You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
async-std/src/rt/runtime.rs

647 lines
23 KiB
Rust

use std::cell::Cell;
use std::cell::RefCell;
use std::io;
use std::iter;
use std::ptr;
use std::sync::atomic::{self, Ordering};
use std::sync::{Arc, Mutex};
use std::thread;
use std::time::Duration;
use crossbeam_deque::{Injector, Steal, Stealer, Worker};
use crossbeam_utils::{
sync::{Parker, Unparker},
thread::scope,
};
use once_cell::sync::Lazy;
use crate::rt::Reactor;
use crate::sync::Spinlock;
use crate::task::Runnable;
use crate::utils::{abort_on_panic, random};
thread_local! {
/// A reference to the current machine, if the current thread runs tasks.
static MACHINE: RefCell<Option<Arc<Machine>>> = RefCell::new(None);
/// This flag is set to true whenever `task::yield_now()` is invoked.
static YIELD_NOW: Cell<bool> = Cell::new(false);
}
/// Maximum number of OS threads = processors = machines
static MAXPROCS: Lazy<usize> = Lazy::new(|| num_cpus::get().max(1));
/// Minimum number of machines that are kept exeuting, to avoid starvation.
const MIN_MACHINES: usize = 2;
struct Scheduler {
/// Set to `true` while a machine is polling the reactor.
polling: bool,
progress: bool,
/// Available threads.
threads: Vec<ThreadState>,
/// Idle processors.
processors: Vec<Processor>,
/// Running machines.
machines: Vec<Arc<Machine>>,
}
impl Scheduler {
/// Get the next machine that has no work yet, if there is any.
fn next_idle_machine(&self) -> Option<Arc<Machine>> {
self.machines
.iter()
.find(|m| !m.has_work())
.map(|m| m.clone())
}
}
struct ThreadState {
unparker: Unparker,
parked: Arc<atomic::AtomicBool>,
/// Used to transfer the machine into the thread.
machine_sender: crossbeam_channel::Sender<Arc<Machine>>,
}
/// An async runtime.
pub struct Runtime {
/// The reactor.
reactor: Reactor,
/// The global queue of tasks.
injector: Injector<Runnable>,
/// Handles to local queues for stealing work.
stealers: Vec<Stealer<Runnable>>,
/// The scheduler state.
sched: Mutex<Scheduler>,
#[cfg(feature = "tracing")]
poll_count: atomic::AtomicUsize,
}
impl Runtime {
/// Creates a new runtime.
pub fn new() -> Runtime {
let processors: Vec<_> = (0..*MAXPROCS).map(|_| Processor::new()).collect();
let stealers = processors.iter().map(|p| p.worker.stealer()).collect();
let threads = Vec::with_capacity(*MAXPROCS);
Runtime {
reactor: Reactor::new().unwrap(),
injector: Injector::new(),
stealers,
#[cfg(feature = "tracing")]
poll_count: atomic::AtomicUsize::new(0),
sched: Mutex::new(Scheduler {
processors,
machines: Vec::with_capacity(*MAXPROCS),
threads,
polling: false,
progress: false,
}),
}
}
/// Returns a reference to the reactor.
pub fn reactor(&self) -> &Reactor {
&self.reactor
}
/// Flushes the task slot so that tasks get run more fairly.
pub fn yield_now(&self) {
YIELD_NOW.with(|flag| flag.set(true));
}
/// Schedules a task.
pub fn schedule(&self, task: Runnable) {
MACHINE.with(|machine| {
// If the current thread is a worker thread, schedule it onto the current machine.
// Otherwise, push it into the global task queue.
match &*machine.borrow() {
None => {
self.injector.push(task);
self.notify();
}
Some(m) => m.schedule(&self, task),
}
});
}
/// Runs the runtime on the current thread.
pub fn run(&self) {
scope(|s| {
let mut idle = 0;
let mut delay = 0;
#[cfg(feature = "tracing")]
s.builder()
.name("async-std/trace".to_string())
.spawn(|_| {
use log_update::LogUpdate;
use std::io::stdout;
let mut log_update = LogUpdate::new(stdout()).unwrap();
loop {
let (thread_list, machine_list, processor_list, polling) = {
let sched = self.sched.lock().unwrap();
let thread_list = sched
.threads
.iter()
.map(|t| {
if t.parked.load(Ordering::Relaxed) {
"_"
} else {
"|"
}
})
.fold(String::new(), |mut s, curr| {
s += " ";
s += curr;
s
});
let machine_list = sched
.machines
.iter()
.map(|m| match &*m.processor.lock() {
Some(p) => {
let len = p.worker.len() + p.slot.is_some() as usize;
len.to_string()
}
None => "_".to_string(),
})
.fold(String::new(), |mut s, curr| {
s += " ";
s += &curr;
s
});
let processor_list = sched
.processors
.iter()
.map(|p| {
let len = p.worker.len() + p.slot.is_some() as usize;
len.to_string()
})
.fold(String::new(), |mut s, curr| {
s += " ";
s += &curr;
s
});
(thread_list, machine_list, processor_list, sched.polling)
};
let glen = self.injector.len();
let polls = self.poll_count.load(Ordering::Relaxed);
let msg = format!(
"GlobalQueue: {}\nPolls: {} - {}\nThreads:\n{}\nMachines:\n{}\nProcessors:\n{}\n",
glen, polls,polling, thread_list, machine_list, processor_list
);
log_update.render(&msg).unwrap();
thread::sleep(Duration::from_millis(10));
}
})
.expect("failed to start tracing");
loop {
// Get a list of new machines to start, if any need to be started.
let machines = self.make_machines();
for m in machines {
// println!("{} -- looking for thread", k);
idle = 0;
// println!("getting idle thread");
let sched = self.sched.lock().unwrap();
'inner: for (i, thread) in sched.threads.iter().enumerate() {
// grab the first parked thread
if thread
.parked
.compare_and_swap(true, false, Ordering::Acquire)
{
// println!("unpark thread {}", i);
// transfer the machine
thread
.machine_sender
.send(m.clone())
.expect("failed to send machine to thread");
// unpark the thread
thread.unparker.unpark();
// println!("{} found thread to unpark {}", k, i);
break 'inner;
}
}
let len = sched.threads.len();
drop(sched);
// no idle thread available, check if we can spawn one
if len < *MAXPROCS {
let i = len;
// println!("{} spawning thread {}", k, i);
// we can spawn one, lets do it
let parked = Arc::new(atomic::AtomicBool::new(false));
let parked2 = parked.clone();
let (machine_sender, machine_recv) = crossbeam_channel::bounded(1);
let parker = Parker::new();
let unparker = parker.unparker().clone();
s.builder()
.name("async-std/machine".to_string())
.spawn(move |_| {
abort_on_panic(|| {
loop {
// println!("checking park loop {}", i);
while parked2.load(Ordering::Acquire) {
parker.park();
// TODO: shutdown if idle for too long
}
// println!("thread unparked {}", i);
// when this thread is unparked, retrieve machine
let m: Arc<Machine> =
machine_recv.recv().expect("failed to receive machine");
// store it in the thread local
MACHINE.with(|machine| {
*machine.borrow_mut() = Some(m.clone());
});
// run it
m.run(self);
// when run ends
{
// see if there are any available processors
let mut sched = self.sched.lock().unwrap();
if let Some(p) = sched.processors.pop() {
// get a machine
if let Some(m) = sched.next_idle_machine(){
*m.processor.lock() = Some(p);
MACHINE.with(|machine| {
machine.borrow_mut().replace(m);
});
continue;
}
}
drop(sched);
// go into parked mode, no work
MACHINE.with(|machine| {
*machine.borrow_mut() = None;
});
parked2.store(true, Ordering::Relaxed);
// println!("thread parked {}", i);
}
}
})
})
.expect("cannot start a machine thread");
let mut sched = self.sched.lock().unwrap();
// transfer the machine
machine_sender
.send(m)
.expect("failed to send machine to thread");
sched.threads.push(ThreadState {
unparker,
parked,
machine_sender,
});
drop(sched);
}
}
// Sleep for a bit longer if the scheduler state hasn't changed in a while.
if idle > 10 {
delay = (delay * 2).min(10_000);
} else {
idle += 1;
delay = 1000;
}
thread::sleep(Duration::from_micros(delay));
}
})
.unwrap();
}
/// Returns a list of machines that need to be started.
fn make_machines(&self) -> Vec<Arc<Machine>> {
let mut sched = self.sched.lock().unwrap();
let mut to_start = Vec::new();
// If no machine has been polling the reactor in a while, that means the runtime is
// overloaded with work and we need to start another machine.
//
// Also ensure that there are at least 2 running machiens to avoid starvation.
if !sched.polling || sched.machines.len() < MIN_MACHINES {
#[cfg(feature = "tracing")]
self.poll_count.fetch_add(1, Ordering::Relaxed);
// if !sched.progress {
if let Some(p) = sched.processors.pop() {
if let Some(m) = sched.next_idle_machine() {
// find idle m
*m.processor.lock() = Some(p);
to_start.push(m.clone());
} else {
// no idle m
let m = Arc::new(Machine::new(p));
to_start.push(m.clone());
sched.machines.push(m);
}
}
// }
sched.progress = false;
}
to_start
}
/// Unparks a thread polling the reactor.
fn notify(&self) {
atomic::fence(Ordering::SeqCst);
self.reactor.notify().unwrap();
}
/// Attempts to poll the reactor without blocking on it.
///
/// Returns `Ok(true)` if at least one new task was woken.
///
/// This function might not poll the reactor at all so do not rely on it doing anything. Only
/// use for optimization.
fn quick_poll(&self) -> io::Result<bool> {
if let Ok(sched) = self.sched.try_lock() {
if !sched.polling {
return self.reactor.poll(Some(Duration::from_secs(0)));
}
}
Ok(false)
}
}
/// A thread running a processor.
struct Machine {
/// Holds the processor until it gets stolen.
processor: Spinlock<Option<Processor>>,
}
impl Machine {
/// Creates a new machine running a processor.
fn new(p: Processor) -> Machine {
Machine {
processor: Spinlock::new(Some(p)),
}
}
fn has_work(&self) -> bool {
if let Some(p) = &*self.processor.lock() {
// TODO: is this the right check?
p.has_work()
} else {
false
}
}
/// Schedules a task onto the machine.
fn schedule(&self, rt: &Runtime, task: Runnable) {
match self.processor.lock().as_mut() {
None => {
rt.injector.push(task);
rt.notify();
}
Some(p) => p.schedule(rt, task),
}
}
/// Finds the next runnable task.
fn find_task(&self, rt: &Runtime) -> Steal<Runnable> {
let mut retry = false;
// First try finding a task in the local queue or in the global queue.
if let Some(p) = self.processor.lock().as_mut() {
if let Some(task) = p.pop_task() {
return Steal::Success(task);
}
match p.steal_from_global(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
}
// Try polling the reactor, but don't block on it.
let progress = rt.quick_poll().unwrap();
// Try finding a task in the local queue, which might hold tasks woken by the reactor. If
// the local queue is still empty, try stealing from other processors.
if let Some(p) = self.processor.lock().as_mut() {
if progress {
if let Some(task) = p.pop_task() {
return Steal::Success(task);
}
}
match p.steal_from_others(rt) {
Steal::Empty => {}
Steal::Retry => retry = true,
Steal::Success(task) => return Steal::Success(task),
}
}
if retry { Steal::Retry } else { Steal::Empty }
}
/// Runs the machine on the current thread.
fn run(&self, rt: &Runtime) {
/// Number of yields when no runnable task is found.
const YIELDS: u32 = 3;
/// Number of short sleeps when no runnable task in found.
const SLEEPS: u32 = 10;
/// Number of runs in a row before the global queue is inspected.
const RUNS: u32 = 64;
// The number of times the thread found work in a row.
let mut runs = 0;
// The number of times the thread didn't find work in a row.
let mut fails = 0;
loop {
// Check if `task::yield_now()` was invoked and flush the slot if so.
YIELD_NOW.with(|flag| {
if flag.replace(false) {
if let Some(p) = self.processor.lock().as_mut() {
p.flush_slot(rt);
}
}
});
// After a number of runs in a row, do some work to ensure no task is left behind
// indefinitely. Poll the reactor, steal tasks from the global queue, and flush the
// task slot.
if runs >= RUNS {
runs = 0;
rt.quick_poll().unwrap();
if let Some(p) = self.processor.lock().as_mut() {
if let Steal::Success(task) = p.steal_from_global(rt) {
p.schedule(rt, task);
}
p.flush_slot(rt);
}
}
// Try to find a runnable task.
if let Steal::Success(task) = self.find_task(rt) {
task.run();
runs += 1;
fails = 0;
continue;
}
fails += 1;
// Yield the current thread a few times.
if fails <= YIELDS {
thread::yield_now();
continue;
}
// Put the current thread to sleep a few times.
if fails <= YIELDS + SLEEPS {
let opt_p = self.processor.lock().take();
thread::sleep(Duration::from_micros(10));
*self.processor.lock() = opt_p;
continue;
}
let mut sched = rt.sched.lock().unwrap();
// One final check for available tasks while the scheduler is locked.
if let Some(task) = iter::repeat_with(|| self.find_task(rt))
.find(|s| !s.is_retry())
.and_then(|s| s.success())
{
self.schedule(rt, task);
continue;
}
// If another thread is already blocked on the reactor, there is no point in keeping
// the current thread around since there is too little work to do.
if sched.polling {
break;
}
// Take out the machine associated with the current thread.
let m = match sched
.machines
.iter()
.position(|elem| ptr::eq(&**elem, self))
{
None => break, // The processor was stolen.
Some(pos) => sched.machines.swap_remove(pos),
};
// Unlock the schedule poll the reactor until new I/O events arrive.
// println!("polling start");
sched.polling = true;
drop(sched);
rt.reactor.poll(None).unwrap();
// Lock the scheduler again and re-register the machine.
sched = rt.sched.lock().unwrap();
sched.polling = false;
//println!("polling stop");
sched.machines.push(m);
sched.progress = true;
runs = 0;
fails = 0;
}
// println!("thread break");
// When shutting down the thread, take the processor out if still available.
let opt_p = self.processor.lock().take();
// println!("processor {:?}", opt_p.is_some());
// Return the processor to the scheduler and remove the machine.
if let Some(p) = opt_p {
// println!("returning processor to pool");
let mut sched = rt.sched.lock().unwrap();
sched.processors.push(p);
sched.machines.retain(|elem| !ptr::eq(&**elem, self));
}
// println!("thread run stopped");
}
}
struct Processor {
/// The local task queue.
worker: Worker<Runnable>,
/// Contains the next task to run as an optimization that skips the queue.
slot: Option<Runnable>,
}
impl Processor {
/// Creates a new processor.
fn new() -> Processor {
Processor {
worker: Worker::new_fifo(),
slot: None,
}
}
/// Is there any available work for this processor?
fn has_work(&self) -> bool {
self.slot.is_some() || !self.worker.is_empty()
}
/// Schedules a task to run on this processor.
fn schedule(&mut self, rt: &Runtime, task: Runnable) {
match self.slot.replace(task) {
None => {}
Some(task) => {
self.worker.push(task);
rt.notify();
}
}
}
/// Flushes a task from the slot into the local queue.
fn flush_slot(&mut self, rt: &Runtime) {
if let Some(task) = self.slot.take() {
self.worker.push(task);
rt.notify();
}
}
/// Pops a task from this processor.
fn pop_task(&mut self) -> Option<Runnable> {
self.slot.take().or_else(|| self.worker.pop())
}
/// Steals a task from the global queue.
fn steal_from_global(&self, rt: &Runtime) -> Steal<Runnable> {
rt.injector.steal_batch_and_pop(&self.worker)
}
/// Steals a task from other processors.
fn steal_from_others(&self, rt: &Runtime) -> Steal<Runnable> {
// Pick a random starting point in the list of queues.
let len = rt.stealers.len();
let start = random(len as u32) as usize;
// Create an iterator over stealers that starts from the chosen point.
let (l, r) = rt.stealers.split_at(start);
let stealers = r.iter().chain(l.iter());
// Try stealing a batch of tasks from each queue.
stealers
.map(|s| s.steal_batch_and_pop(&self.worker))
.collect()
}
}