switch to smol instead of an internal runtime
parent
690ab16587
commit
1308fbdf55
@ -1,354 +0,0 @@
|
||||
use std::fmt;
|
||||
use std::sync::{Arc, Mutex};
|
||||
use std::time::Duration;
|
||||
|
||||
use mio::{self, Evented};
|
||||
use slab::Slab;
|
||||
|
||||
use crate::io;
|
||||
use crate::rt::RUNTIME;
|
||||
use crate::task::{Context, Poll, Waker};
|
||||
|
||||
/// Data associated with a registered I/O handle.
|
||||
#[derive(Debug)]
|
||||
struct Entry {
|
||||
/// A unique identifier.
|
||||
token: mio::Token,
|
||||
|
||||
/// Tasks that are blocked on reading from this I/O handle.
|
||||
readers: Mutex<Readers>,
|
||||
|
||||
/// Tasks that are blocked on writing to this I/O handle.
|
||||
writers: Mutex<Writers>,
|
||||
}
|
||||
|
||||
/// The state of a networking driver.
|
||||
pub struct Reactor {
|
||||
/// A mio instance that polls for new events.
|
||||
poller: mio::Poll,
|
||||
|
||||
/// A list into which mio stores events.
|
||||
events: Mutex<mio::Events>,
|
||||
|
||||
/// A collection of registered I/O handles.
|
||||
entries: Mutex<Slab<Arc<Entry>>>,
|
||||
|
||||
/// Dummy I/O handle that is only used to wake up the polling thread.
|
||||
notify_reg: (mio::Registration, mio::SetReadiness),
|
||||
|
||||
/// An identifier for the notification handle.
|
||||
notify_token: mio::Token,
|
||||
}
|
||||
|
||||
/// The set of `Waker`s interested in read readiness.
|
||||
#[derive(Debug)]
|
||||
struct Readers {
|
||||
/// Flag indicating read readiness.
|
||||
/// (cf. `Watcher::poll_read_ready`)
|
||||
ready: bool,
|
||||
/// The `Waker`s blocked on reading.
|
||||
wakers: Vec<Waker>,
|
||||
}
|
||||
|
||||
/// The set of `Waker`s interested in write readiness.
|
||||
#[derive(Debug)]
|
||||
struct Writers {
|
||||
/// Flag indicating write readiness.
|
||||
/// (cf. `Watcher::poll_write_ready`)
|
||||
ready: bool,
|
||||
/// The `Waker`s blocked on writing.
|
||||
wakers: Vec<Waker>,
|
||||
}
|
||||
|
||||
impl Reactor {
|
||||
/// Creates a new reactor for polling I/O events.
|
||||
pub fn new() -> io::Result<Reactor> {
|
||||
let poller = mio::Poll::new()?;
|
||||
let notify_reg = mio::Registration::new2();
|
||||
|
||||
let mut reactor = Reactor {
|
||||
poller,
|
||||
events: Mutex::new(mio::Events::with_capacity(1000)),
|
||||
entries: Mutex::new(Slab::new()),
|
||||
notify_reg,
|
||||
notify_token: mio::Token(0),
|
||||
};
|
||||
|
||||
// Register a dummy I/O handle for waking up the polling thread.
|
||||
let entry = reactor.register(&reactor.notify_reg.0)?;
|
||||
reactor.notify_token = entry.token;
|
||||
|
||||
Ok(reactor)
|
||||
}
|
||||
|
||||
/// Registers an I/O event source and returns its associated entry.
|
||||
fn register(&self, source: &dyn Evented) -> io::Result<Arc<Entry>> {
|
||||
let mut entries = self.entries.lock().unwrap();
|
||||
|
||||
// Reserve a vacant spot in the slab and use its key as the token value.
|
||||
let vacant = entries.vacant_entry();
|
||||
let token = mio::Token(vacant.key());
|
||||
|
||||
// Allocate an entry and insert it into the slab.
|
||||
let entry = Arc::new(Entry {
|
||||
token,
|
||||
readers: Mutex::new(Readers {
|
||||
ready: false,
|
||||
wakers: Vec::new(),
|
||||
}),
|
||||
writers: Mutex::new(Writers {
|
||||
ready: false,
|
||||
wakers: Vec::new(),
|
||||
}),
|
||||
});
|
||||
vacant.insert(entry.clone());
|
||||
|
||||
// Register the I/O event source in the poller.
|
||||
let interest = mio::Ready::all();
|
||||
let opts = mio::PollOpt::edge();
|
||||
self.poller.register(source, token, interest, opts)?;
|
||||
|
||||
Ok(entry)
|
||||
}
|
||||
|
||||
/// Deregisters an I/O event source associated with an entry.
|
||||
fn deregister(&self, source: &dyn Evented, entry: &Entry) -> io::Result<()> {
|
||||
// Deregister the I/O object from the mio instance.
|
||||
self.poller.deregister(source)?;
|
||||
|
||||
// Remove the entry associated with the I/O object.
|
||||
self.entries.lock().unwrap().remove(entry.token.0);
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Notifies the reactor so that polling stops blocking.
|
||||
pub fn notify(&self) -> io::Result<()> {
|
||||
self.notify_reg.1.set_readiness(mio::Ready::readable())
|
||||
}
|
||||
|
||||
/// Waits on the poller for new events and wakes up tasks blocked on I/O handles.
|
||||
///
|
||||
/// Returns `Ok(true)` if at least one new task was woken.
|
||||
pub fn poll(&self, timeout: Option<Duration>) -> io::Result<bool> {
|
||||
let mut events = self.events.lock().unwrap();
|
||||
|
||||
// Block on the poller until at least one new event comes in.
|
||||
self.poller.poll(&mut events, timeout)?;
|
||||
|
||||
// Lock the entire entry table while we're processing new events.
|
||||
let entries = self.entries.lock().unwrap();
|
||||
|
||||
// The number of woken tasks.
|
||||
let mut progress = false;
|
||||
|
||||
for event in events.iter() {
|
||||
let token = event.token();
|
||||
|
||||
if token == self.notify_token {
|
||||
// If this is the notification token, we just need the notification state.
|
||||
self.notify_reg.1.set_readiness(mio::Ready::empty())?;
|
||||
} else {
|
||||
// Otherwise, look for the entry associated with this token.
|
||||
if let Some(entry) = entries.get(token.0) {
|
||||
// Set the readiness flags from this I/O event.
|
||||
let readiness = event.readiness();
|
||||
|
||||
// Wake up reader tasks blocked on this I/O handle.
|
||||
let reader_interests = mio::Ready::all() - mio::Ready::writable();
|
||||
if !(readiness & reader_interests).is_empty() {
|
||||
let mut readers = entry.readers.lock().unwrap();
|
||||
readers.ready = true;
|
||||
for w in readers.wakers.drain(..) {
|
||||
w.wake();
|
||||
progress = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Wake up writer tasks blocked on this I/O handle.
|
||||
let writer_interests = mio::Ready::all() - mio::Ready::readable();
|
||||
if !(readiness & writer_interests).is_empty() {
|
||||
let mut writers = entry.writers.lock().unwrap();
|
||||
writers.ready = true;
|
||||
for w in writers.wakers.drain(..) {
|
||||
w.wake();
|
||||
progress = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(progress)
|
||||
}
|
||||
}
|
||||
|
||||
/// An I/O handle powered by the networking driver.
|
||||
///
|
||||
/// This handle wraps an I/O event source and exposes a "futurized" interface on top of it,
|
||||
/// implementing traits `AsyncRead` and `AsyncWrite`.
|
||||
pub struct Watcher<T: Evented> {
|
||||
/// Data associated with the I/O handle.
|
||||
entry: Arc<Entry>,
|
||||
|
||||
/// The I/O event source.
|
||||
source: Option<T>,
|
||||
}
|
||||
|
||||
impl<T: Evented> Watcher<T> {
|
||||
/// Creates a new I/O handle.
|
||||
///
|
||||
/// The provided I/O event source will be kept registered inside the reactor's poller for the
|
||||
/// lifetime of the returned I/O handle.
|
||||
pub fn new(source: T) -> Watcher<T> {
|
||||
Watcher {
|
||||
entry: RUNTIME
|
||||
.reactor()
|
||||
.register(&source)
|
||||
.expect("cannot register an I/O event source"),
|
||||
source: Some(source),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a reference to the inner I/O event source.
|
||||
pub fn get_ref(&self) -> &T {
|
||||
self.source.as_ref().unwrap()
|
||||
}
|
||||
|
||||
/// Polls the inner I/O source for a non-blocking read operation.
|
||||
///
|
||||
/// If the operation returns an error of the `io::ErrorKind::WouldBlock` kind, the current task
|
||||
/// will be registered for wakeup when the I/O source becomes readable.
|
||||
pub fn poll_read_with<'a, F, R>(&'a self, cx: &mut Context<'_>, mut f: F) -> Poll<io::Result<R>>
|
||||
where
|
||||
F: FnMut(&'a T) -> io::Result<R>,
|
||||
{
|
||||
// If the operation isn't blocked, return its result.
|
||||
match f(self.source.as_ref().unwrap()) {
|
||||
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
|
||||
res => return Poll::Ready(res),
|
||||
}
|
||||
|
||||
// Lock the waker list.
|
||||
let mut readers = self.entry.readers.lock().unwrap();
|
||||
|
||||
// Try running the operation again.
|
||||
match f(self.source.as_ref().unwrap()) {
|
||||
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
|
||||
res => return Poll::Ready(res),
|
||||
}
|
||||
|
||||
// Register the task if it isn't registered already.
|
||||
|
||||
if readers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
|
||||
readers.wakers.push(cx.waker().clone());
|
||||
}
|
||||
|
||||
Poll::Pending
|
||||
}
|
||||
|
||||
/// Polls the inner I/O source for a non-blocking write operation.
|
||||
///
|
||||
/// If the operation returns an error of the `io::ErrorKind::WouldBlock` kind, the current task
|
||||
/// will be registered for wakeup when the I/O source becomes writable.
|
||||
pub fn poll_write_with<'a, F, R>(
|
||||
&'a self,
|
||||
cx: &mut Context<'_>,
|
||||
mut f: F,
|
||||
) -> Poll<io::Result<R>>
|
||||
where
|
||||
F: FnMut(&'a T) -> io::Result<R>,
|
||||
{
|
||||
// If the operation isn't blocked, return its result.
|
||||
match f(self.source.as_ref().unwrap()) {
|
||||
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
|
||||
res => return Poll::Ready(res),
|
||||
}
|
||||
|
||||
// Lock the waker list.
|
||||
let mut writers = self.entry.writers.lock().unwrap();
|
||||
|
||||
// Try running the operation again.
|
||||
match f(self.source.as_ref().unwrap()) {
|
||||
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
|
||||
res => return Poll::Ready(res),
|
||||
}
|
||||
|
||||
// Register the task if it isn't registered already.
|
||||
if writers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
|
||||
writers.wakers.push(cx.waker().clone());
|
||||
}
|
||||
|
||||
Poll::Pending
|
||||
}
|
||||
|
||||
/// Polls the inner I/O source until a non-blocking read can be performed.
|
||||
///
|
||||
/// If non-blocking reads are currently not possible, the `Waker`
|
||||
/// will be saved and notified when it can read non-blocking
|
||||
/// again.
|
||||
#[allow(dead_code)]
|
||||
pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<()> {
|
||||
// Lock the waker list.
|
||||
let mut readers = self.entry.readers.lock().unwrap();
|
||||
if readers.ready {
|
||||
return Poll::Ready(());
|
||||
}
|
||||
// Register the task if it isn't registered already.
|
||||
if readers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
|
||||
readers.wakers.push(cx.waker().clone());
|
||||
}
|
||||
Poll::Pending
|
||||
}
|
||||
|
||||
/// Polls the inner I/O source until a non-blocking write can be performed.
|
||||
///
|
||||
/// If non-blocking writes are currently not possible, the `Waker`
|
||||
/// will be saved and notified when it can write non-blocking
|
||||
/// again.
|
||||
pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<()> {
|
||||
// Lock the waker list.
|
||||
let mut writers = self.entry.writers.lock().unwrap();
|
||||
if writers.ready {
|
||||
return Poll::Ready(());
|
||||
}
|
||||
// Register the task if it isn't registered already.
|
||||
if writers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
|
||||
writers.wakers.push(cx.waker().clone());
|
||||
}
|
||||
Poll::Pending
|
||||
}
|
||||
|
||||
/// Deregisters and returns the inner I/O source.
|
||||
///
|
||||
/// This method is typically used to convert `Watcher`s to raw file descriptors/handles.
|
||||
#[allow(dead_code)]
|
||||
pub fn into_inner(mut self) -> T {
|
||||
let source = self.source.take().unwrap();
|
||||
RUNTIME
|
||||
.reactor()
|
||||
.deregister(&source, &self.entry)
|
||||
.expect("cannot deregister I/O event source");
|
||||
source
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Evented> Drop for Watcher<T> {
|
||||
fn drop(&mut self) {
|
||||
if let Some(ref source) = self.source {
|
||||
RUNTIME
|
||||
.reactor()
|
||||
.deregister(source, &self.entry)
|
||||
.expect("cannot deregister I/O event source");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T: Evented + fmt::Debug> fmt::Debug for Watcher<T> {
|
||||
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
||||
f.debug_struct("Watcher")
|
||||
.field("entry", &self.entry)
|
||||
.field("source", &self.source)
|
||||
.finish()
|
||||
}
|
||||
}
|
@ -1,415 +0,0 @@
|
||||
use std::cell::Cell;
|
||||
use std::io;
|
||||
use std::iter;
|
||||
use std::ptr;
|
||||
use std::sync::atomic::{self, Ordering};
|
||||
use std::sync::{Arc, Mutex};
|
||||
use std::thread;
|
||||
use std::time::Duration;
|
||||
|
||||
use crossbeam_deque::{Injector, Steal, Stealer, Worker};
|
||||
use crossbeam_utils::thread::scope;
|
||||
use once_cell::unsync::OnceCell;
|
||||
|
||||
use crate::rt::Reactor;
|
||||
use crate::sync::Spinlock;
|
||||
use crate::task::Runnable;
|
||||
use crate::utils::{abort_on_panic, random};
|
||||
|
||||
thread_local! {
|
||||
/// A reference to the current machine, if the current thread runs tasks.
|
||||
static MACHINE: OnceCell<Arc<Machine>> = OnceCell::new();
|
||||
|
||||
/// This flag is set to true whenever `task::yield_now()` is invoked.
|
||||
static YIELD_NOW: Cell<bool> = Cell::new(false);
|
||||
}
|
||||
|
||||
struct Scheduler {
|
||||
/// Set to `true` while a machine is polling the reactor.
|
||||
polling: bool,
|
||||
|
||||
/// Idle processors.
|
||||
processors: Vec<Processor>,
|
||||
|
||||
/// Running machines.
|
||||
machines: Vec<Arc<Machine>>,
|
||||
}
|
||||
|
||||
/// An async runtime.
|
||||
pub struct Runtime {
|
||||
/// The reactor.
|
||||
reactor: Reactor,
|
||||
|
||||
/// The global queue of tasks.
|
||||
injector: Injector<Runnable>,
|
||||
|
||||
/// Handles to local queues for stealing work.
|
||||
stealers: Vec<Stealer<Runnable>>,
|
||||
|
||||
/// The scheduler state.
|
||||
sched: Mutex<Scheduler>,
|
||||
}
|
||||
|
||||
impl Runtime {
|
||||
/// Creates a new runtime.
|
||||
pub fn new() -> Runtime {
|
||||
let cpus = num_cpus::get().max(1);
|
||||
let processors: Vec<_> = (0..cpus).map(|_| Processor::new()).collect();
|
||||
let stealers = processors.iter().map(|p| p.worker.stealer()).collect();
|
||||
|
||||
Runtime {
|
||||
reactor: Reactor::new().unwrap(),
|
||||
injector: Injector::new(),
|
||||
stealers,
|
||||
sched: Mutex::new(Scheduler {
|
||||
processors,
|
||||
machines: Vec::new(),
|
||||
polling: false,
|
||||
}),
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns a reference to the reactor.
|
||||
pub fn reactor(&self) -> &Reactor {
|
||||
&self.reactor
|
||||
}
|
||||
|
||||
/// Flushes the task slot so that tasks get run more fairly.
|
||||
pub fn yield_now(&self) {
|
||||
YIELD_NOW.with(|flag| flag.set(true));
|
||||
}
|
||||
|
||||
/// Schedules a task.
|
||||
pub fn schedule(&self, task: Runnable) {
|
||||
MACHINE.with(|machine| {
|
||||
// If the current thread is a worker thread, schedule it onto the current machine.
|
||||
// Otherwise, push it into the global task queue.
|
||||
match machine.get() {
|
||||
None => {
|
||||
self.injector.push(task);
|
||||
self.notify();
|
||||
}
|
||||
Some(m) => m.schedule(&self, task),
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/// Runs the runtime on the current thread.
|
||||
pub fn run(&self) {
|
||||
scope(|s| {
|
||||
let mut idle = 0;
|
||||
let mut delay = 0;
|
||||
|
||||
loop {
|
||||
// Get a list of new machines to start, if any need to be started.
|
||||
for m in self.make_machines() {
|
||||
idle = 0;
|
||||
|
||||
s.builder()
|
||||
.name("async-std/machine".to_string())
|
||||
.spawn(move |_| {
|
||||
abort_on_panic(|| {
|
||||
let _ = MACHINE.with(|machine| machine.set(m.clone()));
|
||||
m.run(self);
|
||||
})
|
||||
})
|
||||
.expect("cannot start a machine thread");
|
||||
}
|
||||
|
||||
// Sleep for a bit longer if the scheduler state hasn't changed in a while.
|
||||
if idle > 10 {
|
||||
delay = (delay * 2).min(10_000);
|
||||
} else {
|
||||
idle += 1;
|
||||
delay = 1000;
|
||||
}
|
||||
|
||||
thread::sleep(Duration::from_micros(delay));
|
||||
}
|
||||
})
|
||||
.unwrap();
|
||||
}
|
||||
|
||||
/// Returns a list of machines that need to be started.
|
||||
fn make_machines(&self) -> Vec<Arc<Machine>> {
|
||||
let mut sched = self.sched.lock().unwrap();
|
||||
let mut to_start = Vec::new();
|
||||
|
||||
// If no machine has been polling the reactor in a while, that means the runtime is
|
||||
// overloaded with work and we need to start another machine.
|
||||
if !sched.polling {
|
||||
if let Some(p) = sched.processors.pop() {
|
||||
let m = Arc::new(Machine::new(p));
|
||||
to_start.push(m.clone());
|
||||
sched.machines.push(m);
|
||||
}
|
||||
}
|
||||
|
||||
to_start
|
||||
}
|
||||
|
||||
/// Unparks a thread polling the reactor.
|
||||
fn notify(&self) {
|
||||
atomic::fence(Ordering::SeqCst);
|
||||
self.reactor.notify().unwrap();
|
||||
}
|
||||
|
||||
/// Attempts to poll the reactor without blocking on it.
|
||||
///
|
||||
/// Returns `Ok(true)` if at least one new task was woken.
|
||||
///
|
||||
/// This function might not poll the reactor at all so do not rely on it doing anything. Only
|
||||
/// use for optimization.
|
||||
fn quick_poll(&self) -> io::Result<bool> {
|
||||
if let Ok(sched) = self.sched.try_lock() {
|
||||
if !sched.polling {
|
||||
return self.reactor.poll(Some(Duration::from_secs(0)));
|
||||
}
|
||||
}
|
||||
Ok(false)
|
||||
}
|
||||
}
|
||||
|
||||
/// A thread running a processor.
|
||||
struct Machine {
|
||||
/// Holds the processor until it gets stolen.
|
||||
processor: Spinlock<Option<Processor>>,
|
||||
}
|
||||
|
||||
impl Machine {
|
||||
/// Creates a new machine running a processor.
|
||||
fn new(p: Processor) -> Machine {
|
||||
Machine {
|
||||
processor: Spinlock::new(Some(p)),
|
||||
}
|
||||
}
|
||||
|
||||
/// Schedules a task onto the machine.
|
||||
fn schedule(&self, rt: &Runtime, task: Runnable) {
|
||||
match self.processor.lock().as_mut() {
|
||||
None => {
|
||||
rt.injector.push(task);
|
||||
rt.notify();
|
||||
}
|
||||
Some(p) => p.schedule(rt, task),
|
||||
}
|
||||
}
|
||||
|
||||
/// Finds the next runnable task.
|
||||
fn find_task(&self, rt: &Runtime) -> Steal<Runnable> {
|
||||
let mut retry = false;
|
||||
|
||||
// First try finding a task in the local queue or in the global queue.
|
||||
if let Some(p) = self.processor.lock().as_mut() {
|
||||
if let Some(task) = p.pop_task() {
|
||||
return Steal::Success(task);
|
||||
}
|
||||
|
||||
match p.steal_from_global(rt) {
|
||||
Steal::Empty => {}
|
||||
Steal::Retry => retry = true,
|
||||
Steal::Success(task) => return Steal::Success(task),
|
||||
}
|
||||
}
|
||||
|
||||
// Try polling the reactor, but don't block on it.
|
||||
let progress = rt.quick_poll().unwrap();
|
||||
|
||||
// Try finding a task in the local queue, which might hold tasks woken by the reactor. If
|
||||
// the local queue is still empty, try stealing from other processors.
|
||||
if let Some(p) = self.processor.lock().as_mut() {
|
||||
if progress {
|
||||
if let Some(task) = p.pop_task() {
|
||||
return Steal::Success(task);
|
||||
}
|
||||
}
|
||||
|
||||
match p.steal_from_others(rt) {
|
||||
Steal::Empty => {}
|
||||
Steal::Retry => retry = true,
|
||||
Steal::Success(task) => return Steal::Success(task),
|
||||
}
|
||||
}
|
||||
|
||||
if retry { Steal::Retry } else { Steal::Empty }
|
||||
}
|
||||
|
||||
/// Runs the machine on the current thread.
|
||||
fn run(&self, rt: &Runtime) {
|
||||
/// Number of yields when no runnable task is found.
|
||||
const YIELDS: u32 = 3;
|
||||
/// Number of short sleeps when no runnable task in found.
|
||||
const SLEEPS: u32 = 10;
|
||||
/// Number of runs in a row before the global queue is inspected.
|
||||
const RUNS: u32 = 64;
|
||||
|
||||
// The number of times the thread found work in a row.
|
||||
let mut runs = 0;
|
||||
// The number of times the thread didn't find work in a row.
|
||||
let mut fails = 0;
|
||||
|
||||
loop {
|
||||
// Check if `task::yield_now()` was invoked and flush the slot if so.
|
||||
YIELD_NOW.with(|flag| {
|
||||
if flag.replace(false) {
|
||||
if let Some(p) = self.processor.lock().as_mut() {
|
||||
p.flush_slot(rt);
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// After a number of runs in a row, do some work to ensure no task is left behind
|
||||
// indefinitely. Poll the reactor, steal tasks from the global queue, and flush the
|
||||
// task slot.
|
||||
if runs >= RUNS {
|
||||
runs = 0;
|
||||
rt.quick_poll().unwrap();
|
||||
|
||||
if let Some(p) = self.processor.lock().as_mut() {
|
||||
if let Steal::Success(task) = p.steal_from_global(rt) {
|
||||
p.schedule(rt, task);
|
||||
}
|
||||
|
||||
p.flush_slot(rt);
|
||||
}
|
||||
}
|
||||
|
||||
// Try to find a runnable task.
|
||||
if let Steal::Success(task) = self.find_task(rt) {
|
||||
task.run();
|
||||
runs += 1;
|
||||
fails = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
fails += 1;
|
||||
|
||||
// Yield the current thread a few times.
|
||||
if fails <= YIELDS {
|
||||
thread::yield_now();
|
||||
continue;
|
||||
}
|
||||
|
||||
// Put the current thread to sleep a few times.
|
||||
if fails <= YIELDS + SLEEPS {
|
||||
let opt_p = self.processor.lock().take();
|
||||
thread::sleep(Duration::from_micros(10));
|
||||
*self.processor.lock() = opt_p;
|
||||
continue;
|
||||
}
|
||||
|
||||
let mut sched = rt.sched.lock().unwrap();
|
||||
|
||||
// One final check for available tasks while the scheduler is locked.
|
||||
if let Some(task) = iter::repeat_with(|| self.find_task(rt))
|
||||
.find(|s| !s.is_retry())
|
||||
.and_then(|s| s.success())
|
||||
{
|
||||
self.schedule(rt, task);
|
||||
continue;
|
||||
}
|
||||
|
||||
// If another thread is already blocked on the reactor, there is no point in keeping
|
||||
// the current thread around since there is too little work to do.
|
||||
if sched.polling {
|
||||
break;
|
||||
}
|
||||
|
||||
// Take out the machine associated with the current thread.
|
||||
let m = match sched
|
||||
.machines
|
||||
.iter()
|
||||
.position(|elem| ptr::eq(&**elem, self))
|
||||
{
|
||||
None => break, // The processor was stolen.
|
||||
Some(pos) => sched.machines.swap_remove(pos),
|
||||
};
|
||||
|
||||
// Unlock the schedule poll the reactor until new I/O events arrive.
|
||||
sched.polling = true;
|
||||
drop(sched);
|
||||
rt.reactor.poll(None).unwrap();
|
||||
|
||||
// Lock the scheduler again and re-register the machine.
|
||||
sched = rt.sched.lock().unwrap();
|
||||
sched.polling = false;
|
||||
sched.machines.push(m);
|
||||
|
||||
runs = 0;
|
||||
fails = 0;
|
||||
}
|
||||
|
||||
// When shutting down the thread, take the processor out if still available.
|
||||
let opt_p = self.processor.lock().take();
|
||||
|
||||
// Return the processor to the scheduler and remove the machine.
|
||||
if let Some(p) = opt_p {
|
||||
let mut sched = rt.sched.lock().unwrap();
|
||||
sched.processors.push(p);
|
||||
sched.machines.retain(|elem| !ptr::eq(&**elem, self));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct Processor {
|
||||
/// The local task queue.
|
||||
worker: Worker<Runnable>,
|
||||
|
||||
/// Contains the next task to run as an optimization that skips the queue.
|
||||
slot: Option<Runnable>,
|
||||
}
|
||||
|
||||
impl Processor {
|
||||
/// Creates a new processor.
|
||||
fn new() -> Processor {
|
||||
Processor {
|
||||
worker: Worker::new_fifo(),
|
||||
slot: None,
|
||||
}
|
||||
}
|
||||
|
||||
/// Schedules a task to run on this processor.
|
||||
fn schedule(&mut self, rt: &Runtime, task: Runnable) {
|
||||
match self.slot.replace(task) {
|
||||
None => {}
|
||||
Some(task) => {
|
||||
self.worker.push(task);
|
||||
rt.notify();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Flushes a task from the slot into the local queue.
|
||||
fn flush_slot(&mut self, rt: &Runtime) {
|
||||
if let Some(task) = self.slot.take() {
|
||||
self.worker.push(task);
|
||||
rt.notify();
|
||||
}
|
||||
}
|
||||
|
||||
/// Pops a task from this processor.
|
||||
fn pop_task(&mut self) -> Option<Runnable> {
|
||||
self.slot.take().or_else(|| self.worker.pop())
|
||||
}
|
||||
|
||||
/// Steals a task from the global queue.
|
||||
fn steal_from_global(&self, rt: &Runtime) -> Steal<Runnable> {
|
||||
rt.injector.steal_batch_and_pop(&self.worker)
|
||||
}
|
||||
|
||||
/// Steals a task from other processors.
|
||||
fn steal_from_others(&self, rt: &Runtime) -> Steal<Runnable> {
|
||||
// Pick a random starting point in the list of queues.
|
||||
let len = rt.stealers.len();
|
||||
let start = random(len as u32) as usize;
|
||||
|
||||
// Create an iterator over stealers that starts from the chosen point.
|
||||
let (l, r) = rt.stealers.split_at(start);
|
||||
let stealers = r.iter().chain(l.iter());
|
||||
|
||||
// Try stealing a batch of tasks from each queue.
|
||||
stealers
|
||||
.map(|s| s.steal_batch_and_pop(&self.worker))
|
||||
.collect()
|
||||
}
|
||||
}
|
@ -1,89 +0,0 @@
|
||||
use std::cell::UnsafeCell;
|
||||
use std::ops::{Deref, DerefMut};
|
||||
use std::sync::atomic::{AtomicBool, Ordering};
|
||||
|
||||
use crossbeam_utils::Backoff;
|
||||
|
||||
/// A simple spinlock.
|
||||
#[derive(Debug)]
|
||||
pub struct Spinlock<T> {
|
||||
locked: AtomicBool,
|
||||
value: UnsafeCell<T>,
|
||||
}
|
||||
|
||||
unsafe impl<T: Send> Send for Spinlock<T> {}
|
||||
unsafe impl<T: Send> Sync for Spinlock<T> {}
|
||||
|
||||
impl<T> Spinlock<T> {
|
||||
/// Returns a new spinlock initialized with `value`.
|
||||
pub const fn new(value: T) -> Spinlock<T> {
|
||||
Spinlock {
|
||||
locked: AtomicBool::new(false),
|
||||
value: UnsafeCell::new(value),
|
||||
}
|
||||
}
|
||||
|
||||
/// Locks the spinlock.
|
||||
pub fn lock(&self) -> SpinlockGuard<'_, T> {
|
||||
let backoff = Backoff::new();
|
||||
while self.locked.compare_and_swap(false, true, Ordering::Acquire) {
|
||||
backoff.snooze();
|
||||
}
|
||||
SpinlockGuard { parent: self }
|
||||
}
|
||||
}
|
||||
|
||||
/// A guard holding a spinlock locked.
|
||||
#[derive(Debug)]
|
||||
pub struct SpinlockGuard<'a, T> {
|
||||
parent: &'a Spinlock<T>,
|
||||
}
|
||||
|
||||
unsafe impl<T: Send> Send for SpinlockGuard<'_, T> {}
|
||||
unsafe impl<T: Sync> Sync for SpinlockGuard<'_, T> {}
|
||||
|
||||
impl<'a, T> Drop for SpinlockGuard<'a, T> {
|
||||
fn drop(&mut self) {
|
||||
self.parent.locked.store(false, Ordering::Release);
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T> Deref for SpinlockGuard<'a, T> {
|
||||
type Target = T;
|
||||
|
||||
fn deref(&self) -> &T {
|
||||
unsafe { &*self.parent.value.get() }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T> DerefMut for SpinlockGuard<'a, T> {
|
||||
fn deref_mut(&mut self) -> &mut T {
|
||||
unsafe { &mut *self.parent.value.get() }
|
||||
}
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn spinlock() {
|
||||
use std::sync::Arc;
|
||||
|
||||
use crate::sync::{Spinlock};
|
||||
use crate::task;
|
||||
|
||||
task::block_on(async {
|
||||
|
||||
let m = Arc::new(Spinlock::new(0));
|
||||
let mut tasks = vec![];
|
||||
|
||||
for _ in 0..10 {
|
||||
let m = m.clone();
|
||||
tasks.push(task::spawn(async move {
|
||||
*m.lock() += 1;
|
||||
}));
|
||||
}
|
||||
|
||||
for t in tasks {
|
||||
t.await;
|
||||
}
|
||||
assert_eq!(*m.lock(), 10);
|
||||
})
|
||||
}
|
Loading…
Reference in New Issue