You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
async-std/src/sync/mutex.rs

337 lines
9.7 KiB
Rust

use std::cell::UnsafeCell;
use std::fmt;
use std::future::Future;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::task::{Context, Poll, Waker};
use slab::Slab;
/// Set if the mutex is locked.
const LOCK: usize = 1 << 0;
/// Set if there are tasks blocked on the mutex.
const BLOCKED: usize = 1 << 1;
/// A mutual exclusion primitive for protecting shared data.
///
/// This type is an async version of [`std::sync::Mutex`].
///
/// [`std::sync::Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::{sync::Mutex, task};
/// use std::sync::Arc;
///
/// # futures::executor::block_on(async {
/// let m = Arc::new(Mutex::new(0));
/// let mut tasks = vec![];
///
/// for _ in 0..10 {
/// let m = m.clone();
/// tasks.push(task::spawn(async move {
/// *m.lock().await += 1;
/// }));
/// }
///
/// for t in tasks {
/// t.await;
/// }
/// assert_eq!(*m.lock().await, 10);
/// # })
/// ```
pub struct Mutex<T> {
state: AtomicUsize,
blocked: std::sync::Mutex<Slab<Option<Waker>>>,
value: UnsafeCell<T>,
}
unsafe impl<T: Send> Send for Mutex<T> {}
unsafe impl<T: Send> Sync for Mutex<T> {}
impl<T> Mutex<T> {
/// Creates a new mutex.
///
/// # Examples
///
/// ```
/// use async_std::sync::Mutex;
///
/// let mutex = Mutex::new(0);
/// ```
pub fn new(t: T) -> Mutex<T> {
Mutex {
state: AtomicUsize::new(0),
blocked: std::sync::Mutex::new(Slab::new()),
value: UnsafeCell::new(t),
}
}
/// Acquires the lock.
///
/// Returns a guard that releases the lock when dropped.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::{sync::Mutex, task};
/// use std::sync::Arc;
///
/// # futures::executor::block_on(async {
/// let m1 = Arc::new(Mutex::new(10));
/// let m2 = m1.clone();
///
/// task::spawn(async move {
/// *m1.lock().await = 20;
/// })
/// .await;
///
/// assert_eq!(*m2.lock().await, 20);
/// # })
/// ```
pub async fn lock(&self) -> MutexGuard<'_, T> {
pub struct LockFuture<'a, T> {
mutex: &'a Mutex<T>,
opt_key: Option<usize>,
acquired: bool,
}
impl<'a, T> Future for LockFuture<'a, T> {
type Output = MutexGuard<'a, T>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.mutex.try_lock() {
Some(guard) => {
self.acquired = true;
Poll::Ready(guard)
}
None => {
let mut blocked = self.mutex.blocked.lock().unwrap();
// Register the current task.
match self.opt_key {
None => {
// Insert a new entry into the list of blocked tasks.
let w = cx.waker().clone();
let key = blocked.insert(Some(w));
self.opt_key = Some(key);
if blocked.len() == 1 {
self.mutex.state.fetch_or(BLOCKED, Ordering::Relaxed);
}
}
Some(key) => {
// There is already an entry in the list of blocked tasks. Just
// reset the waker if it was removed.
if blocked[key].is_none() {
let w = cx.waker().clone();
blocked[key] = Some(w);
}
}
}
// Try locking again because it's possible the mutex got unlocked just
// before the current task was registered as a blocked task.
match self.mutex.try_lock() {
Some(guard) => {
self.acquired = true;
Poll::Ready(guard)
}
None => Poll::Pending,
}
}
}
}
}
impl<T> Drop for LockFuture<'_, T> {
fn drop(&mut self) {
if let Some(key) = self.opt_key {
let mut blocked = self.mutex.blocked.lock().unwrap();
let opt_waker = blocked.remove(key);
if opt_waker.is_none() && !self.acquired {
// We were awoken but didn't acquire the lock. Wake up another task.
if let Some((_, opt_waker)) = blocked.iter_mut().next() {
if let Some(w) = opt_waker.take() {
w.wake();
}
}
}
if blocked.is_empty() {
self.mutex.state.fetch_and(!BLOCKED, Ordering::Relaxed);
}
}
}
}
LockFuture {
mutex: self,
opt_key: None,
acquired: false,
}
.await
}
/// Attempts to acquire the lock.
///
/// If the lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the lock when dropped.
///
/// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::{sync::Mutex, task};
/// use std::sync::Arc;
///
/// # futures::executor::block_on(async {
/// let m1 = Arc::new(Mutex::new(10));
/// let m2 = m1.clone();
///
/// task::spawn(async move {
/// if let Some(mut guard) = m1.try_lock() {
/// *guard = 20;
/// } else {
/// println!("try_lock failed");
/// }
/// })
/// .await;
///
/// assert_eq!(*m2.lock().await, 20);
/// # })
/// ```
pub fn try_lock(&self) -> Option<MutexGuard<'_, T>> {
if self.state.fetch_or(LOCK, Ordering::Acquire) & LOCK == 0 {
Some(MutexGuard(self))
} else {
None
}
}
/// Consumes the mutex, returning the underlying data.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::Mutex;
///
/// let mutex = Mutex::new(10);
/// assert_eq!(mutex.into_inner(), 10);
/// ```
pub fn into_inner(self) -> T {
self.value.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the mutex mutably, no actual locking takes place -- the mutable
/// borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::Mutex;
///
/// # futures::executor::block_on(async {
/// let mut mutex = Mutex::new(0);
/// *mutex.get_mut() = 10;
/// assert_eq!(*mutex.lock().await, 10);
/// });
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe { &mut *self.value.get() }
}
}
impl<T: fmt::Debug> fmt::Debug for Mutex<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.try_lock() {
None => {
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
f.debug_struct("Mutex")
.field("data", &LockedPlaceholder)
.finish()
}
Some(guard) => f.debug_struct("Mutex").field("data", &&*guard).finish(),
}
}
}
impl<T> From<T> for Mutex<T> {
fn from(val: T) -> Mutex<T> {
Mutex::new(val)
}
}
impl<T: Default> Default for Mutex<T> {
fn default() -> Mutex<T> {
Mutex::new(Default::default())
}
}
/// A guard that releases the lock when dropped.
pub struct MutexGuard<'a, T>(&'a Mutex<T>);
unsafe impl<T: Send> Send for MutexGuard<'_, T> {}
unsafe impl<T: Sync> Sync for MutexGuard<'_, T> {}
impl<T> Drop for MutexGuard<'_, T> {
fn drop(&mut self) {
let state = self.0.state.fetch_and(!LOCK, Ordering::AcqRel);
// If there are any blocked tasks, wake one of them up.
if state & BLOCKED != 0 {
let mut blocked = self.0.blocked.lock().unwrap();
if let Some((_, opt_waker)) = blocked.iter_mut().next() {
// If there is no waker in this entry, that means it was already woken.
if let Some(w) = opt_waker.take() {
w.wake();
}
}
}
}
}
impl<T: fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display> fmt::Display for MutexGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T> Deref for MutexGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.value.get() }
}
}
impl<T> DerefMut for MutexGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.0.value.get() }
}
}