You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
async-std/src/sync/rwlock.rs

574 lines
18 KiB
Rust

use std::cell::UnsafeCell;
use std::fmt;
use std::future::Future;
use std::ops::{Deref, DerefMut};
use std::pin::Pin;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::task::{Context, Poll, Waker};
use slab::Slab;
/// Set if a write lock is held.
const WRITE_LOCK: usize = 1 << 0;
/// Set if there are read operations blocked on the lock.
const BLOCKED_READS: usize = 1 << 1;
/// Set if there are write operations blocked on the lock.
const BLOCKED_WRITES: usize = 1 << 2;
/// The value of a single blocked read contributing to the read count.
const ONE_READ: usize = 1 << 3;
/// The bits in which the read count is stored.
const READ_COUNT_MASK: usize = !(ONE_READ - 1);
/// A reader-writer lock for protecting shared data.
///
/// This type is an async version of [`std::sync::RwLock`].
///
/// [`std::sync::RwLock`]: https://doc.rust-lang.org/std/sync/struct.RwLock.html
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// # futures::executor::block_on(async {
/// let lock = RwLock::new(5);
///
/// // Multiple read locks can be held at a time.
/// let r1 = lock.read().await;
/// let r2 = lock.read().await;
/// assert_eq!(*r1, 5);
/// assert_eq!(*r2, 5);
/// drop((r1, r2));
///
/// // Only one write locks can be held at a time.
/// let mut w = lock.write().await;
/// *w += 1;
/// assert_eq!(*w, 6);
/// # })
/// ```
pub struct RwLock<T> {
state: AtomicUsize,
reads: std::sync::Mutex<Slab<Option<Waker>>>,
writes: std::sync::Mutex<Slab<Option<Waker>>>,
value: UnsafeCell<T>,
}
unsafe impl<T: Send> Send for RwLock<T> {}
unsafe impl<T: Send> Sync for RwLock<T> {}
impl<T> RwLock<T> {
/// Creates a new reader-writer lock.
///
/// # Examples
///
/// ```
/// use async_std::sync::RwLock;
///
/// let lock = RwLock::new(0);
/// ```
pub fn new(t: T) -> RwLock<T> {
RwLock {
state: AtomicUsize::new(0),
reads: std::sync::Mutex::new(Slab::new()),
writes: std::sync::Mutex::new(Slab::new()),
value: UnsafeCell::new(t),
}
}
/// Acquires a read lock.
///
/// Returns a guard that releases the lock when dropped.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// # futures::executor::block_on(async {
/// let lock = RwLock::new(1);
///
/// let n = lock.read().await;
/// assert_eq!(*n, 1);
///
/// assert!(lock.try_read().is_some());
/// # })
/// ```
pub async fn read(&self) -> RwLockReadGuard<'_, T> {
pub struct LockFuture<'a, T> {
lock: &'a RwLock<T>,
opt_key: Option<usize>,
acquired: bool,
}
impl<'a, T> Future for LockFuture<'a, T> {
type Output = RwLockReadGuard<'a, T>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.lock.try_read() {
Some(guard) => {
self.acquired = true;
Poll::Ready(guard)
}
None => {
let mut reads = self.lock.reads.lock().unwrap();
// Register the current task.
match self.opt_key {
None => {
// Insert a new entry into the list of blocked reads.
let w = cx.waker().clone();
let key = reads.insert(Some(w));
self.opt_key = Some(key);
if reads.len() == 1 {
self.lock.state.fetch_or(BLOCKED_READS, Ordering::Relaxed);
}
}
Some(key) => {
// There is already an entry in the list of blocked reads. Just
// reset the waker if it was removed.
if reads[key].is_none() {
let w = cx.waker().clone();
reads[key] = Some(w);
}
}
}
// Try locking again because it's possible the lock got unlocked just
// before the current task was registered as a blocked task.
match self.lock.try_read() {
Some(guard) => {
self.acquired = true;
Poll::Ready(guard)
}
None => Poll::Pending,
}
}
}
}
}
impl<T> Drop for LockFuture<'_, T> {
fn drop(&mut self) {
if let Some(key) = self.opt_key {
let mut reads = self.lock.reads.lock().unwrap();
let opt_waker = reads.remove(key);
if reads.is_empty() {
self.lock.state.fetch_and(!BLOCKED_READS, Ordering::Relaxed);
}
if opt_waker.is_none() {
// We were awoken. Wake up another blocked read.
if let Some((_, opt_waker)) = reads.iter_mut().next() {
if let Some(w) = opt_waker.take() {
w.wake();
return;
}
}
drop(reads);
if !self.acquired {
// We didn't acquire the lock and didn't wake another blocked read.
// Wake a blocked write instead.
let mut writes = self.lock.writes.lock().unwrap();
if let Some((_, opt_waker)) = writes.iter_mut().next() {
if let Some(w) = opt_waker.take() {
w.wake();
return;
}
}
}
}
}
}
}
LockFuture {
lock: self,
opt_key: None,
acquired: false,
}
.await
}
/// Attempts to acquire a read lock.
///
/// If a read lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the lock when dropped.
///
/// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// # futures::executor::block_on(async {
/// let lock = RwLock::new(1);
///
/// let mut n = lock.read().await;
/// assert_eq!(*n, 1);
///
/// assert!(lock.try_read().is_some());
/// # })
/// ```
pub fn try_read(&self) -> Option<RwLockReadGuard<'_, T>> {
let mut state = self.state.load(Ordering::Acquire);
loop {
// If a write lock is currently held, then a read lock cannot be acquired.
if state & WRITE_LOCK != 0 {
return None;
}
// Increment the number of active reads.
match self.state.compare_exchange_weak(
state,
state + ONE_READ,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => return Some(RwLockReadGuard(self)),
Err(s) => state = s,
}
}
}
/// Acquires a write lock.
///
/// Returns a guard that releases the lock when dropped.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// # futures::executor::block_on(async {
/// let lock = RwLock::new(1);
///
/// let mut n = lock.write().await;
/// *n = 2;
///
/// assert!(lock.try_read().is_none());
/// # })
/// ```
pub async fn write(&self) -> RwLockWriteGuard<'_, T> {
pub struct LockFuture<'a, T> {
lock: &'a RwLock<T>,
opt_key: Option<usize>,
acquired: bool,
}
impl<'a, T> Future for LockFuture<'a, T> {
type Output = RwLockWriteGuard<'a, T>;
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.lock.try_write() {
Some(guard) => {
self.acquired = true;
Poll::Ready(guard)
}
None => {
let mut writes = self.lock.writes.lock().unwrap();
// Register the current task.
match self.opt_key {
None => {
// Insert a new entry into the list of blocked writes.
let w = cx.waker().clone();
let key = writes.insert(Some(w));
self.opt_key = Some(key);
if writes.len() == 1 {
self.lock.state.fetch_or(BLOCKED_WRITES, Ordering::Relaxed);
}
}
Some(key) => {
// There is already an entry in the list of blocked writes. Just
// reset the waker if it was removed.
if writes[key].is_none() {
let w = cx.waker().clone();
writes[key] = Some(w);
}
}
}
// Try locking again because it's possible the lock got unlocked just
// before the current task was registered as a blocked task.
match self.lock.try_write() {
Some(guard) => {
self.acquired = true;
Poll::Ready(guard)
}
None => Poll::Pending,
}
}
}
}
}
impl<T> Drop for LockFuture<'_, T> {
fn drop(&mut self) {
if let Some(key) = self.opt_key {
let mut writes = self.lock.writes.lock().unwrap();
let opt_waker = writes.remove(key);
if writes.is_empty() {
self.lock
.state
.fetch_and(!BLOCKED_WRITES, Ordering::Relaxed);
}
if opt_waker.is_none() && !self.acquired {
// We were awoken but didn't acquire the lock. Wake up another write.
if let Some((_, opt_waker)) = writes.iter_mut().next() {
if let Some(w) = opt_waker.take() {
w.wake();
return;
}
}
drop(writes);
// There are no blocked writes. Wake a blocked read instead.
let mut reads = self.lock.reads.lock().unwrap();
if let Some((_, opt_waker)) = reads.iter_mut().next() {
if let Some(w) = opt_waker.take() {
w.wake();
return;
}
}
}
}
}
}
LockFuture {
lock: self,
opt_key: None,
acquired: false,
}
.await
}
/// Attempts to acquire a write lock.
///
/// If a write lock could not be acquired at this time, then [`None`] is returned. Otherwise, a
/// guard is returned that releases the lock when dropped.
///
/// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// # futures::executor::block_on(async {
/// let lock = RwLock::new(1);
///
/// let mut n = lock.read().await;
/// assert_eq!(*n, 1);
///
/// assert!(lock.try_write().is_none());
/// # })
/// ```
pub fn try_write(&self) -> Option<RwLockWriteGuard<'_, T>> {
let mut state = self.state.load(Ordering::Acquire);
loop {
// If any kind of lock is currently held, then a write lock cannot be acquired.
if state & (WRITE_LOCK | READ_COUNT_MASK) != 0 {
return None;
}
// Set the write lock.
match self.state.compare_exchange_weak(
state,
state | WRITE_LOCK,
Ordering::AcqRel,
Ordering::Acquire,
) {
Ok(_) => return Some(RwLockWriteGuard(self)),
Err(s) => state = s,
}
}
}
/// Consumes the lock, returning the underlying data.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// let lock = RwLock::new(10);
/// assert_eq!(lock.into_inner(), 10);
/// ```
pub fn into_inner(self) -> T {
self.value.into_inner()
}
/// Returns a mutable reference to the underlying data.
///
/// Since this call borrows the lock mutably, no actual locking takes place -- the mutable
/// borrow statically guarantees no locks exist.
///
/// # Examples
///
/// ```
/// # #![feature(async_await)]
/// use async_std::sync::RwLock;
///
/// # futures::executor::block_on(async {
/// let mut lock = RwLock::new(0);
/// *lock.get_mut() = 10;
/// assert_eq!(*lock.write().await, 10);
/// });
/// ```
pub fn get_mut(&mut self) -> &mut T {
unsafe { &mut *self.value.get() }
}
}
impl<T: fmt::Debug> fmt::Debug for RwLock<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.try_read() {
None => {
struct LockedPlaceholder;
impl fmt::Debug for LockedPlaceholder {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("<locked>")
}
}
f.debug_struct("RwLock")
.field("data", &LockedPlaceholder)
.finish()
}
Some(guard) => f.debug_struct("RwLock").field("data", &&*guard).finish(),
}
}
}
impl<T> From<T> for RwLock<T> {
fn from(val: T) -> RwLock<T> {
RwLock::new(val)
}
}
impl<T: Default> Default for RwLock<T> {
fn default() -> RwLock<T> {
RwLock::new(Default::default())
}
}
/// A guard that releases the read lock when dropped.
pub struct RwLockReadGuard<'a, T>(&'a RwLock<T>);
unsafe impl<T: Send> Send for RwLockReadGuard<'_, T> {}
unsafe impl<T: Sync> Sync for RwLockReadGuard<'_, T> {}
impl<T> Drop for RwLockReadGuard<'_, T> {
fn drop(&mut self) {
let state = self.0.state.fetch_sub(ONE_READ, Ordering::AcqRel);
// If this was the last read and there are blocked writes, wake one of them up.
if (state & READ_COUNT_MASK) == ONE_READ && state & BLOCKED_WRITES != 0 {
let mut writes = self.0.writes.lock().unwrap();
if let Some((_, opt_waker)) = writes.iter_mut().next() {
// If there is no waker in this entry, that means it was already woken.
if let Some(w) = opt_waker.take() {
w.wake();
}
}
}
}
}
impl<T: fmt::Debug> fmt::Debug for RwLockReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display> fmt::Display for RwLockReadGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T> Deref for RwLockReadGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.value.get() }
}
}
/// A guard that releases the write lock when dropped.
pub struct RwLockWriteGuard<'a, T>(&'a RwLock<T>);
unsafe impl<T: Send> Send for RwLockWriteGuard<'_, T> {}
unsafe impl<T: Sync> Sync for RwLockWriteGuard<'_, T> {}
impl<T> Drop for RwLockWriteGuard<'_, T> {
fn drop(&mut self) {
let state = self.0.state.fetch_and(!WRITE_LOCK, Ordering::AcqRel);
let mut guard = None;
// Check if there are any blocked reads or writes.
if state & BLOCKED_READS != 0 {
guard = Some(self.0.reads.lock().unwrap());
} else if state & BLOCKED_WRITES != 0 {
guard = Some(self.0.writes.lock().unwrap());
}
// Wake up a single blocked task.
if let Some(mut guard) = guard {
if let Some((_, opt_waker)) = guard.iter_mut().next() {
// If there is no waker in this entry, that means it was already woken.
if let Some(w) = opt_waker.take() {
w.wake();
}
}
}
}
}
impl<T: fmt::Debug> fmt::Debug for RwLockWriteGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&**self, f)
}
}
impl<T: fmt::Display> fmt::Display for RwLockWriteGuard<'_, T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
(**self).fmt(f)
}
}
impl<T> Deref for RwLockWriteGuard<'_, T> {
type Target = T;
fn deref(&self) -> &T {
unsafe { &*self.0.value.get() }
}
}
impl<T> DerefMut for RwLockWriteGuard<'_, T> {
fn deref_mut(&mut self) -> &mut T {
unsafe { &mut *self.0.value.get() }
}
}