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
int cellX = static_cast<int>(std::floor(origin.x()));
int cellY = static_cast<int>(std::floor(origin.y()));
int startRow = (origin.x() - cellX) * ESM::Land::LAND_SIZE;
int startColumn = (origin.y() - cellY) * ESM::Land::LAND_SIZE;
int endRow = startRow + size * (ESM::Land::LAND_SIZE-1) + 1;
int endColumn = startColumn + size * (ESM::Land::LAND_SIZE-1) + 1;
if (const ESM::Land::LandData *data = getLandData (cellX, cellY, ESM::Land::DATA_VHGT))
{
min = std::numeric_limits<float>::max();
max = -std::numeric_limits<float>::max();
for (int row=startRow; row<endRow; ++row)
{
for (int col=startColumn; col<endColumn; ++col)
{
float h = data->mHeights[col*ESM::Land::LAND_SIZE+row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
min = defaultHeight;
max = defaultHeight;
return true;
}
void Storage::fixNormal (osg::Vec3f& normal, int cellX, int cellY, int col, int row)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
if (const ESM::Land::LandData *data = getLandData (cellX, cellY, ESM::Land::DATA_VNML))
{
normal.x() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z() = data->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
}
void Storage::averageNormal(osg::Vec3f &normal, int cellX, int cellY, int col, int row)
{
osg::Vec3f n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row);
fixNormal(n2, cellX, cellY, col-1, row);
fixNormal(n3, cellX, cellY, col, row+1);
fixNormal(n4, cellX, cellY, col, row-1);
normal = (n1+n2+n3+n4);
normal.normalize();
}
void Storage::fixColour (osg::Vec4f& color, int cellX, int cellY, int col, int row)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
if (const ESM::Land::LandData *data = getLandData (cellX, cellY, ESM::Land::DATA_VCLR))
{
color.r() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b() = data->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r() = 1;
color.g() = 1;
color.b() = 1;
}
}
void Storage::fillVertexBuffers (int lodLevel, float size, const osg::Vec2f& center,
osg::ref_ptr<osg::Vec3Array> positions,
osg::ref_ptr<osg::Vec3Array> normals,
osg::ref_ptr<osg::Vec4Array> colours)
{
// LOD level n means every 2^n-th vertex is kept
size_t increment = static_cast<size_t>(1) << lodLevel;
osg::Vec2f origin = center - osg::Vec2f(size/2.f, size/2.f);
int startCellX = static_cast<int>(std::floor(origin.x()));
int startCellY = static_cast<int>(std::floor(origin.y()));
size_t numVerts = static_cast<size_t>(size*(ESM::Land::LAND_SIZE - 1) / increment + 1);
positions->resize(numVerts*numVerts);
normals->resize(numVerts*numVerts);
colours->resize(numVerts*numVerts);
osg::Vec3f normal;
osg::Vec4f color;
float vertY = 0;
float vertX = 0;
float vertY_ = 0; // of current cell corner
for (int cellY = startCellY; cellY < startCellY + std::ceil(size); ++cellY)
{
float vertX_ = 0; // of current cell corner
for (int cellX = startCellX; cellX < startCellX + std::ceil(size); ++cellX)
{
const ESM::Land::LandData *heightData = getLandData (cellX, cellY, ESM::Land::DATA_VHGT);
const ESM::Land::LandData *normalData = getLandData (cellX, cellY, ESM::Land::DATA_VNML);
const ESM::Land::LandData *colourData = getLandData (cellX, cellY, ESM::Land::DATA_VCLR);
int rowStart = 0;
int colStart = 0;
// Skip the first row / column unless we're at a chunk edge,
// since this row / column is already contained in a previous cell
// This is only relevant if we're creating a chunk spanning multiple cells
if (colStart == 0 && vertY_ != 0)
colStart += increment;
if (rowStart == 0 && vertX_ != 0)
rowStart += increment;
// Only relevant for chunks smaller than (contained in) one cell
rowStart += (origin.x() - startCellX) * ESM::Land::LAND_SIZE;
colStart += (origin.y() - startCellY) * ESM::Land::LAND_SIZE;
int rowEnd = rowStart + std::min(1.f, size) * (ESM::Land::LAND_SIZE-1) + 1;
int colEnd = colStart + std::min(1.f, size) * (ESM::Land::LAND_SIZE-1) + 1;
vertY = vertY_;
for (int col=colStart; col<colEnd; col += increment)
{
vertX = vertX_;
for (int row=rowStart; row<rowEnd; row += increment)
{
int srcArrayIndex = col*ESM::Land::LAND_SIZE*3+row*3;
assert(row >= 0 && row < ESM::Land::LAND_SIZE);
assert(col >= 0 && col < ESM::Land::LAND_SIZE);
assert (vertX < numVerts);
assert (vertY < numVerts);
float height = defaultHeight;
if (heightData)
height = heightData->mHeights[col*ESM::Land::LAND_SIZE + row];
(*positions)[static_cast<unsigned int>(vertX*numVerts + vertY)]
= osg::Vec3f((vertX / float(numVerts - 1) - 0.5f) * size * 8192,
(vertY / float(numVerts - 1) - 0.5f) * size * 8192,
height);
if (normalData)
{
for (int i=0; i<3; ++i)
normal[i] = normalData->mNormals[srcArrayIndex+i];
normal.normalize();
}
else
normal = osg::Vec3f(0,0,1);
// Normals apparently don't connect seamlessly between cells
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixNormal(normal, cellX, cellY, col, row);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
averageNormal(normal, cellX, cellY, col, row);
assert(normal.z() > 0);
(*normals)[static_cast<unsigned int>(vertX*numVerts + vertY)] = normal;
if (colourData)
{
for (int i=0; i<3; ++i)
color[i] = colourData->mColours[srcArrayIndex+i] / 255.f;
}
else
{
color.r() = 1;
color.g() = 1;
color.b() = 1;
}
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixColour(color, cellX, cellY, col, row);
color.a() = 1;
(*colours)[static_cast<unsigned int>(vertX*numVerts + vertY)] = color;
++vertX;
}
++vertY;
}
vertX_ = vertX;
}
vertY_ = vertY;
assert(vertX_ == numVerts); // Ensure we covered whole area
}
assert(vertY_ == numVerts); // Ensure we covered whole area
}
Storage::UniqueTextureId Storage::getVtexIndexAt(int cellX, int cellY,
int x, int y)
{
// For the first/last row/column, we need to get the texture from the neighbour cell
// to get consistent blending at the borders
--x;
if (x < 0)
{
--cellX;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
{
++cellY;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
if (const ESM::Land::LandData *data = getLandData (cellX, cellY, ESM::Land::DATA_VTEX))
{
int tex = data->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
return std::make_pair(tex, getLand (cellX, cellY)->mPlugin);
}
else
return std::make_pair(0,0);
}
std::string Storage::getTextureName(UniqueTextureId id)
{
static const std::string defaultTexture = "textures\\_land_default.dds";
if (id.first == 0)
return defaultTexture; // Not sure if the default texture really is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
if (!ltex)
{
std::cerr << "Warning: Unable to find land texture index " << id.first-1 << " in plugin " << id.second << ", using default texture instead" << std::endl;
return defaultTexture;
}
// this is needed due to MWs messed up texture handling
std::string texture = Misc::ResourceHelpers::correctTexturePath(ltex->mTexture, mVFS);
return texture;
}
void Storage::getBlendmaps(float chunkSize, const osg::Vec2f &chunkCenter,
bool pack, ImageVector &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
{
// TODO - blending isn't completely right yet; the blending radius appears to be
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
// and interpolate the rest of the cell by hand? :/
osg::Vec2f origin = chunkCenter - osg::Vec2f(chunkSize/2.f, chunkSize/2.f);
int cellX = static_cast<int>(std::floor(origin.x()));
int cellY = static_cast<int>(std::floor(origin.y()));
int realTextureSize = ESM::Land::LAND_TEXTURE_SIZE+1; // add 1 to wrap around next cell
int rowStart = (origin.x() - cellX) * realTextureSize;
int colStart = (origin.y() - cellY) * realTextureSize;
int rowEnd = rowStart + chunkSize * (realTextureSize-1) + 1;
int colEnd = colStart + chunkSize * (realTextureSize-1) + 1;
assert (rowStart >= 0 && colStart >= 0);
assert (rowEnd <= realTextureSize);
assert (colEnd <= realTextureSize);
// Save the used texture indices so we know the total number of textures
// and number of required blend maps
std::set<UniqueTextureId> textureIndices;
// Due to the way the blending works, the base layer will always shine through in between
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
// To get a consistent look, we need to make sure to use the same base layer in all cells.
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
textureIndices.insert(std::make_pair(0,0));
for (int y=colStart; y<colEnd; ++y)
for (int x=rowStart; x<rowEnd; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
textureIndices.insert(id);
}
// Makes sure the indices are sorted, or rather,
// retrieved as sorted. This is important to keep the splatting order
// consistent across cells.
std::map<UniqueTextureId, int> textureIndicesMap;
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
{
int size = textureIndicesMap.size();
textureIndicesMap[*it] = size;
layerList.push_back(getLayerInfo(getTextureName(*it)));
}
int numTextures = textureIndices.size();
// numTextures-1 since the base layer doesn't need blending
int numBlendmaps = pack ? static_cast<int>(std::ceil((numTextures - 1) / 4.f)) : (numTextures - 1);
int channels = pack ? 4 : 1;
// Second iteration - create and fill in the blend maps
const int blendmapSize = (realTextureSize-1) * chunkSize + 1;
for (int i=0; i<numBlendmaps; ++i)
{
GLenum format = pack ? GL_RGBA : GL_ALPHA;
osg::ref_ptr<osg::Image> image (new osg::Image);
image->allocateImage(blendmapSize, blendmapSize, 1, format, GL_UNSIGNED_BYTE);
unsigned char* pData = image->data();
for (int y=0; y<blendmapSize; ++y)
{
for (int x=0; x<blendmapSize; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x+rowStart, y+colStart);
assert(textureIndicesMap.find(id) != textureIndicesMap.end());
int layerIndex = textureIndicesMap.find(id)->second;
int blendIndex = (pack ? static_cast<int>(std::floor((layerIndex - 1) / 4.f)) : layerIndex - 1);
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
if (blendIndex == i)
pData[(blendmapSize - y - 1)*blendmapSize*channels + x*channels + channel] = 255;
else
pData[(blendmapSize - y - 1)*blendmapSize*channels + x*channels + channel] = 0;
}
}
blendmaps.push_back(image);
}
}
float Storage::getHeightAt(const osg::Vec3f &worldPos)
{
int cellX = static_cast<int>(std::floor(worldPos.x() / 8192.f));
int cellY = static_cast<int>(std::floor(worldPos.y() / 8192.f));
const ESM::Land* land = getLand(cellX, cellY);
if (!land || !(land->mDataTypes&ESM::Land::DATA_VHGT))
return defaultHeight;
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x() - (cellX * 8192))/8192.f;
float nY = (worldPos.y() - (cellY * 8192))/8192.f;
// get left / bottom points (rounded down)
float factor = ESM::Land::LAND_SIZE - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
endX = std::min(endX, ESM::Land::LAND_SIZE-1);
endY = std::min(endY, ESM::Land::LAND_SIZE-1);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
osg::Vec3f v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
osg::Vec3f v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
osg::Vec3f v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
osg::Vec3f v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
// define this plane in terrain space
osg::Plane plane;
// FIXME: deal with differing triangle alignment
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane = osg::Plane(v0, v1, v3);
else
plane = osg::Plane(v1, v2, v3);
}
/*
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
*/
// Solve plane equation for z
return (-plane.getNormal().x() * nX
-plane.getNormal().y() * nY
- plane[3]) / plane.getNormal().z() * 8192;
}
float Storage::getVertexHeight(const ESM::Land *land, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return land->getLandData()->mHeights[y * ESM::Land::LAND_SIZE + x];
}
Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture)
{
OpenThreads::ScopedLock<OpenThreads::Mutex> lock(mLayerInfoMutex);
// Already have this cached?
std::map<std::string, Terrain::LayerInfo>::iterator found = mLayerInfoMap.find(texture);
if (found != mLayerInfoMap.end())
return found->second;
Terrain::LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = texture;
if (mAutoUseNormalMaps)
{
std::string texture_ = texture;
boost::replace_last(texture_, ".", mNormalHeightMapPattern + ".");
if (mVFS->exists(texture_))
{
info.mNormalMap = texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
boost::replace_last(texture_, ".", mNormalMapPattern + ".");
if (mVFS->exists(texture_))
info.mNormalMap = texture_;
}
}
if (mAutoUseSpecularMaps)
{
std::string texture_ = texture;
boost::replace_last(texture_, ".", mSpecularMapPattern + ".");
if (mVFS->exists(texture_))
{
info.mDiffuseMap = texture_;
info.mSpecular = true;
}
}
mLayerInfoMap[texture] = info;
return info;
}
Terrain::LayerInfo Storage::getDefaultLayer()
{
Terrain::LayerInfo info;
info.mDiffuseMap = "textures\\_land_default.dds";
info.mParallax = false;
info.mSpecular = false;
return info;
}
float Storage::getCellWorldSize()
{
return static_cast<float>(ESM::Land::REAL_SIZE);
}
int Storage::getCellVertices()
{
return ESM::Land::LAND_SIZE;
}
}