switch to smol instead of an internal runtime

pull/757/head
dignifiedquire 5 years ago
parent 690ab16587
commit 1308fbdf55

@ -48,6 +48,7 @@ std = [
"once_cell", "once_cell",
"pin-utils", "pin-utils",
"slab", "slab",
"piper",
] ]
alloc = [ alloc = [
"futures-core/alloc", "futures-core/alloc",
@ -76,6 +77,7 @@ pin-project-lite = { version = "0.1.4", optional = true }
pin-utils = { version = "0.1.0-alpha.4", optional = true } pin-utils = { version = "0.1.0-alpha.4", optional = true }
slab = { version = "0.4.2", optional = true } slab = { version = "0.4.2", optional = true }
smol = { path = "../smol", optional = true } smol = { path = "../smol", optional = true }
piper = { git = "https://github.com/stjepang/piper.git", branch = "master", optional = true }
[dev-dependencies] [dev-dependencies]
femme = "1.3.0" femme = "1.3.0"

@ -1,13 +1,13 @@
use std::future::Future; use std::future::Future;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::pin::Pin; use std::pin::Pin;
use std::sync::Arc;
use crate::future; use smol::Async;
use crate::io; use crate::io;
use crate::rt::Watcher;
use crate::net::{TcpStream, ToSocketAddrs}; use crate::net::{TcpStream, ToSocketAddrs};
use crate::stream::Stream; use crate::stream::Stream;
use crate::sync::Arc;
use crate::task::{Context, Poll}; use crate::task::{Context, Poll};
/// A TCP socket server, listening for connections. /// A TCP socket server, listening for connections.
@ -49,7 +49,7 @@ use crate::task::{Context, Poll};
/// ``` /// ```
#[derive(Debug)] #[derive(Debug)]
pub struct TcpListener { pub struct TcpListener {
watcher: Watcher<mio::net::TcpListener>, watcher: Async<std::net::TcpListener>,
} }
impl TcpListener { impl TcpListener {
@ -79,11 +79,9 @@ impl TcpListener {
let addrs = addrs.to_socket_addrs().await?; let addrs = addrs.to_socket_addrs().await?;
for addr in addrs { for addr in addrs {
match mio::net::TcpListener::bind(&addr) { match Async::<std::net::TcpListener>::bind(&addr) {
Ok(mio_listener) => { Ok(listener) => {
return Ok(TcpListener { return Ok(TcpListener { watcher: listener });
watcher: Watcher::new(mio_listener),
});
} }
Err(err) => last_err = Some(err), Err(err) => last_err = Some(err),
} }
@ -114,13 +112,9 @@ impl TcpListener {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> { pub async fn accept(&self) -> io::Result<(TcpStream, SocketAddr)> {
let (io, addr) = let (stream, addr) = self.watcher.accept().await?;
future::poll_fn(|cx| self.watcher.poll_read_with(cx, |inner| inner.accept_std()))
.await?;
let mio_stream = mio::net::TcpStream::from_stream(io)?;
let stream = TcpStream { let stream = TcpStream {
watcher: Arc::new(Watcher::new(mio_stream)), watcher: Arc::new(stream),
}; };
Ok((stream, addr)) Ok((stream, addr))
} }
@ -206,9 +200,8 @@ impl<'a> Stream for Incoming<'a> {
impl From<std::net::TcpListener> for TcpListener { impl From<std::net::TcpListener> for TcpListener {
/// Converts a `std::net::TcpListener` into its asynchronous equivalent. /// Converts a `std::net::TcpListener` into its asynchronous equivalent.
fn from(listener: std::net::TcpListener) -> TcpListener { fn from(listener: std::net::TcpListener) -> TcpListener {
let mio_listener = mio::net::TcpListener::from_std(listener).unwrap();
TcpListener { TcpListener {
watcher: Watcher::new(mio_listener), watcher: Async::new(listener).expect("TcpListener is known to be good"),
} }
} }
} }
@ -230,29 +223,29 @@ cfg_unix! {
impl IntoRawFd for TcpListener { impl IntoRawFd for TcpListener {
fn into_raw_fd(self) -> RawFd { fn into_raw_fd(self) -> RawFd {
self.watcher.into_inner().into_raw_fd() self.watcher.into_raw_fd()
} }
} }
} }
cfg_windows! { cfg_windows! {
// use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle}; use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
//
// impl AsRawSocket for TcpListener { impl AsRawSocket for TcpListener {
// fn as_raw_socket(&self) -> RawSocket { fn as_raw_socket(&self) -> RawSocket {
// self.raw_socket self.watcher.as_raw_socket()
// } }
// } }
//
// impl FromRawSocket for TcpListener { impl FromRawSocket for TcpListener {
// unsafe fn from_raw_socket(handle: RawSocket) -> TcpListener { unsafe fn from_raw_socket(handle: RawSocket) -> TcpListener {
// net::TcpListener::from_raw_socket(handle).try_into().unwrap() net::TcpListener::from_raw_socket(handle).try_into().unwrap()
// } }
// } }
//
// impl IntoRawSocket for TcpListener { impl IntoRawSocket for TcpListener {
// fn into_raw_socket(self) -> RawSocket { fn into_raw_socket(self) -> RawSocket {
// self.raw_socket self.watcher.into_raw_socket()
// } }
// } }
} }

@ -1,12 +1,12 @@
use std::io::{IoSlice, IoSliceMut, Read as _, Write as _}; use std::io::{IoSlice, IoSliceMut};
use std::net::SocketAddr; use std::net::SocketAddr;
use std::pin::Pin; use std::pin::Pin;
use std::sync::Arc;
use crate::future; use smol::Async;
use crate::io::{self, Read, Write}; use crate::io::{self, Read, Write};
use crate::rt::Watcher;
use crate::net::ToSocketAddrs; use crate::net::ToSocketAddrs;
use crate::sync::Arc;
use crate::task::{Context, Poll}; use crate::task::{Context, Poll};
/// A TCP stream between a local and a remote socket. /// A TCP stream between a local and a remote socket.
@ -47,7 +47,7 @@ use crate::task::{Context, Poll};
/// ``` /// ```
#[derive(Debug, Clone)] #[derive(Debug, Clone)]
pub struct TcpStream { pub struct TcpStream {
pub(super) watcher: Arc<Watcher<mio::net::TcpStream>>, pub(super) watcher: Arc<Async<std::net::TcpStream>>,
} }
impl TcpStream { impl TcpStream {
@ -75,28 +75,16 @@ impl TcpStream {
let addrs = addrs.to_socket_addrs().await?; let addrs = addrs.to_socket_addrs().await?;
for addr in addrs { for addr in addrs {
// mio's TcpStream::connect is non-blocking and may just be in progress match Async::<std::net::TcpStream>::connect(&addr).await {
// when it returns with `Ok`. We therefore wait for write readiness to Ok(stream) => {
// be sure the connection has either been established or there was an return Ok(TcpStream {
// error which we check for afterwards. watcher: Arc::new(stream),
let watcher = match mio::net::TcpStream::connect(&addr) { });
Ok(s) => Watcher::new(s), }
Err(e) => { Err(e) => {
last_err = Some(e); last_err = Some(e);
continue; continue;
} }
};
future::poll_fn(|cx| watcher.poll_write_ready(cx)).await;
match watcher.get_ref().take_error() {
Ok(None) => {
return Ok(TcpStream {
watcher: Arc::new(watcher),
});
}
Ok(Some(e)) => last_err = Some(e),
Err(e) => last_err = Some(e),
} }
} }
@ -214,7 +202,7 @@ impl TcpStream {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> { pub async fn peek(&self, buf: &mut [u8]) -> io::Result<usize> {
future::poll_fn(|cx| self.watcher.poll_read_with(cx, |inner| inner.peek(buf))).await self.watcher.peek(buf).await
} }
/// Gets the value of the `TCP_NODELAY` option on this socket. /// Gets the value of the `TCP_NODELAY` option on this socket.
@ -317,7 +305,7 @@ impl Read for &TcpStream {
cx: &mut Context<'_>, cx: &mut Context<'_>,
buf: &mut [u8], buf: &mut [u8],
) -> Poll<io::Result<usize>> { ) -> Poll<io::Result<usize>> {
self.watcher.poll_read_with(cx, |mut inner| inner.read(buf)) Pin::new(&mut &*self.watcher).poll_read(cx, buf)
} }
} }
@ -353,26 +341,23 @@ impl Write for &TcpStream {
cx: &mut Context<'_>, cx: &mut Context<'_>,
buf: &[u8], buf: &[u8],
) -> Poll<io::Result<usize>> { ) -> Poll<io::Result<usize>> {
self.watcher Pin::new(&mut &*self.watcher).poll_write(cx, buf)
.poll_write_with(cx, |mut inner| inner.write(buf))
} }
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.watcher.poll_write_with(cx, |mut inner| inner.flush()) Pin::new(&mut &*self.watcher).poll_flush(cx)
} }
fn poll_close(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> { fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.shutdown(std::net::Shutdown::Write)?; Pin::new(&mut &*self.watcher).poll_close(cx)
Poll::Ready(Ok(()))
} }
} }
impl From<std::net::TcpStream> for TcpStream { impl From<std::net::TcpStream> for TcpStream {
/// Converts a `std::net::TcpStream` into its asynchronous equivalent. /// Converts a `std::net::TcpStream` into its asynchronous equivalent.
fn from(stream: std::net::TcpStream) -> TcpStream { fn from(stream: std::net::TcpStream) -> TcpStream {
let mio_stream = mio::net::TcpStream::from_stream(stream).unwrap();
TcpStream { TcpStream {
watcher: Arc::new(Watcher::new(mio_stream)), watcher: Arc::new(Async::new(stream).expect("TcpStream is known to be good")),
} }
} }
} }
@ -403,23 +388,23 @@ cfg_unix! {
} }
cfg_windows! { cfg_windows! {
// use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle}; use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
//
// impl AsRawSocket for TcpStream { impl AsRawSocket for TcpStream {
// fn as_raw_socket(&self) -> RawSocket { fn as_raw_socket(&self) -> RawSocket {
// self.raw_socket self.raw_socket
// } }
// } }
//
// impl FromRawSocket for TcpStream { impl FromRawSocket for TcpStream {
// unsafe fn from_raw_socket(handle: RawSocket) -> TcpStream { unsafe fn from_raw_socket(handle: RawSocket) -> TcpStream {
// net::TcpStream::from_raw_socket(handle).try_into().unwrap() net::TcpStream::from_raw_socket(handle).try_into().unwrap()
// } }
// } }
//
// impl IntoRawSocket for TcpListener { impl IntoRawSocket for TcpListener {
// fn into_raw_socket(self) -> RawSocket { fn into_raw_socket(self) -> RawSocket {
// self.raw_socket self.raw_socket
// } }
// } }
} }

@ -2,9 +2,9 @@ use std::io;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::net::{Ipv4Addr, Ipv6Addr}; use std::net::{Ipv4Addr, Ipv6Addr};
use crate::future; use smol::Async;
use crate::net::ToSocketAddrs; use crate::net::ToSocketAddrs;
use crate::rt::Watcher;
use crate::utils::Context as _; use crate::utils::Context as _;
/// A UDP socket. /// A UDP socket.
@ -45,7 +45,7 @@ use crate::utils::Context as _;
/// ``` /// ```
#[derive(Debug)] #[derive(Debug)]
pub struct UdpSocket { pub struct UdpSocket {
watcher: Watcher<mio::net::UdpSocket>, watcher: Async<std::net::UdpSocket>,
} }
impl UdpSocket { impl UdpSocket {
@ -69,16 +69,12 @@ impl UdpSocket {
/// ``` /// ```
pub async fn bind<A: ToSocketAddrs>(addrs: A) -> io::Result<UdpSocket> { pub async fn bind<A: ToSocketAddrs>(addrs: A) -> io::Result<UdpSocket> {
let mut last_err = None; let mut last_err = None;
let addrs = addrs let addrs = addrs.to_socket_addrs().await?;
.to_socket_addrs()
.await?;
for addr in addrs { for addr in addrs {
match mio::net::UdpSocket::bind(&addr) { match Async::<std::net::UdpSocket>::bind(&addr) {
Ok(mio_socket) => { Ok(socket) => {
return Ok(UdpSocket { return Ok(UdpSocket { watcher: socket });
watcher: Watcher::new(mio_socket),
});
} }
Err(err) => last_err = Some(err), Err(err) => last_err = Some(err),
} }
@ -153,10 +149,8 @@ impl UdpSocket {
} }
}; };
future::poll_fn(|cx| {
self.watcher self.watcher
.poll_write_with(cx, |inner| inner.send_to(buf, &addr)) .send_to(buf, addr)
})
.await .await
.context(|| format!("could not send packet to {}", addr)) .context(|| format!("could not send packet to {}", addr))
} }
@ -181,22 +175,7 @@ impl UdpSocket {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
future::poll_fn(|cx| { self.watcher.recv_from(buf).await
self.watcher
.poll_read_with(cx, |inner| inner.recv_from(buf))
})
.await
.context(|| {
use std::fmt::Write;
let mut error = String::from("could not receive data on ");
if let Ok(addr) = self.local_addr() {
let _ = write!(&mut error, "{}", addr);
} else {
error.push_str("socket");
}
error
})
} }
/// Connects the UDP socket to a remote address. /// Connects the UDP socket to a remote address.
@ -267,19 +246,7 @@ impl UdpSocket {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
future::poll_fn(|cx| self.watcher.poll_write_with(cx, |inner| inner.send(buf))) self.watcher.send(buf).await
.await
.context(|| {
use std::fmt::Write;
let mut error = String::from("could not send data on ");
if let Ok(addr) = self.local_addr() {
let _ = write!(&mut error, "{}", addr);
} else {
error.push_str("socket");
}
error
})
} }
/// Receives data from the socket. /// Receives data from the socket.
@ -303,19 +270,7 @@ impl UdpSocket {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
future::poll_fn(|cx| self.watcher.poll_read_with(cx, |inner| inner.recv(buf))) self.watcher.recv(buf).await
.await
.context(|| {
use std::fmt::Write;
let mut error = String::from("could not receive data on ");
if let Ok(addr) = self.local_addr() {
let _ = write!(&mut error, "{}", addr);
} else {
error.push_str("socket");
}
error
})
} }
/// Gets the value of the `SO_BROADCAST` option for this socket. /// Gets the value of the `SO_BROADCAST` option for this socket.
@ -498,9 +453,8 @@ impl UdpSocket {
impl From<std::net::UdpSocket> for UdpSocket { impl From<std::net::UdpSocket> for UdpSocket {
/// Converts a `std::net::UdpSocket` into its asynchronous equivalent. /// Converts a `std::net::UdpSocket` into its asynchronous equivalent.
fn from(socket: std::net::UdpSocket) -> UdpSocket { fn from(socket: std::net::UdpSocket) -> UdpSocket {
let mio_socket = mio::net::UdpSocket::from_socket(socket).unwrap();
UdpSocket { UdpSocket {
watcher: Watcher::new(mio_socket), watcher: Async::new(socket).expect("UdpSocket is known to be good"),
} }
} }
} }
@ -522,29 +476,29 @@ cfg_unix! {
impl IntoRawFd for UdpSocket { impl IntoRawFd for UdpSocket {
fn into_raw_fd(self) -> RawFd { fn into_raw_fd(self) -> RawFd {
self.watcher.into_inner().into_raw_fd() self.watcher.into_raw_fd()
} }
} }
} }
cfg_windows! { cfg_windows! {
// use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle}; use crate::os::windows::io::{AsRawHandle, FromRawHandle, IntoRawHandle, RawHandle};
//
// impl AsRawSocket for UdpSocket { impl AsRawSocket for UdpSocket {
// fn as_raw_socket(&self) -> RawSocket { fn as_raw_socket(&self) -> RawSocket {
// self.raw_socket self.watcher.as_raw_socket()
// } }
// } }
//
// impl FromRawSocket for UdpSocket { impl FromRawSocket for UdpSocket {
// unsafe fn from_raw_socket(handle: RawSocket) -> UdpSocket { unsafe fn from_raw_socket(handle: RawSocket) -> UdpSocket {
// net::UdpSocket::from_raw_socket(handle).into() net::UdpSocket::from_raw_socket(handle).into()
// } }
// } }
//
// impl IntoRawSocket for UdpSocket { impl IntoRawSocket for UdpSocket {
// fn into_raw_socket(self) -> RawSocket { fn into_raw_socket(self) -> RawSocket {
// self.raw_socket self.watcher.into_raw_socket()
// } }
// } }
} }

@ -2,16 +2,14 @@
use std::fmt; use std::fmt;
use std::net::Shutdown; use std::net::Shutdown;
use std::os::unix::net::UnixDatagram as StdUnixDatagram;
use mio_uds; use smol::Async;
use super::SocketAddr; use super::SocketAddr;
use crate::future;
use crate::io; use crate::io;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd}; use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path; use crate::path::Path;
use crate::task::spawn_blocking;
/// A Unix datagram socket. /// A Unix datagram socket.
/// ///
@ -42,13 +40,13 @@ use crate::task::spawn_blocking;
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub struct UnixDatagram { pub struct UnixDatagram {
watcher: Watcher<mio_uds::UnixDatagram>, watcher: Async<StdUnixDatagram>,
} }
impl UnixDatagram { impl UnixDatagram {
fn new(socket: mio_uds::UnixDatagram) -> UnixDatagram { fn new(socket: StdUnixDatagram) -> UnixDatagram {
UnixDatagram { UnixDatagram {
watcher: Watcher::new(socket), watcher: Async::new(socket).expect("UnixDatagram is known to be good"),
} }
} }
@ -67,8 +65,8 @@ impl UnixDatagram {
/// ``` /// ```
pub async fn bind<P: AsRef<Path>>(path: P) -> io::Result<UnixDatagram> { pub async fn bind<P: AsRef<Path>>(path: P) -> io::Result<UnixDatagram> {
let path = path.as_ref().to_owned(); let path = path.as_ref().to_owned();
let socket = spawn_blocking(move || mio_uds::UnixDatagram::bind(path)).await?; let socket = Async::<StdUnixDatagram>::bind(path)?;
Ok(UnixDatagram::new(socket)) Ok(UnixDatagram { watcher: socket })
} }
/// Creates a Unix datagram which is not bound to any address. /// Creates a Unix datagram which is not bound to any address.
@ -85,7 +83,7 @@ impl UnixDatagram {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub fn unbound() -> io::Result<UnixDatagram> { pub fn unbound() -> io::Result<UnixDatagram> {
let socket = mio_uds::UnixDatagram::unbound()?; let socket = StdUnixDatagram::unbound()?;
Ok(UnixDatagram::new(socket)) Ok(UnixDatagram::new(socket))
} }
@ -105,7 +103,7 @@ impl UnixDatagram {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub fn pair() -> io::Result<(UnixDatagram, UnixDatagram)> { pub fn pair() -> io::Result<(UnixDatagram, UnixDatagram)> {
let (a, b) = mio_uds::UnixDatagram::pair()?; let (a, b) = StdUnixDatagram::pair()?;
let a = UnixDatagram::new(a); let a = UnixDatagram::new(a);
let b = UnixDatagram::new(b); let b = UnixDatagram::new(b);
Ok((a, b)) Ok((a, b))
@ -197,11 +195,7 @@ impl UnixDatagram {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> { pub async fn recv_from(&self, buf: &mut [u8]) -> io::Result<(usize, SocketAddr)> {
future::poll_fn(|cx| { self.watcher.recv_from(buf).await
self.watcher
.poll_read_with(cx, |inner| inner.recv_from(buf))
})
.await
} }
/// Receives data from the socket. /// Receives data from the socket.
@ -222,7 +216,7 @@ impl UnixDatagram {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> { pub async fn recv(&self, buf: &mut [u8]) -> io::Result<usize> {
future::poll_fn(|cx| self.watcher.poll_read_with(cx, |inner| inner.recv(buf))).await self.watcher.recv(buf).await
} }
/// Sends data on the socket to the specified address. /// Sends data on the socket to the specified address.
@ -242,11 +236,7 @@ impl UnixDatagram {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> { pub async fn send_to<P: AsRef<Path>>(&self, buf: &[u8], path: P) -> io::Result<usize> {
future::poll_fn(|cx| { self.watcher.send_to(buf, path.as_ref()).await
self.watcher
.poll_write_with(cx, |inner| inner.send_to(buf, path.as_ref()))
})
.await
} }
/// Sends data on the socket to the socket's peer. /// Sends data on the socket to the socket's peer.
@ -267,7 +257,7 @@ impl UnixDatagram {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn send(&self, buf: &[u8]) -> io::Result<usize> { pub async fn send(&self, buf: &[u8]) -> io::Result<usize> {
future::poll_fn(|cx| self.watcher.poll_write_with(cx, |inner| inner.send(buf))).await self.watcher.send(buf).await
} }
/// Shut down the read, write, or both halves of this connection. /// Shut down the read, write, or both halves of this connection.
@ -312,19 +302,18 @@ impl fmt::Debug for UnixDatagram {
} }
} }
impl From<std::os::unix::net::UnixDatagram> for UnixDatagram { impl From<StdUnixDatagram> for UnixDatagram {
/// Converts a `std::os::unix::net::UnixDatagram` into its asynchronous equivalent. /// Converts a `std::os::unix::net::UnixDatagram` into its asynchronous equivalent.
fn from(datagram: std::os::unix::net::UnixDatagram) -> UnixDatagram { fn from(datagram: StdUnixDatagram) -> UnixDatagram {
let mio_datagram = mio_uds::UnixDatagram::from_datagram(datagram).unwrap();
UnixDatagram { UnixDatagram {
watcher: Watcher::new(mio_datagram), watcher: Async::new(datagram).expect("UnixDatagram is known to be good"),
} }
} }
} }
impl AsRawFd for UnixDatagram { impl AsRawFd for UnixDatagram {
fn as_raw_fd(&self) -> RawFd { fn as_raw_fd(&self) -> RawFd {
self.watcher.get_ref().as_raw_fd() self.watcher.as_raw_fd()
} }
} }
@ -337,6 +326,6 @@ impl FromRawFd for UnixDatagram {
impl IntoRawFd for UnixDatagram { impl IntoRawFd for UnixDatagram {
fn into_raw_fd(self) -> RawFd { fn into_raw_fd(self) -> RawFd {
self.watcher.into_inner().into_raw_fd() self.watcher.into_raw_fd()
} }
} }

@ -1,20 +1,19 @@
//! Unix-specific networking extensions. //! Unix-specific networking extensions.
use std::fmt; use std::fmt;
use std::pin::Pin;
use std::future::Future; use std::future::Future;
use std::os::unix::net::UnixListener as StdUnixListener;
use std::pin::Pin;
use mio_uds; use smol::Async;
use super::SocketAddr; use super::SocketAddr;
use super::UnixStream; use super::UnixStream;
use crate::future;
use crate::io; use crate::io;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd}; use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path; use crate::path::Path;
use crate::stream::Stream; use crate::stream::Stream;
use crate::task::{spawn_blocking, Context, Poll}; use crate::task::{Context, Poll};
/// A Unix domain socket server, listening for connections. /// A Unix domain socket server, listening for connections.
/// ///
@ -50,7 +49,7 @@ use crate::task::{spawn_blocking, Context, Poll};
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub struct UnixListener { pub struct UnixListener {
watcher: Watcher<mio_uds::UnixListener>, watcher: Async<StdUnixListener>,
} }
impl UnixListener { impl UnixListener {
@ -69,11 +68,9 @@ impl UnixListener {
/// ``` /// ```
pub async fn bind<P: AsRef<Path>>(path: P) -> io::Result<UnixListener> { pub async fn bind<P: AsRef<Path>>(path: P) -> io::Result<UnixListener> {
let path = path.as_ref().to_owned(); let path = path.as_ref().to_owned();
let listener = spawn_blocking(move || mio_uds::UnixListener::bind(path)).await?; let listener = Async::<StdUnixListener>::bind(path)?;
Ok(UnixListener { Ok(UnixListener { watcher: listener })
watcher: Watcher::new(listener),
})
} }
/// Accepts a new incoming connection to this listener. /// Accepts a new incoming connection to this listener.
@ -93,29 +90,9 @@ impl UnixListener {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub async fn accept(&self) -> io::Result<(UnixStream, SocketAddr)> { pub async fn accept(&self) -> io::Result<(UnixStream, SocketAddr)> {
future::poll_fn(|cx| { let (stream, addr) = self.watcher.accept().await?;
let res = futures_core::ready!(self.watcher.poll_read_with(cx, |inner| {
match inner.accept_std() {
// Converting to `WouldBlock` so that the watcher will
// add the waker of this task to a list of readers.
Ok(None) => Err(io::ErrorKind::WouldBlock.into()),
res => res,
}
}));
match res? { Ok((UnixStream { watcher: stream }, addr))
Some((io, addr)) => {
let mio_stream = mio_uds::UnixStream::from_stream(io)?;
let stream = UnixStream {
watcher: Watcher::new(mio_stream),
};
Poll::Ready(Ok((stream, addr)))
}
// This should never happen since `None` is converted to `WouldBlock`
None => unreachable!(),
}
})
.await
} }
/// Returns a stream of incoming connections. /// Returns a stream of incoming connections.
@ -206,19 +183,18 @@ impl Stream for Incoming<'_> {
} }
} }
impl From<std::os::unix::net::UnixListener> for UnixListener { impl From<StdUnixListener> for UnixListener {
/// Converts a `std::os::unix::net::UnixListener` into its asynchronous equivalent. /// Converts a `std::os::unix::net::UnixListener` into its asynchronous equivalent.
fn from(listener: std::os::unix::net::UnixListener) -> UnixListener { fn from(listener: StdUnixListener) -> UnixListener {
let mio_listener = mio_uds::UnixListener::from_listener(listener).unwrap();
UnixListener { UnixListener {
watcher: Watcher::new(mio_listener), watcher: Async::new(listener).expect("UnixListener is known to be good"),
} }
} }
} }
impl AsRawFd for UnixListener { impl AsRawFd for UnixListener {
fn as_raw_fd(&self) -> RawFd { fn as_raw_fd(&self) -> RawFd {
self.watcher.get_ref().as_raw_fd() self.watcher.as_raw_fd()
} }
} }
@ -231,6 +207,6 @@ impl FromRawFd for UnixListener {
impl IntoRawFd for UnixListener { impl IntoRawFd for UnixListener {
fn into_raw_fd(self) -> RawFd { fn into_raw_fd(self) -> RawFd {
self.watcher.into_inner().into_raw_fd() self.watcher.into_raw_fd()
} }
} }

@ -1,18 +1,17 @@
//! Unix-specific networking extensions. //! Unix-specific networking extensions.
use std::fmt; use std::fmt;
use std::io::{Read as _, Write as _};
use std::net::Shutdown; use std::net::Shutdown;
use std::os::unix::net::UnixStream as StdUnixStream;
use std::pin::Pin; use std::pin::Pin;
use mio_uds; use smol::Async;
use super::SocketAddr; use super::SocketAddr;
use crate::io::{self, Read, Write}; use crate::io::{self, Read, Write};
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd}; use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path; use crate::path::Path;
use crate::task::{spawn_blocking, Context, Poll}; use crate::task::{Context, Poll};
/// A Unix stream socket. /// A Unix stream socket.
/// ///
@ -38,7 +37,7 @@ use crate::task::{spawn_blocking, Context, Poll};
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub struct UnixStream { pub struct UnixStream {
pub(super) watcher: Watcher<mio_uds::UnixStream>, pub(super) watcher: Async<StdUnixStream>,
} }
impl UnixStream { impl UnixStream {
@ -57,15 +56,9 @@ impl UnixStream {
/// ``` /// ```
pub async fn connect<P: AsRef<Path>>(path: P) -> io::Result<UnixStream> { pub async fn connect<P: AsRef<Path>>(path: P) -> io::Result<UnixStream> {
let path = path.as_ref().to_owned(); let path = path.as_ref().to_owned();
let stream = Async::<StdUnixStream>::connect(path).await?;
spawn_blocking(move || { Ok(UnixStream { watcher: stream })
let std_stream = std::os::unix::net::UnixStream::connect(path)?;
let mio_stream = mio_uds::UnixStream::from_stream(std_stream)?;
Ok(UnixStream {
watcher: Watcher::new(mio_stream),
})
})
.await
} }
/// Creates an unnamed pair of connected sockets. /// Creates an unnamed pair of connected sockets.
@ -84,13 +77,9 @@ impl UnixStream {
/// # Ok(()) }) } /// # Ok(()) }) }
/// ``` /// ```
pub fn pair() -> io::Result<(UnixStream, UnixStream)> { pub fn pair() -> io::Result<(UnixStream, UnixStream)> {
let (a, b) = mio_uds::UnixStream::pair()?; let (a, b) = Async::<StdUnixStream>::pair()?;
let a = UnixStream { let a = UnixStream { watcher: a };
watcher: Watcher::new(a), let b = UnixStream { watcher: b };
};
let b = UnixStream {
watcher: Watcher::new(b),
};
Ok((a, b)) Ok((a, b))
} }
@ -169,7 +158,7 @@ impl Read for &UnixStream {
cx: &mut Context<'_>, cx: &mut Context<'_>,
buf: &mut [u8], buf: &mut [u8],
) -> Poll<io::Result<usize>> { ) -> Poll<io::Result<usize>> {
self.watcher.poll_read_with(cx, |mut inner| inner.read(buf)) Pin::new(&mut &self.watcher).poll_read(cx, buf)
} }
} }
@ -197,16 +186,15 @@ impl Write for &UnixStream {
cx: &mut Context<'_>, cx: &mut Context<'_>,
buf: &[u8], buf: &[u8],
) -> Poll<io::Result<usize>> { ) -> Poll<io::Result<usize>> {
self.watcher Pin::new(&mut &self.watcher).poll_write(cx, buf)
.poll_write_with(cx, |mut inner| inner.write(buf))
} }
fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> { fn poll_flush(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
self.watcher.poll_write_with(cx, |mut inner| inner.flush()) Pin::new(&mut &self.watcher).poll_flush(cx)
} }
fn poll_close(self: Pin<&mut Self>, _: &mut Context<'_>) -> Poll<io::Result<()>> { fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<io::Result<()>> {
Poll::Ready(Ok(())) Pin::new(&mut &self.watcher).poll_close(cx)
} }
} }
@ -227,19 +215,17 @@ impl fmt::Debug for UnixStream {
} }
} }
impl From<std::os::unix::net::UnixStream> for UnixStream { impl From<StdUnixStream> for UnixStream {
/// Converts a `std::os::unix::net::UnixStream` into its asynchronous equivalent. /// Converts a `std::os::unix::net::UnixStream` into its asynchronous equivalent.
fn from(stream: std::os::unix::net::UnixStream) -> UnixStream { fn from(stream: StdUnixStream) -> UnixStream {
let mio_stream = mio_uds::UnixStream::from_stream(stream).unwrap(); let stream = Async::new(stream).expect("UnixStream is known to be good");
UnixStream { UnixStream { watcher: stream }
watcher: Watcher::new(mio_stream),
}
} }
} }
impl AsRawFd for UnixStream { impl AsRawFd for UnixStream {
fn as_raw_fd(&self) -> RawFd { fn as_raw_fd(&self) -> RawFd {
self.watcher.get_ref().as_raw_fd() self.watcher.as_raw_fd()
} }
} }
@ -252,6 +238,6 @@ impl FromRawFd for UnixStream {
impl IntoRawFd for UnixStream { impl IntoRawFd for UnixStream {
fn into_raw_fd(self) -> RawFd { fn into_raw_fd(self) -> RawFd {
self.watcher.into_inner().into_raw_fd() self.watcher.into_raw_fd()
} }
} }

@ -4,20 +4,20 @@ use std::thread;
use once_cell::sync::Lazy; use once_cell::sync::Lazy;
use crate::utils::abort_on_panic; use crate::future;
pub use reactor::{Reactor, Watcher}; /// Dummy runtime struct.
pub use runtime::Runtime; pub struct Runtime {}
mod reactor;
mod runtime;
/// The global runtime. /// The global runtime.
pub static RUNTIME: Lazy<Runtime> = Lazy::new(|| { pub static RUNTIME: Lazy<Runtime> = Lazy::new(|| {
// Create an executor thread pool.
let num_threads = num_cpus::get().max(1);
for _ in 0..num_threads {
thread::Builder::new() thread::Builder::new()
.name("async-std/runtime".to_string()) .name("async-std/runtime".to_string())
.spawn(|| abort_on_panic(|| RUNTIME.run())) .spawn(|| smol::run(future::pending::<()>()))
.expect("cannot start a runtime thread"); .expect("cannot start a runtime thread");
}
Runtime::new() Runtime {}
}); });

@ -1,354 +0,0 @@
use std::fmt;
use std::sync::{Arc, Mutex};
use std::time::Duration;
use mio::{self, Evented};
use slab::Slab;
use crate::io;
use crate::rt::RUNTIME;
use crate::task::{Context, Poll, Waker};
/// Data associated with a registered I/O handle.
#[derive(Debug)]
struct Entry {
/// A unique identifier.
token: mio::Token,
/// Tasks that are blocked on reading from this I/O handle.
readers: Mutex<Readers>,
/// Tasks that are blocked on writing to this I/O handle.
writers: Mutex<Writers>,
}
/// The state of a networking driver.
pub struct Reactor {
/// A mio instance that polls for new events.
poller: mio::Poll,
/// A list into which mio stores events.
events: Mutex<mio::Events>,
/// A collection of registered I/O handles.
entries: Mutex<Slab<Arc<Entry>>>,
/// Dummy I/O handle that is only used to wake up the polling thread.
notify_reg: (mio::Registration, mio::SetReadiness),
/// An identifier for the notification handle.
notify_token: mio::Token,
}
/// The set of `Waker`s interested in read readiness.
#[derive(Debug)]
struct Readers {
/// Flag indicating read readiness.
/// (cf. `Watcher::poll_read_ready`)
ready: bool,
/// The `Waker`s blocked on reading.
wakers: Vec<Waker>,
}
/// The set of `Waker`s interested in write readiness.
#[derive(Debug)]
struct Writers {
/// Flag indicating write readiness.
/// (cf. `Watcher::poll_write_ready`)
ready: bool,
/// The `Waker`s blocked on writing.
wakers: Vec<Waker>,
}
impl Reactor {
/// Creates a new reactor for polling I/O events.
pub fn new() -> io::Result<Reactor> {
let poller = mio::Poll::new()?;
let notify_reg = mio::Registration::new2();
let mut reactor = Reactor {
poller,
events: Mutex::new(mio::Events::with_capacity(1000)),
entries: Mutex::new(Slab::new()),
notify_reg,
notify_token: mio::Token(0),
};
// Register a dummy I/O handle for waking up the polling thread.
let entry = reactor.register(&reactor.notify_reg.0)?;
reactor.notify_token = entry.token;
Ok(reactor)
}
/// Registers an I/O event source and returns its associated entry.
fn register(&self, source: &dyn Evented) -> io::Result<Arc<Entry>> {
let mut entries = self.entries.lock().unwrap();
// Reserve a vacant spot in the slab and use its key as the token value.
let vacant = entries.vacant_entry();
let token = mio::Token(vacant.key());
// Allocate an entry and insert it into the slab.
let entry = Arc::new(Entry {
token,
readers: Mutex::new(Readers {
ready: false,
wakers: Vec::new(),
}),
writers: Mutex::new(Writers {
ready: false,
wakers: Vec::new(),
}),
});
vacant.insert(entry.clone());
// Register the I/O event source in the poller.
let interest = mio::Ready::all();
let opts = mio::PollOpt::edge();
self.poller.register(source, token, interest, opts)?;
Ok(entry)
}
/// Deregisters an I/O event source associated with an entry.
fn deregister(&self, source: &dyn Evented, entry: &Entry) -> io::Result<()> {
// Deregister the I/O object from the mio instance.
self.poller.deregister(source)?;
// Remove the entry associated with the I/O object.
self.entries.lock().unwrap().remove(entry.token.0);
Ok(())
}
/// Notifies the reactor so that polling stops blocking.
pub fn notify(&self) -> io::Result<()> {
self.notify_reg.1.set_readiness(mio::Ready::readable())
}
/// Waits on the poller for new events and wakes up tasks blocked on I/O handles.
///
/// Returns `Ok(true)` if at least one new task was woken.
pub fn poll(&self, timeout: Option<Duration>) -> io::Result<bool> {
let mut events = self.events.lock().unwrap();
// Block on the poller until at least one new event comes in.
self.poller.poll(&mut events, timeout)?;
// Lock the entire entry table while we're processing new events.
let entries = self.entries.lock().unwrap();
// The number of woken tasks.
let mut progress = false;
for event in events.iter() {
let token = event.token();
if token == self.notify_token {
// If this is the notification token, we just need the notification state.
self.notify_reg.1.set_readiness(mio::Ready::empty())?;
} else {
// Otherwise, look for the entry associated with this token.
if let Some(entry) = entries.get(token.0) {
// Set the readiness flags from this I/O event.
let readiness = event.readiness();
// Wake up reader tasks blocked on this I/O handle.
let reader_interests = mio::Ready::all() - mio::Ready::writable();
if !(readiness & reader_interests).is_empty() {
let mut readers = entry.readers.lock().unwrap();
readers.ready = true;
for w in readers.wakers.drain(..) {
w.wake();
progress = true;
}
}
// Wake up writer tasks blocked on this I/O handle.
let writer_interests = mio::Ready::all() - mio::Ready::readable();
if !(readiness & writer_interests).is_empty() {
let mut writers = entry.writers.lock().unwrap();
writers.ready = true;
for w in writers.wakers.drain(..) {
w.wake();
progress = true;
}
}
}
}
}
Ok(progress)
}
}
/// An I/O handle powered by the networking driver.
///
/// This handle wraps an I/O event source and exposes a "futurized" interface on top of it,
/// implementing traits `AsyncRead` and `AsyncWrite`.
pub struct Watcher<T: Evented> {
/// Data associated with the I/O handle.
entry: Arc<Entry>,
/// The I/O event source.
source: Option<T>,
}
impl<T: Evented> Watcher<T> {
/// Creates a new I/O handle.
///
/// The provided I/O event source will be kept registered inside the reactor's poller for the
/// lifetime of the returned I/O handle.
pub fn new(source: T) -> Watcher<T> {
Watcher {
entry: RUNTIME
.reactor()
.register(&source)
.expect("cannot register an I/O event source"),
source: Some(source),
}
}
/// Returns a reference to the inner I/O event source.
pub fn get_ref(&self) -> &T {
self.source.as_ref().unwrap()
}
/// Polls the inner I/O source for a non-blocking read operation.
///
/// If the operation returns an error of the `io::ErrorKind::WouldBlock` kind, the current task
/// will be registered for wakeup when the I/O source becomes readable.
pub fn poll_read_with<'a, F, R>(&'a self, cx: &mut Context<'_>, mut f: F) -> Poll<io::Result<R>>
where
F: FnMut(&'a T) -> io::Result<R>,
{
// If the operation isn't blocked, return its result.
match f(self.source.as_ref().unwrap()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
// Lock the waker list.
let mut readers = self.entry.readers.lock().unwrap();
// Try running the operation again.
match f(self.source.as_ref().unwrap()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
// Register the task if it isn't registered already.
if readers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
readers.wakers.push(cx.waker().clone());
}
Poll::Pending
}
/// Polls the inner I/O source for a non-blocking write operation.
///
/// If the operation returns an error of the `io::ErrorKind::WouldBlock` kind, the current task
/// will be registered for wakeup when the I/O source becomes writable.
pub fn poll_write_with<'a, F, R>(
&'a self,
cx: &mut Context<'_>,
mut f: F,
) -> Poll<io::Result<R>>
where
F: FnMut(&'a T) -> io::Result<R>,
{
// If the operation isn't blocked, return its result.
match f(self.source.as_ref().unwrap()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
// Lock the waker list.
let mut writers = self.entry.writers.lock().unwrap();
// Try running the operation again.
match f(self.source.as_ref().unwrap()) {
Err(err) if err.kind() == io::ErrorKind::WouldBlock => {}
res => return Poll::Ready(res),
}
// Register the task if it isn't registered already.
if writers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
writers.wakers.push(cx.waker().clone());
}
Poll::Pending
}
/// Polls the inner I/O source until a non-blocking read can be performed.
///
/// If non-blocking reads are currently not possible, the `Waker`
/// will be saved and notified when it can read non-blocking
/// again.
#[allow(dead_code)]
pub fn poll_read_ready(&self, cx: &mut Context<'_>) -> Poll<()> {
// Lock the waker list.
let mut readers = self.entry.readers.lock().unwrap();
if readers.ready {
return Poll::Ready(());
}
// Register the task if it isn't registered already.
if readers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
readers.wakers.push(cx.waker().clone());
}
Poll::Pending
}
/// Polls the inner I/O source until a non-blocking write can be performed.
///
/// If non-blocking writes are currently not possible, the `Waker`
/// will be saved and notified when it can write non-blocking
/// again.
pub fn poll_write_ready(&self, cx: &mut Context<'_>) -> Poll<()> {
// Lock the waker list.
let mut writers = self.entry.writers.lock().unwrap();
if writers.ready {
return Poll::Ready(());
}
// Register the task if it isn't registered already.
if writers.wakers.iter().all(|w| !w.will_wake(cx.waker())) {
writers.wakers.push(cx.waker().clone());
}
Poll::Pending
}
/// Deregisters and returns the inner I/O source.
///
/// This method is typically used to convert `Watcher`s to raw file descriptors/handles.
#[allow(dead_code)]
pub fn into_inner(mut self) -> T {
let source = self.source.take().unwrap();
RUNTIME
.reactor()
.deregister(&source, &self.entry)
.expect("cannot deregister I/O event source");
source
}
}
impl<T: Evented> Drop for Watcher<T> {
fn drop(&mut self) {
if let Some(ref source) = self.source {
RUNTIME
.reactor()
.deregister(source, &self.entry)
.expect("cannot deregister I/O event source");
}
}
}
impl<T: Evented + fmt::Debug> fmt::Debug for Watcher<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Watcher")
.field("entry", &self.entry)
.field("source", &self.source)
.finish()
}
}

@ -1,415 +0,0 @@
use std::cell::Cell;
use std::io;
use std::iter;
use std::ptr;
use std::sync::atomic::{self, Ordering};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use crossbeam_deque::{Injector, Steal, Stealer, Worker};
use crossbeam_utils::thread::scope;
use once_cell::unsync::OnceCell;
use crate::rt::Reactor;
use crate::sync::Spinlock;
use crate::task::Runnable;
use crate::utils::{abort_on_panic, random};
thread_local! {
/// A reference to the current machine, if the current thread runs tasks.
static MACHINE: OnceCell<Arc<Machine>> = OnceCell::new();
/// This flag is set to true whenever `task::yield_now()` is invoked.
static YIELD_NOW: Cell<bool> = Cell::new(false);
}
struct Scheduler {
/// Set to `true` while a machine is polling the reactor.
polling: bool,
/// Idle processors.
processors: Vec<Processor>,
/// Running machines.
machines: Vec<Arc<Machine>>,
}
/// An async runtime.
pub struct Runtime {
/// The reactor.
reactor: Reactor,
/// The global queue of tasks.
injector: Injector<Runnable>,
/// Handles to local queues for stealing work.
stealers: Vec<Stealer<Runnable>>,
/// The scheduler state.
sched: Mutex<Scheduler>,
}
impl Runtime {
/// Creates a new runtime.
pub fn new() -> Runtime {
let cpus = num_cpus::get().max(1);
let processors: Vec<_> = (0..cpus).map(|_| Processor::new()).collect();
let stealers = processors.iter().map(|p| p.worker.stealer()).collect();
Runtime {
reactor: Reactor::new().unwrap(),
injector: Injector::new(),
stealers,
sched: Mutex::new(Scheduler {
processors,
machines: Vec::new(),
polling: false,
}),
}
}
/// Returns a reference to the reactor.
pub fn reactor(&self) -> &Reactor {
&self.reactor
}
/// Flushes the task slot so that tasks get run more fairly.
pub fn yield_now(&self) {
YIELD_NOW.with(|flag| flag.set(true));
}
/// Schedules a task.
pub fn schedule(&self, task: Runnable) {
MACHINE.with(|machine| {
// If the current thread is a worker thread, schedule it onto the current machine.
// Otherwise, push it into the global task queue.
match machine.get() {
None => {
self.injector.push(task);
self.notify();
}
Some(m) => m.schedule(&self, task),
}
});
}
/// Runs the runtime on the current thread.
pub fn run(&self) {
scope(|s| {
let mut idle = 0;
let mut delay = 0;
loop {
// Get a list of new machines to start, if any need to be started.
for m in self.make_machines() {
idle = 0;
s.builder()
.name("async-std/machine".to_string())
.spawn(move |_| {
abort_on_panic(|| {
let _ = MACHINE.with(|machine| machine.set(m.clone()));
m.run(self);
})
})
.expect("cannot start a machine thread");
}
// Sleep for a bit longer if the scheduler state hasn't changed in a while.
if idle > 10 {
delay = (delay * 2).min(10_000);
} else {
idle += 1;
delay = 1000;
}
thread::sleep(Duration::from_micros(delay));
}
})
.unwrap();
}
/// Returns a list of machines that need to be started.
fn make_machines(&self) -> Vec<Arc<Machine>> {
let mut sched = self.sched.lock().unwrap();
let mut to_start = Vec::new();
// If no machine has been polling the reactor in a while, that means the runtime is
// overloaded with work and we need to start another machine.
if !sched.polling {
if let Some(p) = sched.processors.pop() {
let m = Arc::new(Machine::new(p));
to_start.push(m.clone());
sched.machines.push(m);
}
}
to_start
}
/// Unparks a thread polling the reactor.
fn notify(&self) {
atomic::fence(Ordering::SeqCst);
self.reactor.notify().unwrap();
}
/// Attempts to poll the reactor without blocking on it.
///
/// Returns `Ok(true)` if at least one new task was woken.
///
/// This function might not poll the reactor at all so do not rely on it doing anything. Only
/// use for optimization.
fn quick_poll(&self) -> io::Result<bool> {
if let Ok(sched) = self.sched.try_lock() {
if !sched.polling {
return self.reactor.poll(Some(Duration::from_secs(0)));
}
}
Ok(false)
}
}
/// A thread running a processor.
struct Machine {
/// Holds the processor until it gets stolen.
processor: Spinlock<Option<Processor>>,
}
impl Machine {
/// Creates a new machine running a processor.
fn new(p: Processor) -> Machine {
Machine {
processor: Spinlock::new(Some(p)),
}
}
/// Schedules a task onto the machine.
fn schedule(&self, rt: &Runtime, task: Runnable) {
match self.processor.lock().as_mut() {
None => {
rt.injector.push(task);
rt.notify();
}
Some(p) => p.schedule(rt, task),
}
}
/// Finds the next runnable task.
fn find_task(&self, rt: &Runtime) -> Steal<Runnable> {
let mut retry = false;
// First try finding a task in the local queue or in the global queue.
if let Some(p) = self.processor.lock().as_mut() {
if let Some(task) = p.pop_task() {
return Steal::Success(task);
}
match p.steal_from_global(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
}
// Try polling the reactor, but don't block on it.
let progress = rt.quick_poll().unwrap();
// Try finding a task in the local queue, which might hold tasks woken by the reactor. If
// the local queue is still empty, try stealing from other processors.
if let Some(p) = self.processor.lock().as_mut() {
if progress {
if let Some(task) = p.pop_task() {
return Steal::Success(task);
}
}
match p.steal_from_others(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
}
if retry { Steal::Retry } else { Steal::Empty }
}
/// Runs the machine on the current thread.
fn run(&self, rt: &Runtime) {
/// Number of yields when no runnable task is found.
const YIELDS: u32 = 3;
/// Number of short sleeps when no runnable task in found.
const SLEEPS: u32 = 10;
/// Number of runs in a row before the global queue is inspected.
const RUNS: u32 = 64;
// The number of times the thread found work in a row.
let mut runs = 0;
// The number of times the thread didn't find work in a row.
let mut fails = 0;
loop {
// Check if `task::yield_now()` was invoked and flush the slot if so.
YIELD_NOW.with(|flag| {
if flag.replace(false) {
if let Some(p) = self.processor.lock().as_mut() {
p.flush_slot(rt);
}
}
});
// After a number of runs in a row, do some work to ensure no task is left behind
// indefinitely. Poll the reactor, steal tasks from the global queue, and flush the
// task slot.
if runs >= RUNS {
runs = 0;
rt.quick_poll().unwrap();
if let Some(p) = self.processor.lock().as_mut() {
if let Steal::Success(task) = p.steal_from_global(rt) {
p.schedule(rt, task);
}
p.flush_slot(rt);
}
}
// Try to find a runnable task.
if let Steal::Success(task) = self.find_task(rt) {
task.run();
runs += 1;
fails = 0;
continue;
}
fails += 1;
// Yield the current thread a few times.
if fails <= YIELDS {
thread::yield_now();
continue;
}
// Put the current thread to sleep a few times.
if fails <= YIELDS + SLEEPS {
let opt_p = self.processor.lock().take();
thread::sleep(Duration::from_micros(10));
*self.processor.lock() = opt_p;
continue;
}
let mut sched = rt.sched.lock().unwrap();
// One final check for available tasks while the scheduler is locked.
if let Some(task) = iter::repeat_with(|| self.find_task(rt))
.find(|s| !s.is_retry())
.and_then(|s| s.success())
{
self.schedule(rt, task);
continue;
}
// If another thread is already blocked on the reactor, there is no point in keeping
// the current thread around since there is too little work to do.
if sched.polling {
break;
}
// Take out the machine associated with the current thread.
let m = match sched
.machines
.iter()
.position(|elem| ptr::eq(&**elem, self))
{
None => break, // The processor was stolen.
Some(pos) => sched.machines.swap_remove(pos),
};
// Unlock the schedule poll the reactor until new I/O events arrive.
sched.polling = true;
drop(sched);
rt.reactor.poll(None).unwrap();
// Lock the scheduler again and re-register the machine.
sched = rt.sched.lock().unwrap();
sched.polling = false;
sched.machines.push(m);
runs = 0;
fails = 0;
}
// When shutting down the thread, take the processor out if still available.
let opt_p = self.processor.lock().take();
// Return the processor to the scheduler and remove the machine.
if let Some(p) = opt_p {
let mut sched = rt.sched.lock().unwrap();
sched.processors.push(p);
sched.machines.retain(|elem| !ptr::eq(&**elem, self));
}
}
}
struct Processor {
/// The local task queue.
worker: Worker<Runnable>,
/// Contains the next task to run as an optimization that skips the queue.
slot: Option<Runnable>,
}
impl Processor {
/// Creates a new processor.
fn new() -> Processor {
Processor {
worker: Worker::new_fifo(),
slot: None,
}
}
/// Schedules a task to run on this processor.
fn schedule(&mut self, rt: &Runtime, task: Runnable) {
match self.slot.replace(task) {
None => {}
Some(task) => {
self.worker.push(task);
rt.notify();
}
}
}
/// Flushes a task from the slot into the local queue.
fn flush_slot(&mut self, rt: &Runtime) {
if let Some(task) = self.slot.take() {
self.worker.push(task);
rt.notify();
}
}
/// Pops a task from this processor.
fn pop_task(&mut self) -> Option<Runnable> {
self.slot.take().or_else(|| self.worker.pop())
}
/// Steals a task from the global queue.
fn steal_from_global(&self, rt: &Runtime) -> Steal<Runnable> {
rt.injector.steal_batch_and_pop(&self.worker)
}
/// Steals a task from other processors.
fn steal_from_others(&self, rt: &Runtime) -> Steal<Runnable> {
// Pick a random starting point in the list of queues.
let len = rt.stealers.len();
let start = random(len as u32) as usize;
// Create an iterator over stealers that starts from the chosen point.
let (l, r) = rt.stealers.split_at(start);
let stealers = r.iter().chain(l.iter());
// Try stealing a batch of tasks from each queue.
stealers
.map(|s| s.steal_batch_and_pop(&self.worker))
.collect()
}
}

@ -174,7 +174,10 @@
#![allow(clippy::needless_doctest_main)] #![allow(clippy::needless_doctest_main)]
#[doc(inline)] #[doc(inline)]
pub use std::sync::{Arc, Weak}; pub use std::sync::Weak;
#[doc(inline)]
pub use piper::Arc;
pub use mutex::{Mutex, MutexGuard}; pub use mutex::{Mutex, MutexGuard};
pub use rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; pub use rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
@ -194,8 +197,3 @@ cfg_unstable! {
pub(crate) mod waker_set; pub(crate) mod waker_set;
pub(crate) use waker_set::WakerSet; pub(crate) use waker_set::WakerSet;
cfg_default! {
pub(crate) mod spin_lock;
pub(crate) use spin_lock::Spinlock;
}

@ -1,89 +0,0 @@
use std::cell::UnsafeCell;
use std::ops::{Deref, DerefMut};
use std::sync::atomic::{AtomicBool, Ordering};
use crossbeam_utils::Backoff;
/// A simple spinlock.
#[derive(Debug)]
pub struct Spinlock<T> {
locked: AtomicBool,
value: UnsafeCell<T>,
}
unsafe impl<T: Send> Send for Spinlock<T> {}
unsafe impl<T: Send> Sync for Spinlock<T> {}
impl<T> Spinlock<T> {
/// Returns a new spinlock initialized with `value`.
pub const fn new(value: T) -> Spinlock<T> {
Spinlock {
locked: AtomicBool::new(false),
value: UnsafeCell::new(value),
}
}
/// Locks the spinlock.
pub fn lock(&self) -> SpinlockGuard<'_, T> {
let backoff = Backoff::new();
while self.locked.compare_and_swap(false, true, Ordering::Acquire) {
backoff.snooze();
}
SpinlockGuard { parent: self }
}
}
/// A guard holding a spinlock locked.
#[derive(Debug)]
pub struct SpinlockGuard<'a, T> {
parent: &'a Spinlock<T>,
}
unsafe impl<T: Send> Send for SpinlockGuard<'_, T> {}
unsafe impl<T: Sync> Sync for SpinlockGuard<'_, T> {}
impl<'a, T> Drop for SpinlockGuard<'a, T> {
fn drop(&mut self) {
self.parent.locked.store(false, Ordering::Release);
}
}
impl<'a, T> Deref for SpinlockGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.parent.value.get() }
}
}
impl<'a, T> DerefMut for SpinlockGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.parent.value.get() }
}
}
#[test]
fn spinlock() {
use std::sync::Arc;
use crate::sync::{Spinlock};
use crate::task;
task::block_on(async {
let m = Arc::new(Spinlock::new(0));
let mut tasks = vec![];
for _ in 0..10 {
let m = m.clone();
tasks.push(task::spawn(async move {
*m.lock() += 1;
}));
}
for t in tasks {
t.await;
}
assert_eq!(*m.lock(), 10);
})
}

@ -1,13 +1,8 @@
use std::cell::Cell;
use std::future::Future; use std::future::Future;
use std::mem::{self, ManuallyDrop};
use std::sync::Arc;
use std::task::{RawWaker, RawWakerVTable};
use crossbeam_utils::sync::Parker;
use kv_log_macro::trace; use kv_log_macro::trace;
use crate::task::{Context, Poll, Task, Waker}; use crate::task::Task;
/// Spawns a task and blocks the current thread on its result. /// Spawns a task and blocks the current thread on its result.
/// ///
@ -45,11 +40,11 @@ where
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0), parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
}); });
let future = async move { let wrapped_future = async move {
// Drop task-locals on exit. // Drop task-locals on exit.
defer! { // defer! {
Task::get_current(|t| unsafe { t.drop_locals() }); // Task::get_current(|t| unsafe { t.drop_locals() });
} // }
// Log completion on exit. // Log completion on exit.
defer! { defer! {
@ -61,70 +56,8 @@ where
future.await future.await
}; };
// Run the future as a task. once_cell::sync::Lazy::force(&crate::rt::RUNTIME);
unsafe { Task::set_current(&task, || run(future)) }
}
/// Blocks the current thread on a future's result.
fn run<F, T>(future: F) -> T
where
F: Future<Output = T>,
{
thread_local! {
// May hold a pre-allocated parker that can be reused for efficiency.
//
// Note that each invocation of `block` needs its own parker. In particular, if `block`
// recursively calls itself, we must make sure that each recursive call uses a distinct
// parker instance.
static CACHE: Cell<Option<Arc<Parker>>> = Cell::new(None);
}
// Virtual table for wakers based on `Arc<Parker>`.
static VTABLE: RawWakerVTable = {
unsafe fn clone_raw(ptr: *const ()) -> RawWaker {
let arc = ManuallyDrop::new(Arc::from_raw(ptr as *const Parker));
#[allow(clippy::redundant_clone)]
mem::forget(arc.clone());
RawWaker::new(ptr, &VTABLE)
}
unsafe fn wake_raw(ptr: *const ()) {
let arc = Arc::from_raw(ptr as *const Parker);
arc.unparker().unpark();
}
unsafe fn wake_by_ref_raw(ptr: *const ()) {
let arc = ManuallyDrop::new(Arc::from_raw(ptr as *const Parker));
arc.unparker().unpark();
}
unsafe fn drop_raw(ptr: *const ()) {
drop(Arc::from_raw(ptr as *const Parker))
}
RawWakerVTable::new(clone_raw, wake_raw, wake_by_ref_raw, drop_raw)
};
// Pin the future on the stack.
pin_utils::pin_mut!(future);
CACHE.with(|cache| { // Run the future as a task.
// Reuse a cached parker or create a new one for this invocation of `block`. unsafe { Task::set_current(&task, || smol::block_on(wrapped_future)) }
let arc_parker: Arc<Parker> = cache.take().unwrap_or_else(|| Arc::new(Parker::new()));
let ptr = (&*arc_parker as *const Parker) as *const ();
// Create a waker and task context.
let waker = unsafe { ManuallyDrop::new(Waker::from_raw(RawWaker::new(ptr, &VTABLE))) };
let cx = &mut Context::from_waker(&waker);
loop {
if let Poll::Ready(t) = future.as_mut().poll(cx) {
// Save the parker for the next invocation of `block`.
cache.set(Some(arc_parker));
return t;
}
arc_parker.park();
}
})
} }

@ -3,9 +3,7 @@ use std::future::Future;
use kv_log_macro::trace; use kv_log_macro::trace;
use crate::io; use crate::io;
use crate::rt::RUNTIME;
use crate::task::{JoinHandle, Task}; use crate::task::{JoinHandle, Task};
use crate::utils::abort_on_panic;
/// Task builder that configures the settings of a new task. /// Task builder that configures the settings of a new task.
#[derive(Debug, Default)] #[derive(Debug, Default)]
@ -42,11 +40,11 @@ impl Builder {
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0), parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
}); });
let future = async move { let wrapped_future = async move {
// Drop task-locals on exit. // Drop task-locals on exit.
defer! { // defer! {
Task::get_current(|t| unsafe { t.drop_locals() }); // Task::get_current(|t| unsafe { t.drop_locals() });
} // }
// Log completion on exit. // Log completion on exit.
defer! { defer! {
@ -54,25 +52,12 @@ impl Builder {
task_id: Task::get_current(|t| t.id().0), task_id: Task::get_current(|t| t.id().0),
}); });
} }
future.await future.await
}; };
let schedule = move |t| RUNTIME.schedule(Runnable(t)); once_cell::sync::Lazy::force(&crate::rt::RUNTIME);
let (task, handle) = async_task::spawn(future, schedule, task);
task.schedule();
Ok(JoinHandle::new(handle))
}
}
/// A runnable task.
pub struct Runnable(async_task::Task<Task>);
impl Runnable { let task = smol::Task::spawn(wrapped_future);
/// Runs the task by polling its future once. Ok(JoinHandle::new(task))
pub fn run(self) {
unsafe {
Task::set_current(self.0.tag(), || abort_on_panic(|| self.0.run()));
}
} }
} }

@ -12,11 +12,11 @@ use crate::task::{Context, Poll, Task};
/// ///
/// [spawned]: fn.spawn.html /// [spawned]: fn.spawn.html
#[derive(Debug)] #[derive(Debug)]
pub struct JoinHandle<T>(async_task::JoinHandle<T, Task>); pub struct JoinHandle<T>(smol::Task<T>);
impl<T> JoinHandle<T> { impl<T> JoinHandle<T> {
/// Creates a new `JoinHandle`. /// Creates a new `JoinHandle`.
pub(crate) fn new(inner: async_task::JoinHandle<T, Task>) -> JoinHandle<T> { pub(crate) fn new(inner: smol::Task<T>) -> JoinHandle<T> {
JoinHandle(inner) JoinHandle(inner)
} }
@ -36,7 +36,7 @@ impl<T> JoinHandle<T> {
/// # /// #
/// # }) /// # })
pub fn task(&self) -> &Task { pub fn task(&self) -> &Task {
self.0.tag() todo!()
} }
} }
@ -44,10 +44,7 @@ impl<T> Future for JoinHandle<T> {
type Output = T; type Output = T;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> { fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match Pin::new(&mut self.0).poll(cx) { dbg!("poll joinhandle");
Poll::Pending => Poll::Pending, Pin::new(&mut self.0).poll(cx)
Poll::Ready(None) => panic!("cannot await the result of a panicked task"),
Poll::Ready(Some(val)) => Poll::Ready(val),
}
} }
} }

@ -141,7 +141,6 @@ cfg_default! {
pub use spawn::spawn; pub use spawn::spawn;
pub use task_local::{AccessError, LocalKey}; pub use task_local::{AccessError, LocalKey};
pub(crate) use builder::Runnable;
pub(crate) use task_local::LocalsMap; pub(crate) use task_local::LocalsMap;
mod block_on; mod block_on;

@ -1,12 +1,4 @@
use std::sync::atomic::{AtomicUsize, Ordering}; use crate::task::JoinHandle;
use std::thread;
use std::time::Duration;
use crossbeam_channel::{unbounded, Receiver, Sender};
use once_cell::sync::Lazy;
use crate::task::{JoinHandle, Task};
use crate::utils::abort_on_panic;
/// Spawns a blocking task. /// Spawns a blocking task.
/// ///
@ -43,80 +35,8 @@ where
F: FnOnce() -> T + Send + 'static, F: FnOnce() -> T + Send + 'static,
T: Send + 'static, T: Send + 'static,
{ {
let schedule = |task| POOL.sender.send(task).unwrap(); once_cell::sync::Lazy::force(&crate::rt::RUNTIME);
let (task, handle) = async_task::spawn(async { f() }, schedule, Task::new(None));
task.schedule();
JoinHandle::new(handle)
}
type Runnable = async_task::Task<Task>;
struct Pool {
sender: Sender<Runnable>,
receiver: Receiver<Runnable>,
}
/// The number of sleeping worker threads. let handle = smol::Task::blocking(async move { f() });
static SLEEPING: AtomicUsize = AtomicUsize::new(0); JoinHandle::new(handle)
static POOL: Lazy<Pool> = Lazy::new(|| {
// Start a single worker thread waiting for the first task.
start_thread();
let (sender, receiver) = unbounded();
Pool { sender, receiver }
});
fn start_thread() {
SLEEPING.fetch_add(1, Ordering::SeqCst);
let timeout = Duration::from_secs(1);
thread::Builder::new()
.name("async-std/blocking".to_string())
.spawn(move || {
loop {
let mut task = match POOL.receiver.recv_timeout(timeout) {
Ok(task) => task,
Err(_) => {
// Check whether this is the last sleeping thread.
if SLEEPING.fetch_sub(1, Ordering::SeqCst) == 1 {
// If so, then restart the thread to make sure there is always at least
// one sleeping thread.
if SLEEPING.compare_and_swap(0, 1, Ordering::SeqCst) == 0 {
continue;
}
}
// Stop the thread.
return;
}
};
// If there are no sleeping threads, then start one to make sure there is always at
// least one sleeping thread.
if SLEEPING.fetch_sub(1, Ordering::SeqCst) == 1 {
start_thread();
}
loop {
// Run the task.
abort_on_panic(|| task.run());
// Try taking another task if there are any available.
task = match POOL.receiver.try_recv() {
Ok(task) => task,
Err(_) => break,
};
}
// If there is at least one sleeping thread, stop this thread instead of putting it
// to sleep.
if SLEEPING.load(Ordering::SeqCst) > 0 {
return;
}
SLEEPING.fetch_add(1, Ordering::SeqCst);
}
})
.expect("cannot start a blocking thread");
} }

@ -43,10 +43,6 @@ impl Future for YieldNow {
if !self.0 { if !self.0 {
self.0 = true; self.0 = true;
cx.waker().wake_by_ref(); cx.waker().wake_by_ref();
#[cfg(feature = "default")]
crate::rt::RUNTIME.yield_now();
Poll::Pending Poll::Pending
} else { } else {
Poll::Ready(()) Poll::Ready(())

@ -20,40 +20,6 @@ pub fn abort_on_panic<T>(f: impl FnOnce() -> T) -> T {
t t
} }
/// Generates a random number in `0..n`.
#[cfg(any(feature = "unstable", feature = "default"))]
pub fn random(n: u32) -> u32 {
use std::cell::Cell;
use std::num::Wrapping;
thread_local! {
static RNG: Cell<Wrapping<u32>> = {
// Take the address of a local value as seed.
let mut x = 0i32;
let r = &mut x;
let addr = r as *mut i32 as usize;
Cell::new(Wrapping(addr as u32))
}
}
RNG.with(|rng| {
// This is the 32-bit variant of Xorshift.
//
// Source: https://en.wikipedia.org/wiki/Xorshift
let mut x = rng.get();
x ^= x << 13;
x ^= x >> 17;
x ^= x << 5;
rng.set(x);
// This is a fast alternative to `x % n`.
//
// Author: Daniel Lemire
// Source: https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
((u64::from(x.0)).wrapping_mul(u64::from(n)) >> 32) as u32
})
}
/// Add additional context to errors /// Add additional context to errors
pub(crate) trait Context { pub(crate) trait Context {
fn context(self, message: impl Fn() -> String) -> Self; fn context(self, message: impl Fn() -> String) -> Self;

@ -40,24 +40,33 @@ fn contention() {
let tx = Arc::new(tx); let tx = Arc::new(tx);
let mutex = Arc::new(Mutex::new(0)); let mutex = Arc::new(Mutex::new(0));
let num_tasks = 10000; let num_tasks = 10; //000;
let mut handles = Vec::new();
for _ in 0..num_tasks { for _ in 0..num_tasks {
let tx = tx.clone(); let tx = tx.clone();
let mutex = mutex.clone(); let mutex = mutex.clone();
task::spawn(async move { dbg!("spawn");
handles.push(task::spawn(async move {
let mut lock = mutex.lock().await; let mut lock = mutex.lock().await;
*lock += 1; *lock += 1;
tx.unbounded_send(()).unwrap(); tx.unbounded_send(()).unwrap();
drop(lock); drop(lock);
}); }));
} }
for _ in 0..num_tasks { for i in 0..num_tasks {
dbg!(i);
rx.next().await.unwrap(); rx.next().await.unwrap();
} }
for handle in handles.into_iter() {
handle.await;
}
dbg!("wait");
let lock = mutex.lock().await; let lock = mutex.lock().await;
assert_eq!(num_tasks, *lock); assert_eq!(num_tasks, *lock);
}); });

Loading…
Cancel
Save