New scheduler resilient to blocking

pull/631/head
Stjepan Glavina 5 years ago
parent 9311fd7fae
commit 36d24cd0e1

@ -26,6 +26,7 @@ default = [
"async-task",
"crossbeam-channel",
"crossbeam-deque",
"crossbeam-queue",
"futures-timer",
"kv-log-macro",
"log",
@ -56,6 +57,7 @@ async-task = { version = "1.0.0", optional = true }
broadcaster = { version = "0.2.6", optional = true, default-features = false, features = ["default-channels"] }
crossbeam-channel = { version = "0.4.0", optional = true }
crossbeam-deque = { version = "0.7.2", optional = true }
crossbeam-queue = { version = "0.2.0", optional = true }
crossbeam-utils = { version = "0.7.0", optional = true }
futures-core = { version = "0.3.1", optional = true }
futures-io = { version = "0.3.1", optional = true }

@ -246,6 +246,8 @@ cfg_std! {
pub mod stream;
pub mod sync;
pub mod task;
pub(crate) mod rt;
}
cfg_default! {

@ -66,6 +66,5 @@ pub use tcp::{Incoming, TcpListener, TcpStream};
pub use udp::UdpSocket;
mod addr;
pub(crate) mod driver;
mod tcp;
mod udp;

@ -4,7 +4,7 @@ use std::pin::Pin;
use crate::future;
use crate::io;
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::net::{TcpStream, ToSocketAddrs};
use crate::stream::Stream;
use crate::task::{Context, Poll};

@ -4,7 +4,7 @@ use std::pin::Pin;
use crate::future;
use crate::io::{self, Read, Write};
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::net::ToSocketAddrs;
use crate::task::{spawn_blocking, Context, Poll};
use crate::utils::Context as _;

@ -3,8 +3,8 @@ use std::net::SocketAddr;
use std::net::{Ipv4Addr, Ipv6Addr};
use crate::future;
use crate::net::driver::Watcher;
use crate::net::ToSocketAddrs;
use crate::rt::Watcher;
use crate::utils::Context as _;
/// A UDP socket.
@ -102,7 +102,7 @@ impl UdpSocket {
/// ```no_run
/// # fn main() -> std::io::Result<()> { async_std::task::block_on(async {
/// #
/// use async_std::net::UdpSocket;
/// use async_std::net::UdpSocket;
///
/// let socket = UdpSocket::bind("127.0.0.1:0").await?;
/// let addr = socket.local_addr()?;

@ -8,7 +8,7 @@ use mio_uds;
use super::SocketAddr;
use crate::future;
use crate::io;
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path;
use crate::task::spawn_blocking;

@ -10,7 +10,7 @@ use super::SocketAddr;
use super::UnixStream;
use crate::future;
use crate::io;
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path;
use crate::stream::Stream;

@ -9,7 +9,7 @@ use mio_uds;
use super::SocketAddr;
use crate::io::{self, Read, Write};
use crate::net::driver::Watcher;
use crate::rt::Watcher;
use crate::os::unix::io::{AsRawFd, FromRawFd, IntoRawFd, RawFd};
use crate::path::Path;
use crate::task::{spawn_blocking, Context, Poll};

@ -0,0 +1,23 @@
//! The runtime.
use std::thread;
use once_cell::sync::Lazy;
use crate::utils::abort_on_panic;
pub use reactor::{Reactor, Watcher};
pub use runtime::Runtime;
mod reactor;
mod runtime;
/// The global runtime.
pub static RUNTIME: Lazy<Runtime> = Lazy::new(|| {
thread::Builder::new()
.name("async-std/runtime".to_string())
.spawn(|| abort_on_panic(|| RUNTIME.run()))
.expect("cannot start a runtime thread");
Runtime::new()
});

@ -1,13 +1,13 @@
use std::fmt;
use std::sync::{Arc, Mutex};
use std::time::Duration;
use mio::{self, Evented};
use once_cell::sync::Lazy;
use slab::Slab;
use crate::io;
use crate::rt::RUNTIME;
use crate::task::{Context, Poll, Waker};
use crate::utils::abort_on_panic;
/// Data associated with a registered I/O handle.
#[derive(Debug)]
@ -18,15 +18,18 @@ struct Entry {
/// Tasks that are blocked on reading from this I/O handle.
readers: Mutex<Vec<Waker>>,
/// Thasks that are blocked on writing to this I/O handle.
/// Tasks that are blocked on writing to this I/O handle.
writers: Mutex<Vec<Waker>>,
}
/// The state of a networking driver.
struct Reactor {
pub struct Reactor {
/// A mio instance that polls for new events.
poller: mio::Poll,
/// A list into which mio stores events.
events: Mutex<mio::Events>,
/// A collection of registered I/O handles.
entries: Mutex<Slab<Arc<Entry>>>,
@ -39,12 +42,13 @@ struct Reactor {
impl Reactor {
/// Creates a new reactor for polling I/O events.
fn new() -> io::Result<Reactor> {
pub fn new() -> io::Result<Reactor> {
let poller = mio::Poll::new()?;
let notify_reg = mio::Registration::new2();
let mut reactor = Reactor {
poller,
events: Mutex::new(mio::Events::with_capacity(1000)),
entries: Mutex::new(Slab::new()),
notify_reg,
notify_token: mio::Token(0),
@ -92,50 +96,32 @@ impl Reactor {
Ok(())
}
// fn notify(&self) {
// self.notify_reg
// .1
// .set_readiness(mio::Ready::readable())
// .unwrap();
// }
}
/// Notifies the reactor so that polling stops blocking.
pub fn notify(&self) -> io::Result<()> {
self.notify_reg.1.set_readiness(mio::Ready::readable())
}
/// Waits on the poller for new events and wakes up tasks blocked on I/O handles.
///
/// Returns `Ok(true)` if at least one new task was woken.
pub fn poll(&self, timeout: Option<Duration>) -> io::Result<bool> {
let mut events = self.events.lock().unwrap();
/// The state of the global networking driver.
static REACTOR: Lazy<Reactor> = Lazy::new(|| {
// Spawn a thread that waits on the poller for new events and wakes up tasks blocked on I/O
// handles.
std::thread::Builder::new()
.name("async-std/net".to_string())
.spawn(move || {
// If the driver thread panics, there's not much we can do. It is not a
// recoverable error and there is no place to propagate it into so we just abort.
abort_on_panic(|| {
main_loop().expect("async networking thread has panicked");
})
})
.expect("cannot start a thread driving blocking tasks");
Reactor::new().expect("cannot initialize reactor")
});
/// Waits on the poller for new events and wakes up tasks blocked on I/O handles.
fn main_loop() -> io::Result<()> {
let reactor = &REACTOR;
let mut events = mio::Events::with_capacity(1000);
loop {
// Block on the poller until at least one new event comes in.
reactor.poller.poll(&mut events, None)?;
self.poller.poll(&mut events, timeout)?;
// Lock the entire entry table while we're processing new events.
let entries = reactor.entries.lock().unwrap();
let entries = self.entries.lock().unwrap();
// The number of woken tasks.
let mut progress = false;
for event in events.iter() {
let token = event.token();
if token == reactor.notify_token {
if token == self.notify_token {
// If this is the notification token, we just need the notification state.
reactor.notify_reg.1.set_readiness(mio::Ready::empty())?;
self.notify_reg.1.set_readiness(mio::Ready::empty())?;
} else {
// Otherwise, look for the entry associated with this token.
if let Some(entry) = entries.get(token.0) {
@ -143,21 +129,27 @@ fn main_loop() -> io::Result<()> {
let readiness = event.readiness();
// Wake up reader tasks blocked on this I/O handle.
if !(readiness & reader_interests()).is_empty() {
let reader_interests = mio::Ready::all() - mio::Ready::writable();
if !(readiness & reader_interests).is_empty() {
for w in entry.readers.lock().unwrap().drain(..) {
w.wake();
progress = true;
}
}
// Wake up writer tasks blocked on this I/O handle.
if !(readiness & writer_interests()).is_empty() {
let writer_interests = mio::Ready::all() - mio::Ready::readable();
if !(readiness & writer_interests).is_empty() {
for w in entry.writers.lock().unwrap().drain(..) {
w.wake();
progress = true;
}
}
}
}
}
Ok(progress)
}
}
@ -180,7 +172,8 @@ impl<T: Evented> Watcher<T> {
/// lifetime of the returned I/O handle.
pub fn new(source: T) -> Watcher<T> {
Watcher {
entry: REACTOR
entry: RUNTIME
.reactor()
.register(&source)
.expect("cannot register an I/O event source"),
source: Some(source),
@ -264,7 +257,8 @@ impl<T: Evented> Watcher<T> {
#[allow(dead_code)]
pub fn into_inner(mut self) -> T {
let source = self.source.take().unwrap();
REACTOR
RUNTIME
.reactor()
.deregister(&source, &self.entry)
.expect("cannot deregister I/O event source");
source
@ -274,7 +268,8 @@ impl<T: Evented> Watcher<T> {
impl<T: Evented> Drop for Watcher<T> {
fn drop(&mut self) {
if let Some(ref source) = self.source {
REACTOR
RUNTIME
.reactor()
.deregister(source, &self.entry)
.expect("cannot deregister I/O event source");
}
@ -289,27 +284,3 @@ impl<T: Evented + fmt::Debug> fmt::Debug for Watcher<T> {
.finish()
}
}
/// Returns a mask containing flags that interest tasks reading from I/O handles.
#[inline]
fn reader_interests() -> mio::Ready {
mio::Ready::all() - mio::Ready::writable()
}
/// Returns a mask containing flags that interest tasks writing into I/O handles.
#[inline]
fn writer_interests() -> mio::Ready {
mio::Ready::writable() | hup()
}
/// Returns a flag containing the hangup status.
#[inline]
fn hup() -> mio::Ready {
#[cfg(unix)]
let ready = mio::unix::UnixReady::hup().into();
#[cfg(not(unix))]
let ready = mio::Ready::empty();
ready
}

@ -0,0 +1,449 @@
use std::cell::Cell;
use std::io;
use std::iter;
use std::ptr;
use std::sync::atomic::{self, AtomicBool, Ordering};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use crossbeam_deque::{Injector, Steal, Stealer, Worker};
use crossbeam_utils::thread::scope;
use once_cell::unsync::OnceCell;
use crate::rt::Reactor;
use crate::task::Runnable;
use crate::utils::{abort_on_panic, random, Spinlock};
thread_local! {
/// A reference to the current machine, if the current thread runs tasks.
static MACHINE: OnceCell<Arc<Machine>> = OnceCell::new();
/// This flag is set to true whenever `task::yield_now()` is invoked.
static YIELD_NOW: Cell<bool> = Cell::new(false);
}
/// Scheduler state.
struct Scheduler {
/// Set to `true` every time before a machine blocks polling the reactor.
progress: bool,
/// Set to `true` while a machine is polling the reactor.
polling: bool,
/// Idle processors.
processors: Vec<Processor>,
/// Running machines.
machines: Vec<Arc<Machine>>,
}
/// An async runtime.
pub struct Runtime {
/// The reactor.
reactor: Reactor,
/// The global queue of tasks.
injector: Injector<Runnable>,
/// Handles to local queues for stealing work.
stealers: Vec<Stealer<Runnable>>,
/// The scheduler state.
sched: Mutex<Scheduler>,
}
impl Runtime {
/// Creates a new runtime.
pub fn new() -> Runtime {
let cpus = num_cpus::get().max(1);
let processors: Vec<_> = (0..cpus).map(|_| Processor::new()).collect();
let stealers = processors.iter().map(|p| p.worker.stealer()).collect();
Runtime {
reactor: Reactor::new().unwrap(),
injector: Injector::new(),
stealers,
sched: Mutex::new(Scheduler {
processors,
machines: Vec::new(),
progress: false,
polling: false,
}),
}
}
/// Returns a reference to the reactor.
pub fn reactor(&self) -> &Reactor {
&self.reactor
}
/// Flushes the task slot so that tasks get run more fairly.
pub fn yield_now(&self) {
YIELD_NOW.with(|flag| flag.set(true));
}
/// Schedules a task.
pub fn schedule(&self, task: Runnable) {
MACHINE.with(|machine| {
// If the current thread is a worker thread, schedule it onto the current machine.
// Otherwise, push it into the global task queue.
match machine.get() {
None => {
self.injector.push(task);
self.notify();
}
Some(m) => m.schedule(&self, task),
}
});
}
/// Runs the runtime on the current thread.
pub fn run(&self) {
scope(|s| {
let mut idle = 0;
let mut delay = 0;
loop {
// Get a list of new machines to start, if any need to be started.
for m in self.make_machines() {
idle = 0;
s.builder()
.name("async-std/machine".to_string())
.spawn(move |_| {
abort_on_panic(|| {
let _ = MACHINE.with(|machine| machine.set(m.clone()));
m.run(self);
})
})
.expect("cannot start a machine thread");
}
// Sleep for a bit longer if the scheduler state hasn't changed in a while.
if idle > 10 {
delay = (delay * 2).min(10_000);
} else {
idle += 1;
delay = 1000;
}
thread::sleep(Duration::from_micros(delay));
}
})
.unwrap();
}
/// Returns a list of machines that need to be started.
fn make_machines(&self) -> Vec<Arc<Machine>> {
let mut sched = self.sched.lock().unwrap();
let mut to_start = Vec::new();
// If there is a machine that is stuck on a task and not making any progress, steal its
// processor and set up a new machine to take over.
for m in &mut sched.machines {
if !m.progress.swap(false, Ordering::SeqCst) {
let opt_p = m.processor.try_lock().and_then(|mut p| p.take());
if let Some(p) = opt_p {
*m = Arc::new(Machine::new(p));
to_start.push(m.clone());
}
}
}
// If no machine has been polling the reactor in a while, that means the runtime is
// overloaded with work and we need to start another machine.
if !sched.polling {
if !sched.progress {
if let Some(p) = sched.processors.pop() {
let m = Arc::new(Machine::new(p));
to_start.push(m.clone());
sched.machines.push(m);
}
}
sched.progress = false;
}
to_start
}
/// Unparks a thread polling the reactor.
fn notify(&self) {
atomic::fence(Ordering::SeqCst);
self.reactor.notify().unwrap();
}
/// Attempts to poll the reactor without blocking on it.
///
/// Returns `Ok(true)` if at least one new task was woken.
///
/// This function might not poll the reactor at all so do not rely on it doing anything. Only
/// use for optimization.
fn quick_poll(&self) -> io::Result<bool> {
if let Ok(sched) = self.sched.try_lock() {
if !sched.polling {
return self.reactor.poll(Some(Duration::from_secs(0)));
}
}
Ok(false)
}
}
/// A thread running a processor.
struct Machine {
/// Holds the processor until it gets stolen.
processor: Spinlock<Option<Processor>>,
/// Gets set to `true` before running every task to indicate the machine is not stuck.
progress: AtomicBool,
}
impl Machine {
/// Creates a new machine running a processor.
fn new(p: Processor) -> Machine {
Machine {
processor: Spinlock::new(Some(p)),
progress: AtomicBool::new(true),
}
}
/// Schedules a task onto the machine.
fn schedule(&self, rt: &Runtime, task: Runnable) {
match self.processor.lock().as_mut() {
None => {
rt.injector.push(task);
rt.notify();
}
Some(p) => p.schedule(rt, task),
}
}
/// Finds the next runnable task.
fn find_task(&self, rt: &Runtime) -> Steal<Runnable> {
let mut retry = false;
// First try finding a task in the local queue or in the global queue.
if let Some(p) = self.processor.lock().as_mut() {
if let Some(task) = p.pop_task() {
return Steal::Success(task);
}
match p.steal_from_global(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
}
// Try polling the reactor, but don't block on it.
let progress = rt.quick_poll().unwrap();
// Try finding a task in the local queue, which might hold tasks woken by the reactor. If
// the local queue is still empty, try stealing from other processors.
if let Some(p) = self.processor.lock().as_mut() {
if progress {
if let Some(task) = p.pop_task() {
return Steal::Success(task);
}
}
match p.steal_from_others(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
}
if retry { Steal::Retry } else { Steal::Empty }
}
/// Runs the machine on the current thread.
fn run(&self, rt: &Runtime) {
/// Number of yields when no runnable task is found.
const YIELDS: u32 = 3;
/// Number of short sleeps when no runnable task in found.
const SLEEPS: u32 = 10;
/// Number of runs in a row before the global queue is inspected.
const RUNS: u32 = 64;
// The number of times the thread found work in a row.
let mut runs = 0;
// The number of times the thread didn't find work in a row.
let mut fails = 0;
loop {
// let the scheduler know this machine is making progress.
self.progress.store(true, Ordering::SeqCst);
// Check if `task::yield_now()` was invoked and flush the slot if so.
YIELD_NOW.with(|flag| {
if flag.replace(false) {
if let Some(p) = self.processor.lock().as_mut() {
p.flush_slot(rt);
}
}
});
// After a number of runs in a row, do some work to ensure no task is left behind
// indefinitely. Poll the reactor, steal tasks from the global queue, and flush the
// task slot.
if runs >= RUNS {
runs = 0;
rt.quick_poll().unwrap();
if let Some(p) = self.processor.lock().as_mut() {
if let Steal::Success(task) = p.steal_from_global(rt) {
p.schedule(rt, task);
}
p.flush_slot(rt);
}
}
// Try to find a runnable task.
if let Steal::Success(task) = self.find_task(rt) {
task.run();
runs += 1;
fails = 0;
continue;
}
fails += 1;
// Check if the processor was stolen.
if self.processor.lock().is_none() {
break;
}
// Yield the current thread a few times.
if fails <= YIELDS {
thread::yield_now();
continue;
}
// Put the current thread to sleep a few times.
if fails <= YIELDS + SLEEPS {
let opt_p = self.processor.lock().take();
thread::sleep(Duration::from_micros(10));
*self.processor.lock() = opt_p;
continue;
}
let mut sched = rt.sched.lock().unwrap();
// One final check for available tasks while the scheduler is locked.
if let Some(task) = iter::repeat_with(|| self.find_task(rt))
.find(|s| !s.is_retry())
.and_then(|s| s.success())
{
self.schedule(rt, task);
continue;
}
// If another thread is already blocked on the reactor, there is no point in keeping
// the current thread around since there is too little work to do.
if sched.polling {
break;
}
// Take out the machine associated with the current thread.
let m = match sched
.machines
.iter()
.position(|elem| ptr::eq(&**elem, self))
{
None => break, // The processor was stolen.
Some(pos) => sched.machines.swap_remove(pos),
};
// Unlock the schedule poll the reactor until new I/O events arrive.
sched.polling = true;
drop(sched);
rt.reactor.poll(None).unwrap();
// Lock the scheduler again and re-register the machine.
sched = rt.sched.lock().unwrap();
sched.polling = false;
sched.machines.push(m);
sched.progress = true;
runs = 0;
fails = 0;
}
// When shutting down the thread, take the processor out if still available.
let opt_p = self.processor.lock().take();
// Return the processor to the scheduler and remove the machine.
if let Some(p) = opt_p {
let mut sched = rt.sched.lock().unwrap();
sched.processors.push(p);
sched.machines.retain(|elem| !ptr::eq(&**elem, self));
}
}
}
struct Processor {
/// The local task queue.
worker: Worker<Runnable>,
/// Contains the next task to run as an optimization that skips the queue.
slot: Option<Runnable>,
}
impl Processor {
/// Creates a new processor.
fn new() -> Processor {
Processor {
worker: Worker::new_fifo(),
slot: None,
}
}
/// Schedules a task to run on this processor.
fn schedule(&mut self, rt: &Runtime, task: Runnable) {
match self.slot.replace(task) {
None => {}
Some(task) => {
self.worker.push(task);
rt.notify();
}
}
}
/// Flushes a task from the slot into the local queue.
fn flush_slot(&mut self, rt: &Runtime) {
if let Some(task) = self.slot.take() {
self.worker.push(task);
rt.notify();
}
}
/// Pops a task from this processor.
fn pop_task(&mut self) -> Option<Runnable> {
self.slot.take().or_else(|| self.worker.pop())
}
/// Steals a task from the global queue.
fn steal_from_global(&mut self, rt: &Runtime) -> Steal<Runnable> {
rt.injector.steal_batch_and_pop(&self.worker)
}
/// Steals a task from other processors.
fn steal_from_others(&mut self, rt: &Runtime) -> Steal<Runnable> {
// Pick a random starting point in the list of queues.
let len = rt.stealers.len();
let start = random(len as u32) as usize;
// Create an iterator over stealers that starts from the chosen point.
let (l, r) = rt.stealers.split_at(start);
let stealers = r.iter().chain(l.iter());
// Try stealing a batch of tasks from each queue.
stealers
.map(|s| s.steal_batch_and_pop(&self.worker))
.collect()
}
}

@ -3,11 +3,9 @@ use std::future::Future;
use std::mem::{self, ManuallyDrop};
use std::sync::Arc;
use std::task::{RawWaker, RawWakerVTable};
use std::thread;
use crossbeam_utils::sync::Parker;
use kv_log_macro::trace;
use log::log_enabled;
use crate::task::{Context, Poll, Task, Waker};
@ -42,12 +40,10 @@ where
let task = Task::new(None);
// Log this `block_on` operation.
if log_enabled!(log::Level::Trace) {
trace!("block_on", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
}
trace!("block_on", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
let future = async move {
// Drop task-locals on exit.
@ -57,13 +53,9 @@ where
// Log completion on exit.
defer! {
if log_enabled!(log::Level::Trace) {
Task::get_current(|t| {
trace!("completed", {
task_id: t.id().0,
});
});
}
trace!("completed", {
task_id: Task::get_current(|t| t.id().0),
});
}
future.await
@ -125,7 +117,6 @@ where
let waker = unsafe { ManuallyDrop::new(Waker::from_raw(RawWaker::new(ptr, &VTABLE))) };
let cx = &mut Context::from_waker(&waker);
let mut step = 0;
loop {
if let Poll::Ready(t) = future.as_mut().poll(cx) {
// Save the parker for the next invocation of `block`.
@ -133,14 +124,7 @@ where
return t;
}
// Yield a few times or park the current thread.
if step < 3 {
thread::yield_now();
step += 1;
} else {
arc_parker.park();
step = 0;
}
arc_parker.park();
}
})
}

@ -1,9 +1,9 @@
use kv_log_macro::trace;
use log::log_enabled;
use std::future::Future;
use kv_log_macro::trace;
use crate::io;
use crate::task::executor;
use crate::rt::RUNTIME;
use crate::task::{JoinHandle, Task};
use crate::utils::abort_on_panic;
@ -37,12 +37,10 @@ impl Builder {
let task = Task::new(self.name);
// Log this `spawn` operation.
if log_enabled!(log::Level::Trace) {
trace!("spawn", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
}
trace!("spawn", {
task_id: task.id().0,
parent_task_id: Task::get_current(|t| t.id().0).unwrap_or(0),
});
let future = async move {
// Drop task-locals on exit.
@ -52,19 +50,15 @@ impl Builder {
// Log completion on exit.
defer! {
if log_enabled!(log::Level::Trace) {
Task::get_current(|t| {
trace!("completed", {
task_id: t.id().0,
});
});
}
trace!("completed", {
task_id: Task::get_current(|t| t.id().0),
});
}
future.await
};
let schedule = move |t| executor::schedule(Runnable(t));
let schedule = move |t| RUNTIME.schedule(Runnable(t));
let (task, handle) = async_task::spawn(future, schedule, task);
task.schedule();
Ok(JoinHandle::new(handle))
@ -72,7 +66,7 @@ impl Builder {
}
/// A runnable task.
pub(crate) struct Runnable(async_task::Task<Task>);
pub struct Runnable(async_task::Task<Task>);
impl Runnable {
/// Runs the task by polling its future once.

@ -1,13 +0,0 @@
//! Task executor.
//!
//! API bindings between `crate::task` and this module are very simple:
//!
//! * The only export is the `schedule` function.
//! * The only import is the `crate::task::Runnable` type.
pub(crate) use pool::schedule;
use sleepers::Sleepers;
mod pool;
mod sleepers;

@ -1,179 +0,0 @@
use std::cell::Cell;
use std::iter;
use std::thread;
use std::time::Duration;
use crossbeam_deque::{Injector, Stealer, Worker};
use once_cell::sync::Lazy;
use once_cell::unsync::OnceCell;
use crate::task::executor::Sleepers;
use crate::task::Runnable;
use crate::utils::{abort_on_panic, random};
/// The state of an executor.
struct Pool {
/// The global queue of tasks.
injector: Injector<Runnable>,
/// Handles to local queues for stealing work from worker threads.
stealers: Vec<Stealer<Runnable>>,
/// Used for putting idle workers to sleep and notifying them when new tasks come in.
sleepers: Sleepers,
}
/// Global executor that runs spawned tasks.
static POOL: Lazy<Pool> = Lazy::new(|| {
let num_threads = num_cpus::get().max(1);
let mut stealers = Vec::new();
// Spawn worker threads.
for _ in 0..num_threads {
let worker = Worker::new_fifo();
stealers.push(worker.stealer());
let proc = Processor {
worker,
slot: Cell::new(None),
slot_runs: Cell::new(0),
};
thread::Builder::new()
.name("async-std/executor".to_string())
.spawn(|| {
let _ = PROCESSOR.with(|p| p.set(proc));
abort_on_panic(main_loop);
})
.expect("cannot start a thread driving tasks");
}
Pool {
injector: Injector::new(),
stealers,
sleepers: Sleepers::new(),
}
});
/// The state of a worker thread.
struct Processor {
/// The local task queue.
worker: Worker<Runnable>,
/// Contains the next task to run as an optimization that skips queues.
slot: Cell<Option<Runnable>>,
/// How many times in a row tasks have been taked from the slot rather than the queue.
slot_runs: Cell<u32>,
}
thread_local! {
/// Worker thread state.
static PROCESSOR: OnceCell<Processor> = OnceCell::new();
}
/// Schedules a new runnable task for execution.
pub(crate) fn schedule(task: Runnable) {
PROCESSOR.with(|proc| {
// If the current thread is a worker thread, store it into its task slot or push it into
// its local task queue. Otherwise, push it into the global task queue.
match proc.get() {
Some(proc) => {
// Replace the task in the slot.
if let Some(task) = proc.slot.replace(Some(task)) {
// If the slot already contained a task, push it into the local task queue.
proc.worker.push(task);
POOL.sleepers.notify_one();
}
}
None => {
POOL.injector.push(task);
POOL.sleepers.notify_one();
}
}
})
}
/// Main loop running a worker thread.
fn main_loop() {
/// Number of yields when no runnable task is found.
const YIELDS: u32 = 3;
/// Number of short sleeps when no runnable task in found.
const SLEEPS: u32 = 1;
// The number of times the thread didn't find work in a row.
let mut fails = 0;
loop {
// Try to find a runnable task.
match find_runnable() {
Some(task) => {
fails = 0;
// Run the found task.
task.run();
}
None => {
fails += 1;
// Yield the current thread or put it to sleep.
if fails <= YIELDS {
thread::yield_now();
} else if fails <= YIELDS + SLEEPS {
thread::sleep(Duration::from_micros(10));
} else {
POOL.sleepers.wait();
fails = 0;
}
}
}
}
}
/// Find the next runnable task.
fn find_runnable() -> Option<Runnable> {
/// Maximum number of times the slot can be used in a row.
const SLOT_LIMIT: u32 = 16;
PROCESSOR.with(|proc| {
let proc = proc.get().unwrap();
// Try taking a task from the slot.
let runs = proc.slot_runs.get();
if runs < SLOT_LIMIT {
if let Some(task) = proc.slot.take() {
proc.slot_runs.set(runs + 1);
return Some(task);
}
}
proc.slot_runs.set(0);
// Pop a task from the local queue, if not empty.
proc.worker.pop().or_else(|| {
// Otherwise, we need to look for a task elsewhere.
iter::repeat_with(|| {
// Try stealing a batch of tasks from the global queue.
POOL.injector
.steal_batch_and_pop(&proc.worker)
// Or try stealing a batch of tasks from one of the other threads.
.or_else(|| {
// First, pick a random starting point in the list of local queues.
let len = POOL.stealers.len();
let start = random(len as u32) as usize;
// Try stealing a batch of tasks from each local queue starting from the
// chosen point.
let (l, r) = POOL.stealers.split_at(start);
let stealers = r.iter().chain(l.iter());
stealers
.map(|s| s.steal_batch_and_pop(&proc.worker))
.collect()
})
})
// Loop while no task was stolen and any steal operation needs to be retried.
.find(|s| !s.is_retry())
// Extract the stolen task, if there is one.
.and_then(|s| s.success())
})
})
}

@ -1,52 +0,0 @@
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::{Condvar, Mutex};
/// The place where worker threads go to sleep.
///
/// Similar to how thread parking works, if a notification comes up while no threads are sleeping,
/// the next thread that attempts to go to sleep will pick up the notification immediately.
pub struct Sleepers {
/// How many threads are currently a sleep.
sleep: Mutex<usize>,
/// A condvar for notifying sleeping threads.
wake: Condvar,
/// Set to `true` if a notification came up while nobody was sleeping.
notified: AtomicBool,
}
impl Sleepers {
/// Creates a new `Sleepers`.
pub fn new() -> Sleepers {
Sleepers {
sleep: Mutex::new(0),
wake: Condvar::new(),
notified: AtomicBool::new(false),
}
}
/// Puts the current thread to sleep.
pub fn wait(&self) {
let mut sleep = self.sleep.lock().unwrap();
if !self.notified.swap(false, Ordering::SeqCst) {
*sleep += 1;
let _ = self.wake.wait(sleep).unwrap();
}
}
/// Notifies one thread.
pub fn notify_one(&self) {
if !self.notified.load(Ordering::SeqCst) {
let mut sleep = self.sleep.lock().unwrap();
if *sleep > 0 {
*sleep -= 1;
self.wake.notify_one();
} else {
self.notified.store(true, Ordering::SeqCst);
}
}
}
}

@ -14,9 +14,6 @@ use crate::task::{Context, Poll, Task};
#[derive(Debug)]
pub struct JoinHandle<T>(async_task::JoinHandle<T, Task>);
unsafe impl<T> Send for JoinHandle<T> {}
unsafe impl<T> Sync for JoinHandle<T> {}
impl<T> JoinHandle<T> {
/// Creates a new `JoinHandle`.
pub(crate) fn new(inner: async_task::JoinHandle<T, Task>) -> JoinHandle<T> {

@ -140,13 +140,12 @@ cfg_default! {
pub use spawn::spawn;
pub use task_local::{AccessError, LocalKey};
use builder::Runnable;
use task_local::LocalsMap;
pub(crate) use builder::Runnable;
pub(crate) use task_local::LocalsMap;
mod block_on;
mod builder;
mod current;
mod executor;
mod join_handle;
mod sleep;
mod spawn;

@ -1,12 +1,4 @@
use std::sync::atomic::{AtomicUsize, Ordering};
use std::thread;
use std::time::Duration;
use crossbeam_channel::{unbounded, Receiver, Sender};
use once_cell::sync::Lazy;
use crate::task::{JoinHandle, Task};
use crate::utils::abort_on_panic;
use crate::task::{spawn, JoinHandle};
/// Spawns a blocking task.
///
@ -31,7 +23,8 @@ use crate::utils::abort_on_panic;
///
/// task::spawn_blocking(|| {
/// println!("long-running task here");
/// }).await;
/// })
/// .await;
/// #
/// # })
/// ```
@ -42,80 +35,5 @@ where
F: FnOnce() -> T + Send + 'static,
T: Send + 'static,
{
let schedule = |task| POOL.sender.send(task).unwrap();
let (task, handle) = async_task::spawn(async { f() }, schedule, Task::new(None));
task.schedule();
JoinHandle::new(handle)
}
type Runnable = async_task::Task<Task>;
/// The number of sleeping worker threads.
static SLEEPING: AtomicUsize = AtomicUsize::new(0);
struct Pool {
sender: Sender<Runnable>,
receiver: Receiver<Runnable>,
}
static POOL: Lazy<Pool> = Lazy::new(|| {
// Start a single worker thread waiting for the first task.
start_thread();
let (sender, receiver) = unbounded();
Pool { sender, receiver }
});
fn start_thread() {
SLEEPING.fetch_add(1, Ordering::SeqCst);
let timeout = Duration::from_secs(1);
thread::Builder::new()
.name("async-std/blocking".to_string())
.spawn(move || {
loop {
let mut task = match POOL.receiver.recv_timeout(timeout) {
Ok(task) => task,
Err(_) => {
// Check whether this is the last sleeping thread.
if SLEEPING.fetch_sub(1, Ordering::SeqCst) == 1 {
// If so, then restart the thread to make sure there is always at least
// one sleeping thread.
if SLEEPING.compare_and_swap(0, 1, Ordering::SeqCst) == 0 {
continue;
}
}
// Stop the thread.
return;
}
};
// If there are no sleeping threads, then start one to make sure there is always at
// least one sleeping thread.
if SLEEPING.fetch_sub(1, Ordering::SeqCst) == 1 {
start_thread();
}
loop {
// Run the task.
abort_on_panic(|| task.run());
// Try taking another task if there are any available.
task = match POOL.receiver.try_recv() {
Ok(task) => task,
Err(_) => break,
};
}
// If there is at least one sleeping thread, stop this thread instead of putting it
// to sleep.
if SLEEPING.load(Ordering::SeqCst) > 0 {
return;
}
SLEEPING.fetch_add(1, Ordering::SeqCst);
}
})
.expect("cannot start a blocking thread");
spawn(async { f() })
}

@ -1,6 +1,7 @@
use std::pin::Pin;
use std::future::Future;
use std::pin::Pin;
use crate::rt::RUNTIME;
use crate::task::{Context, Poll};
/// Cooperatively gives up a timeslice to the task scheduler.
@ -43,6 +44,7 @@ impl Future for YieldNow {
if !self.0 {
self.0 = true;
cx.waker().wake_by_ref();
RUNTIME.yield_now();
Poll::Pending
} else {
Poll::Ready(())

@ -1,3 +1,9 @@
use std::cell::UnsafeCell;
use std::ops::{Deref, DerefMut};
use std::sync::atomic::{AtomicBool, Ordering};
use crossbeam_utils::Backoff;
/// Calls a function and aborts if it panics.
///
/// This is useful in unsafe code where we can't recover from panics.
@ -52,6 +58,71 @@ pub fn random(n: u32) -> u32 {
})
}
/// A simple spinlock.
pub struct Spinlock<T> {
flag: AtomicBool,
value: UnsafeCell<T>,
}
unsafe impl<T: Send> Send for Spinlock<T> {}
unsafe impl<T: Send> Sync for Spinlock<T> {}
impl<T> Spinlock<T> {
/// Returns a new spinlock initialized with `value`.
pub const fn new(value: T) -> Spinlock<T> {
Spinlock {
flag: AtomicBool::new(false),
value: UnsafeCell::new(value),
}
}
/// Locks the spinlock.
pub fn lock(&self) -> SpinlockGuard<'_, T> {
let backoff = Backoff::new();
while self.flag.swap(true, Ordering::Acquire) {
backoff.snooze();
}
SpinlockGuard { parent: self }
}
/// Attempts to lock the spinlock.
pub fn try_lock(&self) -> Option<SpinlockGuard<'_, T>> {
if self.flag.swap(true, Ordering::Acquire) {
None
} else {
Some(SpinlockGuard { parent: self })
}
}
}
/// A guard holding a spinlock locked.
pub struct SpinlockGuard<'a, T> {
parent: &'a Spinlock<T>,
}
unsafe impl<T: Send> Send for SpinlockGuard<'_, T> {}
unsafe impl<T: Sync> Sync for SpinlockGuard<'_, T> {}
impl<'a, T> Drop for SpinlockGuard<'a, T> {
fn drop(&mut self) {
self.parent.flag.store(false, Ordering::Release);
}
}
impl<'a, T> Deref for SpinlockGuard<'a, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.parent.value.get() }
}
}
impl<'a, T> DerefMut for SpinlockGuard<'a, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.parent.value.get() }
}
}
/// Add additional context to errors
pub(crate) trait Context {
fn context(self, message: impl Fn() -> String) -> Self;

Loading…
Cancel
Save