1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-22 20:23:52 +00:00
openmw-tes3mp/extern/recastnavigation/Detour/Source/DetourNavMeshQuery.cpp

3665 lines
102 KiB
C++
Raw Normal View History

2018-10-31 21:20:10 +00:00
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#include <string.h>
#include "DetourNavMeshQuery.h"
#include "DetourNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
#include <new>
/// @class dtQueryFilter
///
/// <b>The Default Implementation</b>
///
/// At construction: All area costs default to 1.0. All flags are included
/// and none are excluded.
///
/// If a polygon has both an include and an exclude flag, it will be excluded.
///
/// The way filtering works, a navigation mesh polygon must have at least one flag
/// set to ever be considered by a query. So a polygon with no flags will never
/// be considered.
///
/// Setting the include flags to 0 will result in all polygons being excluded.
///
/// <b>Custom Implementations</b>
///
/// DT_VIRTUAL_QUERYFILTER must be defined in order to extend this class.
///
/// Implement a custom query filter by overriding the virtual passFilter()
/// and getCost() functions. If this is done, both functions should be as
/// fast as possible. Use cached local copies of data rather than accessing
/// your own objects where possible.
///
/// Custom implementations do not need to adhere to the flags or cost logic
/// used by the default implementation.
///
/// In order for A* searches to work properly, the cost should be proportional to
/// the travel distance. Implementing a cost modifier less than 1.0 is likely
/// to lead to problems during pathfinding.
///
/// @see dtNavMeshQuery
dtQueryFilter::dtQueryFilter() :
m_includeFlags(0xffff),
m_excludeFlags(0)
{
for (int i = 0; i < DT_MAX_AREAS; ++i)
m_areaCost[i] = 1.0f;
}
#ifdef DT_VIRTUAL_QUERYFILTER
bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/,
const dtMeshTile* /*tile*/,
const dtPoly* poly) const
{
return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0;
}
float dtQueryFilter::getCost(const float* pa, const float* pb,
const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/,
const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly,
const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const
{
return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()];
}
#else
inline bool dtQueryFilter::passFilter(const dtPolyRef /*ref*/,
const dtMeshTile* /*tile*/,
const dtPoly* poly) const
{
return (poly->flags & m_includeFlags) != 0 && (poly->flags & m_excludeFlags) == 0;
}
inline float dtQueryFilter::getCost(const float* pa, const float* pb,
const dtPolyRef /*prevRef*/, const dtMeshTile* /*prevTile*/, const dtPoly* /*prevPoly*/,
const dtPolyRef /*curRef*/, const dtMeshTile* /*curTile*/, const dtPoly* curPoly,
const dtPolyRef /*nextRef*/, const dtMeshTile* /*nextTile*/, const dtPoly* /*nextPoly*/) const
{
return dtVdist(pa, pb) * m_areaCost[curPoly->getArea()];
}
#endif
static const float H_SCALE = 0.999f; // Search heuristic scale.
dtNavMeshQuery* dtAllocNavMeshQuery()
{
void* mem = dtAlloc(sizeof(dtNavMeshQuery), DT_ALLOC_PERM);
if (!mem) return 0;
return new(mem) dtNavMeshQuery;
}
void dtFreeNavMeshQuery(dtNavMeshQuery* navmesh)
{
if (!navmesh) return;
navmesh->~dtNavMeshQuery();
dtFree(navmesh);
}
//////////////////////////////////////////////////////////////////////////////////////////
/// @class dtNavMeshQuery
///
/// For methods that support undersized buffers, if the buffer is too small
/// to hold the entire result set the return status of the method will include
/// the #DT_BUFFER_TOO_SMALL flag.
///
/// Constant member functions can be used by multiple clients without side
/// effects. (E.g. No change to the closed list. No impact on an in-progress
/// sliced path query. Etc.)
///
/// Walls and portals: A @e wall is a polygon segment that is
/// considered impassable. A @e portal is a passable segment between polygons.
/// A portal may be treated as a wall based on the dtQueryFilter used for a query.
///
/// @see dtNavMesh, dtQueryFilter, #dtAllocNavMeshQuery(), #dtAllocNavMeshQuery()
dtNavMeshQuery::dtNavMeshQuery() :
m_nav(0),
m_tinyNodePool(0),
m_nodePool(0),
m_openList(0)
{
memset(&m_query, 0, sizeof(dtQueryData));
}
dtNavMeshQuery::~dtNavMeshQuery()
{
if (m_tinyNodePool)
m_tinyNodePool->~dtNodePool();
if (m_nodePool)
m_nodePool->~dtNodePool();
if (m_openList)
m_openList->~dtNodeQueue();
dtFree(m_tinyNodePool);
dtFree(m_nodePool);
dtFree(m_openList);
}
/// @par
///
/// Must be the first function called after construction, before other
/// functions are used.
///
/// This function can be used multiple times.
dtStatus dtNavMeshQuery::init(const dtNavMesh* nav, const int maxNodes)
{
if (maxNodes > DT_NULL_IDX || maxNodes > (1 << DT_NODE_PARENT_BITS) - 1)
return DT_FAILURE | DT_INVALID_PARAM;
m_nav = nav;
if (!m_nodePool || m_nodePool->getMaxNodes() < maxNodes)
{
if (m_nodePool)
{
m_nodePool->~dtNodePool();
dtFree(m_nodePool);
m_nodePool = 0;
}
m_nodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(maxNodes, dtNextPow2(maxNodes/4));
if (!m_nodePool)
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
else
{
m_nodePool->clear();
}
if (!m_tinyNodePool)
{
m_tinyNodePool = new (dtAlloc(sizeof(dtNodePool), DT_ALLOC_PERM)) dtNodePool(64, 32);
if (!m_tinyNodePool)
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
else
{
m_tinyNodePool->clear();
}
if (!m_openList || m_openList->getCapacity() < maxNodes)
{
if (m_openList)
{
m_openList->~dtNodeQueue();
dtFree(m_openList);
m_openList = 0;
}
m_openList = new (dtAlloc(sizeof(dtNodeQueue), DT_ALLOC_PERM)) dtNodeQueue(maxNodes);
if (!m_openList)
return DT_FAILURE | DT_OUT_OF_MEMORY;
}
else
{
m_openList->clear();
}
return DT_SUCCESS;
}
dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*frand)(),
dtPolyRef* randomRef, float* randomPt) const
{
dtAssert(m_nav);
// Randomly pick one tile. Assume that all tiles cover roughly the same area.
const dtMeshTile* tile = 0;
float tsum = 0.0f;
for (int i = 0; i < m_nav->getMaxTiles(); i++)
{
const dtMeshTile* t = m_nav->getTile(i);
if (!t || !t->header) continue;
// Choose random tile using reservoi sampling.
const float area = 1.0f; // Could be tile area too.
tsum += area;
const float u = frand();
if (u*tsum <= area)
tile = t;
}
if (!tile)
return DT_FAILURE;
// Randomly pick one polygon weighted by polygon area.
const dtPoly* poly = 0;
dtPolyRef polyRef = 0;
const dtPolyRef base = m_nav->getPolyRefBase(tile);
float areaSum = 0.0f;
for (int i = 0; i < tile->header->polyCount; ++i)
{
const dtPoly* p = &tile->polys[i];
// Do not return off-mesh connection polygons.
if (p->getType() != DT_POLYTYPE_GROUND)
continue;
// Must pass filter
const dtPolyRef ref = base | (dtPolyRef)i;
if (!filter->passFilter(ref, tile, p))
continue;
// Calc area of the polygon.
float polyArea = 0.0f;
for (int j = 2; j < p->vertCount; ++j)
{
const float* va = &tile->verts[p->verts[0]*3];
const float* vb = &tile->verts[p->verts[j-1]*3];
const float* vc = &tile->verts[p->verts[j]*3];
polyArea += dtTriArea2D(va,vb,vc);
}
// Choose random polygon weighted by area, using reservoi sampling.
areaSum += polyArea;
const float u = frand();
if (u*areaSum <= polyArea)
{
poly = p;
polyRef = ref;
}
}
if (!poly)
return DT_FAILURE;
// Randomly pick point on polygon.
const float* v = &tile->verts[poly->verts[0]*3];
float verts[3*DT_VERTS_PER_POLYGON];
float areas[DT_VERTS_PER_POLYGON];
dtVcopy(&verts[0*3],v);
for (int j = 1; j < poly->vertCount; ++j)
{
v = &tile->verts[poly->verts[j]*3];
dtVcopy(&verts[j*3],v);
}
const float s = frand();
const float t = frand();
float pt[3];
dtRandomPointInConvexPoly(verts, poly->vertCount, areas, s, t, pt);
float h = 0.0f;
dtStatus status = getPolyHeight(polyRef, pt, &h);
if (dtStatusFailed(status))
return status;
pt[1] = h;
dtVcopy(randomPt, pt);
*randomRef = polyRef;
return DT_SUCCESS;
}
dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const float* centerPos, const float maxRadius,
const dtQueryFilter* filter, float (*frand)(),
dtPolyRef* randomRef, float* randomPt) const
{
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* startTile = 0;
const dtPoly* startPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(startRef, &startTile, &startPoly);
if (!filter->passFilter(startRef, startTile, startPoly))
return DT_FAILURE | DT_INVALID_PARAM;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(startRef);
dtVcopy(startNode->pos, centerPos);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtStatus status = DT_SUCCESS;
const float radiusSqr = dtSqr(maxRadius);
float areaSum = 0.0f;
const dtMeshTile* randomTile = 0;
const dtPoly* randomPoly = 0;
dtPolyRef randomPolyRef = 0;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
bestNode->flags &= ~DT_NODE_OPEN;
bestNode->flags |= DT_NODE_CLOSED;
// Get poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef bestRef = bestNode->id;
const dtMeshTile* bestTile = 0;
const dtPoly* bestPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
// Place random locations on on ground.
if (bestPoly->getType() == DT_POLYTYPE_GROUND)
{
// Calc area of the polygon.
float polyArea = 0.0f;
for (int j = 2; j < bestPoly->vertCount; ++j)
{
const float* va = &bestTile->verts[bestPoly->verts[0]*3];
const float* vb = &bestTile->verts[bestPoly->verts[j-1]*3];
const float* vc = &bestTile->verts[bestPoly->verts[j]*3];
polyArea += dtTriArea2D(va,vb,vc);
}
// Choose random polygon weighted by area, using reservoi sampling.
areaSum += polyArea;
const float u = frand();
if (u*areaSum <= polyArea)
{
randomTile = bestTile;
randomPoly = bestPoly;
randomPolyRef = bestRef;
}
}
// Get parent poly and tile.
dtPolyRef parentRef = 0;
const dtMeshTile* parentTile = 0;
const dtPoly* parentPoly = 0;
if (bestNode->pidx)
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
if (parentRef)
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
{
const dtLink* link = &bestTile->links[i];
dtPolyRef neighbourRef = link->ref;
// Skip invalid neighbours and do not follow back to parent.
if (!neighbourRef || neighbourRef == parentRef)
continue;
// Expand to neighbour
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
// Do not advance if the polygon is excluded by the filter.
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
// Find edge and calc distance to the edge.
float va[3], vb[3];
if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
continue;
// If the circle is not touching the next polygon, skip it.
float tseg;
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
if (distSqr > radiusSqr)
continue;
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
if (!neighbourNode)
{
status |= DT_OUT_OF_NODES;
continue;
}
if (neighbourNode->flags & DT_NODE_CLOSED)
continue;
// Cost
if (neighbourNode->flags == 0)
dtVlerp(neighbourNode->pos, va, vb, 0.5f);
const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos);
// The node is already in open list and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
continue;
neighbourNode->id = neighbourRef;
neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
neighbourNode->total = total;
if (neighbourNode->flags & DT_NODE_OPEN)
{
m_openList->modify(neighbourNode);
}
else
{
neighbourNode->flags = DT_NODE_OPEN;
m_openList->push(neighbourNode);
}
}
}
if (!randomPoly)
return DT_FAILURE;
// Randomly pick point on polygon.
const float* v = &randomTile->verts[randomPoly->verts[0]*3];
float verts[3*DT_VERTS_PER_POLYGON];
float areas[DT_VERTS_PER_POLYGON];
dtVcopy(&verts[0*3],v);
for (int j = 1; j < randomPoly->vertCount; ++j)
{
v = &randomTile->verts[randomPoly->verts[j]*3];
dtVcopy(&verts[j*3],v);
}
const float s = frand();
const float t = frand();
float pt[3];
dtRandomPointInConvexPoly(verts, randomPoly->vertCount, areas, s, t, pt);
float h = 0.0f;
dtStatus stat = getPolyHeight(randomPolyRef, pt, &h);
if (dtStatusFailed(status))
return stat;
pt[1] = h;
dtVcopy(randomPt, pt);
*randomRef = randomPolyRef;
return DT_SUCCESS;
}
//////////////////////////////////////////////////////////////////////////////////////////
/// @par
///
/// Uses the detail polygons to find the surface height. (Most accurate.)
///
/// @p pos does not have to be within the bounds of the polygon or navigation mesh.
///
/// See closestPointOnPolyBoundary() for a limited but faster option.
///
dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
{
dtAssert(m_nav);
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
if (!tile)
return DT_FAILURE | DT_INVALID_PARAM;
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
const float* v0 = &tile->verts[poly->verts[0]*3];
const float* v1 = &tile->verts[poly->verts[1]*3];
const float d0 = dtVdist(pos, v0);
const float d1 = dtVdist(pos, v1);
const float u = d0 / (d0+d1);
dtVlerp(closest, v0, v1, u);
if (posOverPoly)
*posOverPoly = false;
return DT_SUCCESS;
}
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
// Clamp point to be inside the polygon.
float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
const int nv = poly->vertCount;
for (int i = 0; i < nv; ++i)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
dtVcopy(closest, pos);
if (!dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget))
{
// Point is outside the polygon, dtClamp to nearest edge.
float dmin = edged[0];
int imin = 0;
for (int i = 1; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
dtVlerp(closest, va, vb, edget[imin]);
if (posOverPoly)
*posOverPoly = false;
}
else
{
if (posOverPoly)
*posOverPoly = true;
}
// Find height at the location.
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (dtClosestHeightPointTriangle(closest, v[0], v[1], v[2], h))
{
closest[1] = h;
break;
}
}
return DT_SUCCESS;
}
/// @par
///
/// Much faster than closestPointOnPoly().
///
/// If the provided position lies within the polygon's xz-bounds (above or below),
/// then @p pos and @p closest will be equal.
///
/// The height of @p closest will be the polygon boundary. The height detail is not used.
///
/// @p pos does not have to be within the bounds of the polybon or the navigation mesh.
///
dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float* pos, float* closest) const
{
dtAssert(m_nav);
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
// Collect vertices.
float verts[DT_VERTS_PER_POLYGON*3];
float edged[DT_VERTS_PER_POLYGON];
float edget[DT_VERTS_PER_POLYGON];
int nv = 0;
for (int i = 0; i < (int)poly->vertCount; ++i)
{
dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
nv++;
}
bool inside = dtDistancePtPolyEdgesSqr(pos, verts, nv, edged, edget);
if (inside)
{
// Point is inside the polygon, return the point.
dtVcopy(closest, pos);
}
else
{
// Point is outside the polygon, dtClamp to nearest edge.
float dmin = edged[0];
int imin = 0;
for (int i = 1; i < nv; ++i)
{
if (edged[i] < dmin)
{
dmin = edged[i];
imin = i;
}
}
const float* va = &verts[imin*3];
const float* vb = &verts[((imin+1)%nv)*3];
dtVlerp(closest, va, vb, edget[imin]);
}
return DT_SUCCESS;
}
/// @par
///
/// Will return #DT_FAILURE if the provided position is outside the xz-bounds
/// of the polygon.
///
dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* height) const
{
dtAssert(m_nav);
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
const float* v0 = &tile->verts[poly->verts[0]*3];
const float* v1 = &tile->verts[poly->verts[1]*3];
const float d0 = dtVdist2D(pos, v0);
const float d1 = dtVdist2D(pos, v1);
const float u = d0 / (d0+d1);
if (height)
*height = v0[1] + (v1[1] - v0[1]) * u;
return DT_SUCCESS;
}
else
{
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
if (height)
*height = h;
return DT_SUCCESS;
}
}
}
return DT_FAILURE | DT_INVALID_PARAM;
}
class dtFindNearestPolyQuery : public dtPolyQuery
{
const dtNavMeshQuery* m_query;
const float* m_center;
float m_nearestDistanceSqr;
dtPolyRef m_nearestRef;
float m_nearestPoint[3];
public:
dtFindNearestPolyQuery(const dtNavMeshQuery* query, const float* center)
: m_query(query), m_center(center), m_nearestDistanceSqr(FLT_MAX), m_nearestRef(0), m_nearestPoint()
{
}
dtPolyRef nearestRef() const { return m_nearestRef; }
const float* nearestPoint() const { return m_nearestPoint; }
void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
{
dtIgnoreUnused(polys);
for (int i = 0; i < count; ++i)
{
dtPolyRef ref = refs[i];
float closestPtPoly[3];
float diff[3];
bool posOverPoly = false;
float d;
m_query->closestPointOnPoly(ref, m_center, closestPtPoly, &posOverPoly);
// If a point is directly over a polygon and closer than
// climb height, favor that instead of straight line nearest point.
dtVsub(diff, m_center, closestPtPoly);
if (posOverPoly)
{
d = dtAbs(diff[1]) - tile->header->walkableClimb;
d = d > 0 ? d*d : 0;
}
else
{
d = dtVlenSqr(diff);
}
if (d < m_nearestDistanceSqr)
{
dtVcopy(m_nearestPoint, closestPtPoly);
m_nearestDistanceSqr = d;
m_nearestRef = ref;
}
}
}
};
/// @par
///
/// @note If the search box does not intersect any polygons the search will
/// return #DT_SUCCESS, but @p nearestRef will be zero. So if in doubt, check
/// @p nearestRef before using @p nearestPt.
///
dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfExtents,
const dtQueryFilter* filter,
dtPolyRef* nearestRef, float* nearestPt) const
{
dtAssert(m_nav);
if (!nearestRef)
return DT_FAILURE | DT_INVALID_PARAM;
dtFindNearestPolyQuery query(this, center);
dtStatus status = queryPolygons(center, halfExtents, filter, &query);
if (dtStatusFailed(status))
return status;
*nearestRef = query.nearestRef();
// Only override nearestPt if we actually found a poly so the nearest point
// is valid.
if (nearestPt && *nearestRef)
dtVcopy(nearestPt, query.nearestPoint());
return DT_SUCCESS;
}
void dtNavMeshQuery::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
const dtQueryFilter* filter, dtPolyQuery* query) const
{
dtAssert(m_nav);
static const int batchSize = 32;
dtPolyRef polyRefs[batchSize];
dtPoly* polys[batchSize];
int n = 0;
if (tile->bvTree)
{
const dtBVNode* node = &tile->bvTree[0];
const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
const float* tbmin = tile->header->bmin;
const float* tbmax = tile->header->bmax;
const float qfac = tile->header->bvQuantFactor;
// Calculate quantized box
unsigned short bmin[3], bmax[3];
// dtClamp query box to world box.
float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
// Quantize
bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
// Traverse tree
const dtPolyRef base = m_nav->getPolyRefBase(tile);
while (node < end)
{
const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
const bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
dtPolyRef ref = base | (dtPolyRef)node->i;
if (filter->passFilter(ref, tile, &tile->polys[node->i]))
{
polyRefs[n] = ref;
polys[n] = &tile->polys[node->i];
if (n == batchSize - 1)
{
query->process(tile, polys, polyRefs, batchSize);
n = 0;
}
else
{
n++;
}
}
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
}
else
{
float bmin[3], bmax[3];
const dtPolyRef base = m_nav->getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
// Do not return off-mesh connection polygons.
if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Must pass filter
const dtPolyRef ref = base | (dtPolyRef)i;
if (!filter->passFilter(ref, tile, p))
continue;
// Calc polygon bounds.
const float* v = &tile->verts[p->verts[0]*3];
dtVcopy(bmin, v);
dtVcopy(bmax, v);
for (int j = 1; j < p->vertCount; ++j)
{
v = &tile->verts[p->verts[j]*3];
dtVmin(bmin, v);
dtVmax(bmax, v);
}
if (dtOverlapBounds(qmin, qmax, bmin, bmax))
{
polyRefs[n] = ref;
polys[n] = p;
if (n == batchSize - 1)
{
query->process(tile, polys, polyRefs, batchSize);
n = 0;
}
else
{
n++;
}
}
}
}
// Process the last polygons that didn't make a full batch.
if (n > 0)
query->process(tile, polys, polyRefs, n);
}
class dtCollectPolysQuery : public dtPolyQuery
{
dtPolyRef* m_polys;
const int m_maxPolys;
int m_numCollected;
bool m_overflow;
public:
dtCollectPolysQuery(dtPolyRef* polys, const int maxPolys)
: m_polys(polys), m_maxPolys(maxPolys), m_numCollected(0), m_overflow(false)
{
}
int numCollected() const { return m_numCollected; }
bool overflowed() const { return m_overflow; }
void process(const dtMeshTile* tile, dtPoly** polys, dtPolyRef* refs, int count)
{
dtIgnoreUnused(tile);
dtIgnoreUnused(polys);
int numLeft = m_maxPolys - m_numCollected;
int toCopy = count;
if (toCopy > numLeft)
{
m_overflow = true;
toCopy = numLeft;
}
memcpy(m_polys + m_numCollected, refs, (size_t)toCopy * sizeof(dtPolyRef));
m_numCollected += toCopy;
}
};
/// @par
///
/// If no polygons are found, the function will return #DT_SUCCESS with a
/// @p polyCount of zero.
///
/// If @p polys is too small to hold the entire result set, then the array will
/// be filled to capacity. The method of choosing which polygons from the
/// full set are included in the partial result set is undefined.
///
dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents,
const dtQueryFilter* filter,
dtPolyRef* polys, int* polyCount, const int maxPolys) const
{
if (!polys || !polyCount || maxPolys < 0)
return DT_FAILURE | DT_INVALID_PARAM;
dtCollectPolysQuery collector(polys, maxPolys);
dtStatus status = queryPolygons(center, halfExtents, filter, &collector);
if (dtStatusFailed(status))
return status;
*polyCount = collector.numCollected();
return collector.overflowed() ? DT_SUCCESS | DT_BUFFER_TOO_SMALL : DT_SUCCESS;
}
/// @par
///
/// The query will be invoked with batches of polygons. Polygons passed
/// to the query have bounding boxes that overlap with the center and halfExtents
/// passed to this function. The dtPolyQuery::process function is invoked multiple
/// times until all overlapping polygons have been processed.
///
dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExtents,
const dtQueryFilter* filter, dtPolyQuery* query) const
{
dtAssert(m_nav);
if (!center || !halfExtents || !filter || !query)
return DT_FAILURE | DT_INVALID_PARAM;
float bmin[3], bmax[3];
dtVsub(bmin, center, halfExtents);
dtVadd(bmax, center, halfExtents);
// Find tiles the query touches.
int minx, miny, maxx, maxy;
m_nav->calcTileLoc(bmin, &minx, &miny);
m_nav->calcTileLoc(bmax, &maxx, &maxy);
static const int MAX_NEIS = 32;
const dtMeshTile* neis[MAX_NEIS];
for (int y = miny; y <= maxy; ++y)
{
for (int x = minx; x <= maxx; ++x)
{
const int nneis = m_nav->getTilesAt(x,y,neis,MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
queryPolygonsInTile(neis[j], bmin, bmax, filter, query);
}
}
}
return DT_SUCCESS;
}
/// @par
///
/// If the end polygon cannot be reached through the navigation graph,
/// the last polygon in the path will be the nearest the end polygon.
///
/// If the path array is to small to hold the full result, it will be filled as
/// far as possible from the start polygon toward the end polygon.
///
/// The start and end positions are used to calculate traversal costs.
/// (The y-values impact the result.)
///
dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef,
const float* startPos, const float* endPos,
const dtQueryFilter* filter,
dtPolyRef* path, int* pathCount, const int maxPath) const
{
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
if (pathCount)
*pathCount = 0;
// Validate input
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
!startPos || !endPos || !filter || maxPath <= 0 || !path || !pathCount)
return DT_FAILURE | DT_INVALID_PARAM;
if (startRef == endRef)
{
path[0] = startRef;
*pathCount = 1;
return DT_SUCCESS;
}
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(startRef);
dtVcopy(startNode->pos, startPos);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = dtVdist(startPos, endPos) * H_SCALE;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtNode* lastBestNode = startNode;
float lastBestNodeCost = startNode->total;
bool outOfNodes = false;
while (!m_openList->empty())
{
// Remove node from open list and put it in closed list.
dtNode* bestNode = m_openList->pop();
bestNode->flags &= ~DT_NODE_OPEN;
bestNode->flags |= DT_NODE_CLOSED;
// Reached the goal, stop searching.
if (bestNode->id == endRef)
{
lastBestNode = bestNode;
break;
}
// Get current poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef bestRef = bestNode->id;
const dtMeshTile* bestTile = 0;
const dtPoly* bestPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
// Get parent poly and tile.
dtPolyRef parentRef = 0;
const dtMeshTile* parentTile = 0;
const dtPoly* parentPoly = 0;
if (bestNode->pidx)
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
if (parentRef)
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
{
dtPolyRef neighbourRef = bestTile->links[i].ref;
// Skip invalid ids and do not expand back to where we came from.
if (!neighbourRef || neighbourRef == parentRef)
continue;
// Get neighbour poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
// deal explicitly with crossing tile boundaries
unsigned char crossSide = 0;
if (bestTile->links[i].side != 0xff)
crossSide = bestTile->links[i].side >> 1;
// get the node
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, crossSide);
if (!neighbourNode)
{
outOfNodes = true;
continue;
}
// If the node is visited the first time, calculate node position.
if (neighbourNode->flags == 0)
{
getEdgeMidPoint(bestRef, bestPoly, bestTile,
neighbourRef, neighbourPoly, neighbourTile,
neighbourNode->pos);
}
// Calculate cost and heuristic.
float cost = 0;
float heuristic = 0;
// Special case for last node.
if (neighbourRef == endRef)
{
// Cost
const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos,
parentRef, parentTile, parentPoly,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly);
const float endCost = filter->getCost(neighbourNode->pos, endPos,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly,
0, 0, 0);
cost = bestNode->cost + curCost + endCost;
heuristic = 0;
}
else
{
// Cost
const float curCost = filter->getCost(bestNode->pos, neighbourNode->pos,
parentRef, parentTile, parentPoly,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly);
cost = bestNode->cost + curCost;
heuristic = dtVdist(neighbourNode->pos, endPos)*H_SCALE;
}
const float total = cost + heuristic;
// The node is already in open list and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
continue;
// The node is already visited and process, and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total)
continue;
// Add or update the node.
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
neighbourNode->id = neighbourRef;
neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
neighbourNode->cost = cost;
neighbourNode->total = total;
if (neighbourNode->flags & DT_NODE_OPEN)
{
// Already in open, update node location.
m_openList->modify(neighbourNode);
}
else
{
// Put the node in open list.
neighbourNode->flags |= DT_NODE_OPEN;
m_openList->push(neighbourNode);
}
// Update nearest node to target so far.
if (heuristic < lastBestNodeCost)
{
lastBestNodeCost = heuristic;
lastBestNode = neighbourNode;
}
}
}
dtStatus status = getPathToNode(lastBestNode, path, pathCount, maxPath);
if (lastBestNode->id != endRef)
status |= DT_PARTIAL_RESULT;
if (outOfNodes)
status |= DT_OUT_OF_NODES;
return status;
}
dtStatus dtNavMeshQuery::getPathToNode(dtNode* endNode, dtPolyRef* path, int* pathCount, int maxPath) const
{
// Find the length of the entire path.
dtNode* curNode = endNode;
int length = 0;
do
{
length++;
curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
} while (curNode);
// If the path cannot be fully stored then advance to the last node we will be able to store.
curNode = endNode;
int writeCount;
for (writeCount = length; writeCount > maxPath; writeCount--)
{
dtAssert(curNode);
curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
}
// Write path
for (int i = writeCount - 1; i >= 0; i--)
{
dtAssert(curNode);
path[i] = curNode->id;
curNode = m_nodePool->getNodeAtIdx(curNode->pidx);
}
dtAssert(!curNode);
*pathCount = dtMin(length, maxPath);
if (length > maxPath)
return DT_SUCCESS | DT_BUFFER_TOO_SMALL;
return DT_SUCCESS;
}
/// @par
///
/// @warning Calling any non-slice methods before calling finalizeSlicedFindPath()
/// or finalizeSlicedFindPathPartial() may result in corrupted data!
///
/// The @p filter pointer is stored and used for the duration of the sliced
/// path query.
///
dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef,
const float* startPos, const float* endPos,
const dtQueryFilter* filter, const unsigned int options)
{
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
// Init path state.
memset(&m_query, 0, sizeof(dtQueryData));
m_query.status = DT_FAILURE;
m_query.startRef = startRef;
m_query.endRef = endRef;
dtVcopy(m_query.startPos, startPos);
dtVcopy(m_query.endPos, endPos);
m_query.filter = filter;
m_query.options = options;
m_query.raycastLimitSqr = FLT_MAX;
if (!startRef || !endRef)
return DT_FAILURE | DT_INVALID_PARAM;
// Validate input
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef))
return DT_FAILURE | DT_INVALID_PARAM;
// trade quality with performance?
if (options & DT_FINDPATH_ANY_ANGLE)
{
// limiting to several times the character radius yields nice results. It is not sensitive
// so it is enough to compute it from the first tile.
const dtMeshTile* tile = m_nav->getTileByRef(startRef);
float agentRadius = tile->header->walkableRadius;
m_query.raycastLimitSqr = dtSqr(agentRadius * DT_RAY_CAST_LIMIT_PROPORTIONS);
}
if (startRef == endRef)
{
m_query.status = DT_SUCCESS;
return DT_SUCCESS;
}
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(startRef);
dtVcopy(startNode->pos, startPos);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = dtVdist(startPos, endPos) * H_SCALE;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
m_query.status = DT_IN_PROGRESS;
m_query.lastBestNode = startNode;
m_query.lastBestNodeCost = startNode->total;
return m_query.status;
}
dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters)
{
if (!dtStatusInProgress(m_query.status))
return m_query.status;
// Make sure the request is still valid.
if (!m_nav->isValidPolyRef(m_query.startRef) || !m_nav->isValidPolyRef(m_query.endRef))
{
m_query.status = DT_FAILURE;
return DT_FAILURE;
}
dtRaycastHit rayHit;
rayHit.maxPath = 0;
int iter = 0;
while (iter < maxIter && !m_openList->empty())
{
iter++;
// Remove node from open list and put it in closed list.
dtNode* bestNode = m_openList->pop();
bestNode->flags &= ~DT_NODE_OPEN;
bestNode->flags |= DT_NODE_CLOSED;
// Reached the goal, stop searching.
if (bestNode->id == m_query.endRef)
{
m_query.lastBestNode = bestNode;
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
m_query.status = DT_SUCCESS | details;
if (doneIters)
*doneIters = iter;
return m_query.status;
}
// Get current poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef bestRef = bestNode->id;
const dtMeshTile* bestTile = 0;
const dtPoly* bestPoly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(bestRef, &bestTile, &bestPoly)))
{
// The polygon has disappeared during the sliced query, fail.
m_query.status = DT_FAILURE;
if (doneIters)
*doneIters = iter;
return m_query.status;
}
// Get parent and grand parent poly and tile.
dtPolyRef parentRef = 0, grandpaRef = 0;
const dtMeshTile* parentTile = 0;
const dtPoly* parentPoly = 0;
dtNode* parentNode = 0;
if (bestNode->pidx)
{
parentNode = m_nodePool->getNodeAtIdx(bestNode->pidx);
parentRef = parentNode->id;
if (parentNode->pidx)
grandpaRef = m_nodePool->getNodeAtIdx(parentNode->pidx)->id;
}
if (parentRef)
{
bool invalidParent = dtStatusFailed(m_nav->getTileAndPolyByRef(parentRef, &parentTile, &parentPoly));
if (invalidParent || (grandpaRef && !m_nav->isValidPolyRef(grandpaRef)) )
{
// The polygon has disappeared during the sliced query, fail.
m_query.status = DT_FAILURE;
if (doneIters)
*doneIters = iter;
return m_query.status;
}
}
// decide whether to test raycast to previous nodes
bool tryLOS = false;
if (m_query.options & DT_FINDPATH_ANY_ANGLE)
{
if ((parentRef != 0) && (dtVdistSqr(parentNode->pos, bestNode->pos) < m_query.raycastLimitSqr))
tryLOS = true;
}
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
{
dtPolyRef neighbourRef = bestTile->links[i].ref;
// Skip invalid ids and do not expand back to where we came from.
if (!neighbourRef || neighbourRef == parentRef)
continue;
// Get neighbour poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
if (!m_query.filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
// get the neighbor node
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef, 0);
if (!neighbourNode)
{
m_query.status |= DT_OUT_OF_NODES;
continue;
}
// do not expand to nodes that were already visited from the same parent
if (neighbourNode->pidx != 0 && neighbourNode->pidx == bestNode->pidx)
continue;
// If the node is visited the first time, calculate node position.
if (neighbourNode->flags == 0)
{
getEdgeMidPoint(bestRef, bestPoly, bestTile,
neighbourRef, neighbourPoly, neighbourTile,
neighbourNode->pos);
}
// Calculate cost and heuristic.
float cost = 0;
float heuristic = 0;
// raycast parent
bool foundShortCut = false;
rayHit.pathCost = rayHit.t = 0;
if (tryLOS)
{
raycast(parentRef, parentNode->pos, neighbourNode->pos, m_query.filter, DT_RAYCAST_USE_COSTS, &rayHit, grandpaRef);
foundShortCut = rayHit.t >= 1.0f;
}
// update move cost
if (foundShortCut)
{
// shortcut found using raycast. Using shorter cost instead
cost = parentNode->cost + rayHit.pathCost;
}
else
{
// No shortcut found.
const float curCost = m_query.filter->getCost(bestNode->pos, neighbourNode->pos,
parentRef, parentTile, parentPoly,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly);
cost = bestNode->cost + curCost;
}
// Special case for last node.
if (neighbourRef == m_query.endRef)
{
const float endCost = m_query.filter->getCost(neighbourNode->pos, m_query.endPos,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly,
0, 0, 0);
cost = cost + endCost;
heuristic = 0;
}
else
{
heuristic = dtVdist(neighbourNode->pos, m_query.endPos)*H_SCALE;
}
const float total = cost + heuristic;
// The node is already in open list and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
continue;
// The node is already visited and process, and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_CLOSED) && total >= neighbourNode->total)
continue;
// Add or update the node.
neighbourNode->pidx = foundShortCut ? bestNode->pidx : m_nodePool->getNodeIdx(bestNode);
neighbourNode->id = neighbourRef;
neighbourNode->flags = (neighbourNode->flags & ~(DT_NODE_CLOSED | DT_NODE_PARENT_DETACHED));
neighbourNode->cost = cost;
neighbourNode->total = total;
if (foundShortCut)
neighbourNode->flags = (neighbourNode->flags | DT_NODE_PARENT_DETACHED);
if (neighbourNode->flags & DT_NODE_OPEN)
{
// Already in open, update node location.
m_openList->modify(neighbourNode);
}
else
{
// Put the node in open list.
neighbourNode->flags |= DT_NODE_OPEN;
m_openList->push(neighbourNode);
}
// Update nearest node to target so far.
if (heuristic < m_query.lastBestNodeCost)
{
m_query.lastBestNodeCost = heuristic;
m_query.lastBestNode = neighbourNode;
}
}
}
// Exhausted all nodes, but could not find path.
if (m_openList->empty())
{
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
m_query.status = DT_SUCCESS | details;
}
if (doneIters)
*doneIters = iter;
return m_query.status;
}
dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath)
{
*pathCount = 0;
if (dtStatusFailed(m_query.status))
{
// Reset query.
memset(&m_query, 0, sizeof(dtQueryData));
return DT_FAILURE;
}
int n = 0;
if (m_query.startRef == m_query.endRef)
{
// Special case: the search starts and ends at same poly.
path[n++] = m_query.startRef;
}
else
{
// Reverse the path.
dtAssert(m_query.lastBestNode);
if (m_query.lastBestNode->id != m_query.endRef)
m_query.status |= DT_PARTIAL_RESULT;
dtNode* prev = 0;
dtNode* node = m_query.lastBestNode;
int prevRay = 0;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
node->pidx = m_nodePool->getNodeIdx(prev);
prev = node;
int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut)
node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node
prevRay = nextRay;
node = next;
}
while (node);
// Store path
node = prev;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
dtStatus status = 0;
if (node->flags & DT_NODE_PARENT_DETACHED)
{
float t, normal[3];
int m;
status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n);
n += m;
// raycast ends on poly boundary and the path might include the next poly boundary.
if (path[n-1] == next->id)
n--; // remove to avoid duplicates
}
else
{
path[n++] = node->id;
if (n >= maxPath)
status = DT_BUFFER_TOO_SMALL;
}
if (status & DT_STATUS_DETAIL_MASK)
{
m_query.status |= status & DT_STATUS_DETAIL_MASK;
break;
}
node = next;
}
while (node);
}
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
// Reset query.
memset(&m_query, 0, sizeof(dtQueryData));
*pathCount = n;
return DT_SUCCESS | details;
}
dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
dtPolyRef* path, int* pathCount, const int maxPath)
{
*pathCount = 0;
if (existingSize == 0)
{
return DT_FAILURE;
}
if (dtStatusFailed(m_query.status))
{
// Reset query.
memset(&m_query, 0, sizeof(dtQueryData));
return DT_FAILURE;
}
int n = 0;
if (m_query.startRef == m_query.endRef)
{
// Special case: the search starts and ends at same poly.
path[n++] = m_query.startRef;
}
else
{
// Find furthest existing node that was visited.
dtNode* prev = 0;
dtNode* node = 0;
for (int i = existingSize-1; i >= 0; --i)
{
m_nodePool->findNodes(existing[i], &node, 1);
if (node)
break;
}
if (!node)
{
m_query.status |= DT_PARTIAL_RESULT;
dtAssert(m_query.lastBestNode);
node = m_query.lastBestNode;
}
// Reverse the path.
int prevRay = 0;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
node->pidx = m_nodePool->getNodeIdx(prev);
prev = node;
int nextRay = node->flags & DT_NODE_PARENT_DETACHED; // keep track of whether parent is not adjacent (i.e. due to raycast shortcut)
node->flags = (node->flags & ~DT_NODE_PARENT_DETACHED) | prevRay; // and store it in the reversed path's node
prevRay = nextRay;
node = next;
}
while (node);
// Store path
node = prev;
do
{
dtNode* next = m_nodePool->getNodeAtIdx(node->pidx);
dtStatus status = 0;
if (node->flags & DT_NODE_PARENT_DETACHED)
{
float t, normal[3];
int m;
status = raycast(node->id, node->pos, next->pos, m_query.filter, &t, normal, path+n, &m, maxPath-n);
n += m;
// raycast ends on poly boundary and the path might include the next poly boundary.
if (path[n-1] == next->id)
n--; // remove to avoid duplicates
}
else
{
path[n++] = node->id;
if (n >= maxPath)
status = DT_BUFFER_TOO_SMALL;
}
if (status & DT_STATUS_DETAIL_MASK)
{
m_query.status |= status & DT_STATUS_DETAIL_MASK;
break;
}
node = next;
}
while (node);
}
const dtStatus details = m_query.status & DT_STATUS_DETAIL_MASK;
// Reset query.
memset(&m_query, 0, sizeof(dtQueryData));
*pathCount = n;
return DT_SUCCESS | details;
}
dtStatus dtNavMeshQuery::appendVertex(const float* pos, const unsigned char flags, const dtPolyRef ref,
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
int* straightPathCount, const int maxStraightPath) const
{
if ((*straightPathCount) > 0 && dtVequal(&straightPath[((*straightPathCount)-1)*3], pos))
{
// The vertices are equal, update flags and poly.
if (straightPathFlags)
straightPathFlags[(*straightPathCount)-1] = flags;
if (straightPathRefs)
straightPathRefs[(*straightPathCount)-1] = ref;
}
else
{
// Append new vertex.
dtVcopy(&straightPath[(*straightPathCount)*3], pos);
if (straightPathFlags)
straightPathFlags[(*straightPathCount)] = flags;
if (straightPathRefs)
straightPathRefs[(*straightPathCount)] = ref;
(*straightPathCount)++;
// If there is no space to append more vertices, return.
if ((*straightPathCount) >= maxStraightPath)
{
return DT_SUCCESS | DT_BUFFER_TOO_SMALL;
}
// If reached end of path, return.
if (flags == DT_STRAIGHTPATH_END)
{
return DT_SUCCESS;
}
}
return DT_IN_PROGRESS;
}
dtStatus dtNavMeshQuery::appendPortals(const int startIdx, const int endIdx, const float* endPos, const dtPolyRef* path,
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
int* straightPathCount, const int maxStraightPath, const int options) const
{
const float* startPos = &straightPath[(*straightPathCount-1)*3];
// Append or update last vertex
dtStatus stat = 0;
for (int i = startIdx; i < endIdx; i++)
{
// Calculate portal
const dtPolyRef from = path[i];
const dtMeshTile* fromTile = 0;
const dtPoly* fromPoly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly)))
return DT_FAILURE | DT_INVALID_PARAM;
const dtPolyRef to = path[i+1];
const dtMeshTile* toTile = 0;
const dtPoly* toPoly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly)))
return DT_FAILURE | DT_INVALID_PARAM;
float left[3], right[3];
if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)))
break;
if (options & DT_STRAIGHTPATH_AREA_CROSSINGS)
{
// Skip intersection if only area crossings are requested.
if (fromPoly->getArea() == toPoly->getArea())
continue;
}
// Append intersection
float s,t;
if (dtIntersectSegSeg2D(startPos, endPos, left, right, s, t))
{
float pt[3];
dtVlerp(pt, left,right, t);
stat = appendVertex(pt, 0, path[i+1],
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath);
if (stat != DT_IN_PROGRESS)
return stat;
}
}
return DT_IN_PROGRESS;
}
/// @par
///
/// This method peforms what is often called 'string pulling'.
///
/// The start position is clamped to the first polygon in the path, and the
/// end position is clamped to the last. So the start and end positions should
/// normally be within or very near the first and last polygons respectively.
///
/// The returned polygon references represent the reference id of the polygon
/// that is entered at the associated path position. The reference id associated
/// with the end point will always be zero. This allows, for example, matching
/// off-mesh link points to their representative polygons.
///
/// If the provided result buffers are too small for the entire result set,
/// they will be filled as far as possible from the start toward the end
/// position.
///
dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* endPos,
const dtPolyRef* path, const int pathSize,
float* straightPath, unsigned char* straightPathFlags, dtPolyRef* straightPathRefs,
int* straightPathCount, const int maxStraightPath, const int options) const
{
dtAssert(m_nav);
*straightPathCount = 0;
if (!maxStraightPath)
return DT_FAILURE | DT_INVALID_PARAM;
if (!path[0])
return DT_FAILURE | DT_INVALID_PARAM;
dtStatus stat = 0;
// TODO: Should this be callers responsibility?
float closestStartPos[3];
if (dtStatusFailed(closestPointOnPolyBoundary(path[0], startPos, closestStartPos)))
return DT_FAILURE | DT_INVALID_PARAM;
float closestEndPos[3];
if (dtStatusFailed(closestPointOnPolyBoundary(path[pathSize-1], endPos, closestEndPos)))
return DT_FAILURE | DT_INVALID_PARAM;
// Add start point.
stat = appendVertex(closestStartPos, DT_STRAIGHTPATH_START, path[0],
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath);
if (stat != DT_IN_PROGRESS)
return stat;
if (pathSize > 1)
{
float portalApex[3], portalLeft[3], portalRight[3];
dtVcopy(portalApex, closestStartPos);
dtVcopy(portalLeft, portalApex);
dtVcopy(portalRight, portalApex);
int apexIndex = 0;
int leftIndex = 0;
int rightIndex = 0;
unsigned char leftPolyType = 0;
unsigned char rightPolyType = 0;
dtPolyRef leftPolyRef = path[0];
dtPolyRef rightPolyRef = path[0];
for (int i = 0; i < pathSize; ++i)
{
float left[3], right[3];
unsigned char toType;
if (i+1 < pathSize)
{
unsigned char fromType; // fromType is ignored.
// Next portal.
if (dtStatusFailed(getPortalPoints(path[i], path[i+1], left, right, fromType, toType)))
{
// Failed to get portal points, in practice this means that path[i+1] is invalid polygon.
// Clamp the end point to path[i], and return the path so far.
if (dtStatusFailed(closestPointOnPolyBoundary(path[i], endPos, closestEndPos)))
{
// This should only happen when the first polygon is invalid.
return DT_FAILURE | DT_INVALID_PARAM;
}
// Apeend portals along the current straight path segment.
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
{
// Ignore status return value as we're just about to return anyway.
appendPortals(apexIndex, i, closestEndPos, path,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath, options);
}
// Ignore status return value as we're just about to return anyway.
appendVertex(closestEndPos, 0, path[i],
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath);
return DT_SUCCESS | DT_PARTIAL_RESULT | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0);
}
// If starting really close the portal, advance.
if (i == 0)
{
float t;
if (dtDistancePtSegSqr2D(portalApex, left, right, t) < dtSqr(0.001f))
continue;
}
}
else
{
// End of the path.
dtVcopy(left, closestEndPos);
dtVcopy(right, closestEndPos);
toType = DT_POLYTYPE_GROUND;
}
// Right vertex.
if (dtTriArea2D(portalApex, portalRight, right) <= 0.0f)
{
if (dtVequal(portalApex, portalRight) || dtTriArea2D(portalApex, portalLeft, right) > 0.0f)
{
dtVcopy(portalRight, right);
rightPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
rightPolyType = toType;
rightIndex = i;
}
else
{
// Append portals along the current straight path segment.
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
{
stat = appendPortals(apexIndex, leftIndex, portalLeft, path,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath, options);
if (stat != DT_IN_PROGRESS)
return stat;
}
dtVcopy(portalApex, portalLeft);
apexIndex = leftIndex;
unsigned char flags = 0;
if (!leftPolyRef)
flags = DT_STRAIGHTPATH_END;
else if (leftPolyType == DT_POLYTYPE_OFFMESH_CONNECTION)
flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION;
dtPolyRef ref = leftPolyRef;
// Append or update vertex
stat = appendVertex(portalApex, flags, ref,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath);
if (stat != DT_IN_PROGRESS)
return stat;
dtVcopy(portalLeft, portalApex);
dtVcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
// Left vertex.
if (dtTriArea2D(portalApex, portalLeft, left) >= 0.0f)
{
if (dtVequal(portalApex, portalLeft) || dtTriArea2D(portalApex, portalRight, left) < 0.0f)
{
dtVcopy(portalLeft, left);
leftPolyRef = (i+1 < pathSize) ? path[i+1] : 0;
leftPolyType = toType;
leftIndex = i;
}
else
{
// Append portals along the current straight path segment.
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
{
stat = appendPortals(apexIndex, rightIndex, portalRight, path,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath, options);
if (stat != DT_IN_PROGRESS)
return stat;
}
dtVcopy(portalApex, portalRight);
apexIndex = rightIndex;
unsigned char flags = 0;
if (!rightPolyRef)
flags = DT_STRAIGHTPATH_END;
else if (rightPolyType == DT_POLYTYPE_OFFMESH_CONNECTION)
flags = DT_STRAIGHTPATH_OFFMESH_CONNECTION;
dtPolyRef ref = rightPolyRef;
// Append or update vertex
stat = appendVertex(portalApex, flags, ref,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath);
if (stat != DT_IN_PROGRESS)
return stat;
dtVcopy(portalLeft, portalApex);
dtVcopy(portalRight, portalApex);
leftIndex = apexIndex;
rightIndex = apexIndex;
// Restart
i = apexIndex;
continue;
}
}
}
// Append portals along the current straight path segment.
if (options & (DT_STRAIGHTPATH_AREA_CROSSINGS | DT_STRAIGHTPATH_ALL_CROSSINGS))
{
stat = appendPortals(apexIndex, pathSize-1, closestEndPos, path,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath, options);
if (stat != DT_IN_PROGRESS)
return stat;
}
}
// Ignore status return value as we're just about to return anyway.
appendVertex(closestEndPos, DT_STRAIGHTPATH_END, 0,
straightPath, straightPathFlags, straightPathRefs,
straightPathCount, maxStraightPath);
return DT_SUCCESS | ((*straightPathCount >= maxStraightPath) ? DT_BUFFER_TOO_SMALL : 0);
}
/// @par
///
/// This method is optimized for small delta movement and a small number of
/// polygons. If used for too great a distance, the result set will form an
/// incomplete path.
///
/// @p resultPos will equal the @p endPos if the end is reached.
/// Otherwise the closest reachable position will be returned.
///
/// @p resultPos is not projected onto the surface of the navigation
/// mesh. Use #getPolyHeight if this is needed.
///
/// This method treats the end position in the same manner as
/// the #raycast method. (As a 2D point.) See that method's documentation
/// for details.
///
/// If the @p visited array is too small to hold the entire result set, it will
/// be filled as far as possible from the start position toward the end
/// position.
///
dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* startPos, const float* endPos,
const dtQueryFilter* filter,
float* resultPos, dtPolyRef* visited, int* visitedCount, const int maxVisitedSize) const
{
dtAssert(m_nav);
dtAssert(m_tinyNodePool);
*visitedCount = 0;
// Validate input
if (!startRef)
return DT_FAILURE | DT_INVALID_PARAM;
if (!m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
dtStatus status = DT_SUCCESS;
static const int MAX_STACK = 48;
dtNode* stack[MAX_STACK];
int nstack = 0;
m_tinyNodePool->clear();
dtNode* startNode = m_tinyNodePool->getNode(startRef);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = startRef;
startNode->flags = DT_NODE_CLOSED;
stack[nstack++] = startNode;
float bestPos[3];
float bestDist = FLT_MAX;
dtNode* bestNode = 0;
dtVcopy(bestPos, startPos);
// Search constraints
float searchPos[3], searchRadSqr;
dtVlerp(searchPos, startPos, endPos, 0.5f);
searchRadSqr = dtSqr(dtVdist(startPos, endPos)/2.0f + 0.001f);
float verts[DT_VERTS_PER_POLYGON*3];
while (nstack)
{
// Pop front.
dtNode* curNode = stack[0];
for (int i = 0; i < nstack-1; ++i)
stack[i] = stack[i+1];
nstack--;
// Get poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef curRef = curNode->id;
const dtMeshTile* curTile = 0;
const dtPoly* curPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly);
// Collect vertices.
const int nverts = curPoly->vertCount;
for (int i = 0; i < nverts; ++i)
dtVcopy(&verts[i*3], &curTile->verts[curPoly->verts[i]*3]);
// If target is inside the poly, stop search.
if (dtPointInPolygon(endPos, verts, nverts))
{
bestNode = curNode;
dtVcopy(bestPos, endPos);
break;
}
// Find wall edges and find nearest point inside the walls.
for (int i = 0, j = (int)curPoly->vertCount-1; i < (int)curPoly->vertCount; j = i++)
{
// Find links to neighbours.
static const int MAX_NEIS = 8;
int nneis = 0;
dtPolyRef neis[MAX_NEIS];
if (curPoly->neis[j] & DT_EXT_LINK)
{
// Tile border.
for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next)
{
const dtLink* link = &curTile->links[k];
if (link->edge == j)
{
if (link->ref != 0)
{
const dtMeshTile* neiTile = 0;
const dtPoly* neiPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
if (filter->passFilter(link->ref, neiTile, neiPoly))
{
if (nneis < MAX_NEIS)
neis[nneis++] = link->ref;
}
}
}
}
}
else if (curPoly->neis[j])
{
const unsigned int idx = (unsigned int)(curPoly->neis[j]-1);
const dtPolyRef ref = m_nav->getPolyRefBase(curTile) | idx;
if (filter->passFilter(ref, curTile, &curTile->polys[idx]))
{
// Internal edge, encode id.
neis[nneis++] = ref;
}
}
if (!nneis)
{
// Wall edge, calc distance.
const float* vj = &verts[j*3];
const float* vi = &verts[i*3];
float tseg;
const float distSqr = dtDistancePtSegSqr2D(endPos, vj, vi, tseg);
if (distSqr < bestDist)
{
// Update nearest distance.
dtVlerp(bestPos, vj,vi, tseg);
bestDist = distSqr;
bestNode = curNode;
}
}
else
{
for (int k = 0; k < nneis; ++k)
{
// Skip if no node can be allocated.
dtNode* neighbourNode = m_tinyNodePool->getNode(neis[k]);
if (!neighbourNode)
continue;
// Skip if already visited.
if (neighbourNode->flags & DT_NODE_CLOSED)
continue;
// Skip the link if it is too far from search constraint.
// TODO: Maybe should use getPortalPoints(), but this one is way faster.
const float* vj = &verts[j*3];
const float* vi = &verts[i*3];
float tseg;
float distSqr = dtDistancePtSegSqr2D(searchPos, vj, vi, tseg);
if (distSqr > searchRadSqr)
continue;
// Mark as the node as visited and push to queue.
if (nstack < MAX_STACK)
{
neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode);
neighbourNode->flags |= DT_NODE_CLOSED;
stack[nstack++] = neighbourNode;
}
}
}
}
}
int n = 0;
if (bestNode)
{
// Reverse the path.
dtNode* prev = 0;
dtNode* node = bestNode;
do
{
dtNode* next = m_tinyNodePool->getNodeAtIdx(node->pidx);
node->pidx = m_tinyNodePool->getNodeIdx(prev);
prev = node;
node = next;
}
while (node);
// Store result
node = prev;
do
{
visited[n++] = node->id;
if (n >= maxVisitedSize)
{
status |= DT_BUFFER_TOO_SMALL;
break;
}
node = m_tinyNodePool->getNodeAtIdx(node->pidx);
}
while (node);
}
dtVcopy(resultPos, bestPos);
*visitedCount = n;
return status;
}
dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, dtPolyRef to, float* left, float* right,
unsigned char& fromType, unsigned char& toType) const
{
dtAssert(m_nav);
const dtMeshTile* fromTile = 0;
const dtPoly* fromPoly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(from, &fromTile, &fromPoly)))
return DT_FAILURE | DT_INVALID_PARAM;
fromType = fromPoly->getType();
const dtMeshTile* toTile = 0;
const dtPoly* toPoly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(to, &toTile, &toPoly)))
return DT_FAILURE | DT_INVALID_PARAM;
toType = toPoly->getType();
return getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right);
}
// Returns portal points between two polygons.
dtStatus dtNavMeshQuery::getPortalPoints(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
float* left, float* right) const
{
// Find the link that points to the 'to' polygon.
const dtLink* link = 0;
for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
{
if (fromTile->links[i].ref == to)
{
link = &fromTile->links[i];
break;
}
}
if (!link)
return DT_FAILURE | DT_INVALID_PARAM;
// Handle off-mesh connections.
if (fromPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
// Find link that points to first vertex.
for (unsigned int i = fromPoly->firstLink; i != DT_NULL_LINK; i = fromTile->links[i].next)
{
if (fromTile->links[i].ref == to)
{
const int v = fromTile->links[i].edge;
dtVcopy(left, &fromTile->verts[fromPoly->verts[v]*3]);
dtVcopy(right, &fromTile->verts[fromPoly->verts[v]*3]);
return DT_SUCCESS;
}
}
return DT_FAILURE | DT_INVALID_PARAM;
}
if (toPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
for (unsigned int i = toPoly->firstLink; i != DT_NULL_LINK; i = toTile->links[i].next)
{
if (toTile->links[i].ref == from)
{
const int v = toTile->links[i].edge;
dtVcopy(left, &toTile->verts[toPoly->verts[v]*3]);
dtVcopy(right, &toTile->verts[toPoly->verts[v]*3]);
return DT_SUCCESS;
}
}
return DT_FAILURE | DT_INVALID_PARAM;
}
// Find portal vertices.
const int v0 = fromPoly->verts[link->edge];
const int v1 = fromPoly->verts[(link->edge+1) % (int)fromPoly->vertCount];
dtVcopy(left, &fromTile->verts[v0*3]);
dtVcopy(right, &fromTile->verts[v1*3]);
// If the link is at tile boundary, dtClamp the vertices to
// the link width.
if (link->side != 0xff)
{
// Unpack portal limits.
if (link->bmin != 0 || link->bmax != 255)
{
const float s = 1.0f/255.0f;
const float tmin = link->bmin*s;
const float tmax = link->bmax*s;
dtVlerp(left, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmin);
dtVlerp(right, &fromTile->verts[v0*3], &fromTile->verts[v1*3], tmax);
}
}
return DT_SUCCESS;
}
// Returns edge mid point between two polygons.
dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, dtPolyRef to, float* mid) const
{
float left[3], right[3];
unsigned char fromType, toType;
if (dtStatusFailed(getPortalPoints(from, to, left,right, fromType, toType)))
return DT_FAILURE | DT_INVALID_PARAM;
mid[0] = (left[0]+right[0])*0.5f;
mid[1] = (left[1]+right[1])*0.5f;
mid[2] = (left[2]+right[2])*0.5f;
return DT_SUCCESS;
}
dtStatus dtNavMeshQuery::getEdgeMidPoint(dtPolyRef from, const dtPoly* fromPoly, const dtMeshTile* fromTile,
dtPolyRef to, const dtPoly* toPoly, const dtMeshTile* toTile,
float* mid) const
{
float left[3], right[3];
if (dtStatusFailed(getPortalPoints(from, fromPoly, fromTile, to, toPoly, toTile, left, right)))
return DT_FAILURE | DT_INVALID_PARAM;
mid[0] = (left[0]+right[0])*0.5f;
mid[1] = (left[1]+right[1])*0.5f;
mid[2] = (left[2]+right[2])*0.5f;
return DT_SUCCESS;
}
/// @par
///
/// This method is meant to be used for quick, short distance checks.
///
/// If the path array is too small to hold the result, it will be filled as
/// far as possible from the start postion toward the end position.
///
/// <b>Using the Hit Parameter (t)</b>
///
/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit
/// the end position. In this case the path represents a valid corridor to the
/// end position and the value of @p hitNormal is undefined.
///
/// If the hit parameter is zero, then the start position is on the wall that
/// was hit and the value of @p hitNormal is undefined.
///
/// If 0 < t < 1.0 then the following applies:
///
/// @code
/// distanceToHitBorder = distanceToEndPosition * t
/// hitPoint = startPos + (endPos - startPos) * t
/// @endcode
///
/// <b>Use Case Restriction</b>
///
/// The raycast ignores the y-value of the end position. (2D check.) This
/// places significant limits on how it can be used. For example:
///
/// Consider a scene where there is a main floor with a second floor balcony
/// that hangs over the main floor. So the first floor mesh extends below the
/// balcony mesh. The start position is somewhere on the first floor. The end
/// position is on the balcony.
///
/// The raycast will search toward the end position along the first floor mesh.
/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX
/// (no wall hit), meaning it reached the end position. This is one example of why
/// this method is meant for short distance checks.
///
dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
const dtQueryFilter* filter,
float* t, float* hitNormal, dtPolyRef* path, int* pathCount, const int maxPath) const
{
dtRaycastHit hit;
hit.path = path;
hit.maxPath = maxPath;
dtStatus status = raycast(startRef, startPos, endPos, filter, 0, &hit);
*t = hit.t;
if (hitNormal)
dtVcopy(hitNormal, hit.hitNormal);
if (pathCount)
*pathCount = hit.pathCount;
return status;
}
/// @par
///
/// This method is meant to be used for quick, short distance checks.
///
/// If the path array is too small to hold the result, it will be filled as
/// far as possible from the start postion toward the end position.
///
/// <b>Using the Hit Parameter t of RaycastHit</b>
///
/// If the hit parameter is a very high value (FLT_MAX), then the ray has hit
/// the end position. In this case the path represents a valid corridor to the
/// end position and the value of @p hitNormal is undefined.
///
/// If the hit parameter is zero, then the start position is on the wall that
/// was hit and the value of @p hitNormal is undefined.
///
/// If 0 < t < 1.0 then the following applies:
///
/// @code
/// distanceToHitBorder = distanceToEndPosition * t
/// hitPoint = startPos + (endPos - startPos) * t
/// @endcode
///
/// <b>Use Case Restriction</b>
///
/// The raycast ignores the y-value of the end position. (2D check.) This
/// places significant limits on how it can be used. For example:
///
/// Consider a scene where there is a main floor with a second floor balcony
/// that hangs over the main floor. So the first floor mesh extends below the
/// balcony mesh. The start position is somewhere on the first floor. The end
/// position is on the balcony.
///
/// The raycast will search toward the end position along the first floor mesh.
/// If it reaches the end position's xz-coordinates it will indicate FLT_MAX
/// (no wall hit), meaning it reached the end position. This is one example of why
/// this method is meant for short distance checks.
///
dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, const float* endPos,
const dtQueryFilter* filter, const unsigned int options,
dtRaycastHit* hit, dtPolyRef prevRef) const
{
dtAssert(m_nav);
hit->t = 0;
hit->pathCount = 0;
hit->pathCost = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
if (prevRef && !m_nav->isValidPolyRef(prevRef))
return DT_FAILURE | DT_INVALID_PARAM;
float dir[3], curPos[3], lastPos[3];
float verts[DT_VERTS_PER_POLYGON*3+3];
int n = 0;
dtVcopy(curPos, startPos);
dtVsub(dir, endPos, startPos);
dtVset(hit->hitNormal, 0, 0, 0);
dtStatus status = DT_SUCCESS;
const dtMeshTile* prevTile, *tile, *nextTile;
const dtPoly* prevPoly, *poly, *nextPoly;
dtPolyRef curRef;
// The API input has been checked already, skip checking internal data.
curRef = startRef;
tile = 0;
poly = 0;
m_nav->getTileAndPolyByRefUnsafe(curRef, &tile, &poly);
nextTile = prevTile = tile;
nextPoly = prevPoly = poly;
if (prevRef)
m_nav->getTileAndPolyByRefUnsafe(prevRef, &prevTile, &prevPoly);
while (curRef)
{
// Cast ray against current polygon.
// Collect vertices.
int nv = 0;
for (int i = 0; i < (int)poly->vertCount; ++i)
{
dtVcopy(&verts[nv*3], &tile->verts[poly->verts[i]*3]);
nv++;
}
float tmin, tmax;
int segMin, segMax;
if (!dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax))
{
// Could not hit the polygon, keep the old t and report hit.
hit->pathCount = n;
return status;
}
hit->hitEdgeIndex = segMax;
// Keep track of furthest t so far.
if (tmax > hit->t)
hit->t = tmax;
// Store visited polygons.
if (n < hit->maxPath)
hit->path[n++] = curRef;
else
status |= DT_BUFFER_TOO_SMALL;
// Ray end is completely inside the polygon.
if (segMax == -1)
{
hit->t = FLT_MAX;
hit->pathCount = n;
// add the cost
if (options & DT_RAYCAST_USE_COSTS)
hit->pathCost += filter->getCost(curPos, endPos, prevRef, prevTile, prevPoly, curRef, tile, poly, curRef, tile, poly);
return status;
}
// Follow neighbours.
dtPolyRef nextRef = 0;
for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
{
const dtLink* link = &tile->links[i];
// Find link which contains this edge.
if ((int)link->edge != segMax)
continue;
// Get pointer to the next polygon.
nextTile = 0;
nextPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(link->ref, &nextTile, &nextPoly);
// Skip off-mesh connections.
if (nextPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Skip links based on filter.
if (!filter->passFilter(link->ref, nextTile, nextPoly))
continue;
// If the link is internal, just return the ref.
if (link->side == 0xff)
{
nextRef = link->ref;
break;
}
// If the link is at tile boundary,
// Check if the link spans the whole edge, and accept.
if (link->bmin == 0 && link->bmax == 255)
{
nextRef = link->ref;
break;
}
// Check for partial edge links.
const int v0 = poly->verts[link->edge];
const int v1 = poly->verts[(link->edge+1) % poly->vertCount];
const float* left = &tile->verts[v0*3];
const float* right = &tile->verts[v1*3];
// Check that the intersection lies inside the link portal.
if (link->side == 0 || link->side == 4)
{
// Calculate link size.
const float s = 1.0f/255.0f;
float lmin = left[2] + (right[2] - left[2])*(link->bmin*s);
float lmax = left[2] + (right[2] - left[2])*(link->bmax*s);
if (lmin > lmax) dtSwap(lmin, lmax);
// Find Z intersection.
float z = startPos[2] + (endPos[2]-startPos[2])*tmax;
if (z >= lmin && z <= lmax)
{
nextRef = link->ref;
break;
}
}
else if (link->side == 2 || link->side == 6)
{
// Calculate link size.
const float s = 1.0f/255.0f;
float lmin = left[0] + (right[0] - left[0])*(link->bmin*s);
float lmax = left[0] + (right[0] - left[0])*(link->bmax*s);
if (lmin > lmax) dtSwap(lmin, lmax);
// Find X intersection.
float x = startPos[0] + (endPos[0]-startPos[0])*tmax;
if (x >= lmin && x <= lmax)
{
nextRef = link->ref;
break;
}
}
}
// add the cost
if (options & DT_RAYCAST_USE_COSTS)
{
// compute the intersection point at the furthest end of the polygon
// and correct the height (since the raycast moves in 2d)
dtVcopy(lastPos, curPos);
dtVmad(curPos, startPos, dir, hit->t);
float* e1 = &verts[segMax*3];
float* e2 = &verts[((segMax+1)%nv)*3];
float eDir[3], diff[3];
dtVsub(eDir, e2, e1);
dtVsub(diff, curPos, e1);
float s = dtSqr(eDir[0]) > dtSqr(eDir[2]) ? diff[0] / eDir[0] : diff[2] / eDir[2];
curPos[1] = e1[1] + eDir[1] * s;
hit->pathCost += filter->getCost(lastPos, curPos, prevRef, prevTile, prevPoly, curRef, tile, poly, nextRef, nextTile, nextPoly);
}
if (!nextRef)
{
// No neighbour, we hit a wall.
// Calculate hit normal.
const int a = segMax;
const int b = segMax+1 < nv ? segMax+1 : 0;
const float* va = &verts[a*3];
const float* vb = &verts[b*3];
const float dx = vb[0] - va[0];
const float dz = vb[2] - va[2];
hit->hitNormal[0] = dz;
hit->hitNormal[1] = 0;
hit->hitNormal[2] = -dx;
dtVnormalize(hit->hitNormal);
hit->pathCount = n;
return status;
}
// No hit, advance to neighbour polygon.
prevRef = curRef;
curRef = nextRef;
prevTile = tile;
tile = nextTile;
prevPoly = poly;
poly = nextPoly;
}
hit->pathCount = n;
return status;
}
/// @par
///
/// At least one result array must be provided.
///
/// The order of the result set is from least to highest cost to reach the polygon.
///
/// A common use case for this method is to perform Dijkstra searches.
/// Candidate polygons are found by searching the graph beginning at the start polygon.
///
/// If a polygon is not found via the graph search, even if it intersects the
/// search circle, it will not be included in the result set. For example:
///
/// polyA is the start polygon.
/// polyB shares an edge with polyA. (Is adjacent.)
/// polyC shares an edge with polyB, but not with polyA
/// Even if the search circle overlaps polyC, it will not be included in the
/// result set unless polyB is also in the set.
///
/// The value of the center point is used as the start position for cost
/// calculations. It is not projected onto the surface of the mesh, so its
/// y-value will effect the costs.
///
/// Intersection tests occur in 2D. All polygons and the search circle are
/// projected onto the xz-plane. So the y-value of the center point does not
/// effect intersection tests.
///
/// If the result arrays are to small to hold the entire result set, they will be
/// filled to capacity.
///
dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float* centerPos, const float radius,
const dtQueryFilter* filter,
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
int* resultCount, const int maxResult) const
{
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
*resultCount = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(startRef);
dtVcopy(startNode->pos, centerPos);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtStatus status = DT_SUCCESS;
int n = 0;
const float radiusSqr = dtSqr(radius);
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
bestNode->flags &= ~DT_NODE_OPEN;
bestNode->flags |= DT_NODE_CLOSED;
// Get poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef bestRef = bestNode->id;
const dtMeshTile* bestTile = 0;
const dtPoly* bestPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
// Get parent poly and tile.
dtPolyRef parentRef = 0;
const dtMeshTile* parentTile = 0;
const dtPoly* parentPoly = 0;
if (bestNode->pidx)
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
if (parentRef)
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
if (n < maxResult)
{
if (resultRef)
resultRef[n] = bestRef;
if (resultParent)
resultParent[n] = parentRef;
if (resultCost)
resultCost[n] = bestNode->total;
++n;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
{
const dtLink* link = &bestTile->links[i];
dtPolyRef neighbourRef = link->ref;
// Skip invalid neighbours and do not follow back to parent.
if (!neighbourRef || neighbourRef == parentRef)
continue;
// Expand to neighbour
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
// Do not advance if the polygon is excluded by the filter.
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
// Find edge and calc distance to the edge.
float va[3], vb[3];
if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
continue;
// If the circle is not touching the next polygon, skip it.
float tseg;
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
if (distSqr > radiusSqr)
continue;
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
if (!neighbourNode)
{
status |= DT_OUT_OF_NODES;
continue;
}
if (neighbourNode->flags & DT_NODE_CLOSED)
continue;
// Cost
if (neighbourNode->flags == 0)
dtVlerp(neighbourNode->pos, va, vb, 0.5f);
float cost = filter->getCost(
bestNode->pos, neighbourNode->pos,
parentRef, parentTile, parentPoly,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly);
const float total = bestNode->total + cost;
// The node is already in open list and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
continue;
neighbourNode->id = neighbourRef;
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
neighbourNode->total = total;
if (neighbourNode->flags & DT_NODE_OPEN)
{
m_openList->modify(neighbourNode);
}
else
{
neighbourNode->flags = DT_NODE_OPEN;
m_openList->push(neighbourNode);
}
}
}
*resultCount = n;
return status;
}
/// @par
///
/// The order of the result set is from least to highest cost.
///
/// At least one result array must be provided.
///
/// A common use case for this method is to perform Dijkstra searches.
/// Candidate polygons are found by searching the graph beginning at the start
/// polygon.
///
/// The same intersection test restrictions that apply to findPolysAroundCircle()
/// method apply to this method.
///
/// The 3D centroid of the search polygon is used as the start position for cost
/// calculations.
///
/// Intersection tests occur in 2D. All polygons are projected onto the
/// xz-plane. So the y-values of the vertices do not effect intersection tests.
///
/// If the result arrays are is too small to hold the entire result set, they will
/// be filled to capacity.
///
dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* verts, const int nverts,
const dtQueryFilter* filter,
dtPolyRef* resultRef, dtPolyRef* resultParent, float* resultCost,
int* resultCount, const int maxResult) const
{
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
*resultCount = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
m_nodePool->clear();
m_openList->clear();
float centerPos[3] = {0,0,0};
for (int i = 0; i < nverts; ++i)
dtVadd(centerPos,centerPos,&verts[i*3]);
dtVscale(centerPos,centerPos,1.0f/nverts);
dtNode* startNode = m_nodePool->getNode(startRef);
dtVcopy(startNode->pos, centerPos);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
dtStatus status = DT_SUCCESS;
int n = 0;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
bestNode->flags &= ~DT_NODE_OPEN;
bestNode->flags |= DT_NODE_CLOSED;
// Get poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef bestRef = bestNode->id;
const dtMeshTile* bestTile = 0;
const dtPoly* bestPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
// Get parent poly and tile.
dtPolyRef parentRef = 0;
const dtMeshTile* parentTile = 0;
const dtPoly* parentPoly = 0;
if (bestNode->pidx)
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
if (parentRef)
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
if (n < maxResult)
{
if (resultRef)
resultRef[n] = bestRef;
if (resultParent)
resultParent[n] = parentRef;
if (resultCost)
resultCost[n] = bestNode->total;
++n;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
{
const dtLink* link = &bestTile->links[i];
dtPolyRef neighbourRef = link->ref;
// Skip invalid neighbours and do not follow back to parent.
if (!neighbourRef || neighbourRef == parentRef)
continue;
// Expand to neighbour
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
// Do not advance if the polygon is excluded by the filter.
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
// Find edge and calc distance to the edge.
float va[3], vb[3];
if (!getPortalPoints(bestRef, bestPoly, bestTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
continue;
// If the poly is not touching the edge to the next polygon, skip the connection it.
float tmin, tmax;
int segMin, segMax;
if (!dtIntersectSegmentPoly2D(va, vb, verts, nverts, tmin, tmax, segMin, segMax))
continue;
if (tmin > 1.0f || tmax < 0.0f)
continue;
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
if (!neighbourNode)
{
status |= DT_OUT_OF_NODES;
continue;
}
if (neighbourNode->flags & DT_NODE_CLOSED)
continue;
// Cost
if (neighbourNode->flags == 0)
dtVlerp(neighbourNode->pos, va, vb, 0.5f);
float cost = filter->getCost(
bestNode->pos, neighbourNode->pos,
parentRef, parentTile, parentPoly,
bestRef, bestTile, bestPoly,
neighbourRef, neighbourTile, neighbourPoly);
const float total = bestNode->total + cost;
// The node is already in open list and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
continue;
neighbourNode->id = neighbourRef;
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
neighbourNode->total = total;
if (neighbourNode->flags & DT_NODE_OPEN)
{
m_openList->modify(neighbourNode);
}
else
{
neighbourNode->flags = DT_NODE_OPEN;
m_openList->push(neighbourNode);
}
}
}
*resultCount = n;
return status;
}
dtStatus dtNavMeshQuery::getPathFromDijkstraSearch(dtPolyRef endRef, dtPolyRef* path, int* pathCount, int maxPath) const
{
if (!m_nav->isValidPolyRef(endRef) || !path || !pathCount || maxPath < 0)
return DT_FAILURE | DT_INVALID_PARAM;
*pathCount = 0;
dtNode* endNode;
if (m_nodePool->findNodes(endRef, &endNode, 1) != 1 ||
(endNode->flags & DT_NODE_CLOSED) == 0)
return DT_FAILURE | DT_INVALID_PARAM;
return getPathToNode(endNode, path, pathCount, maxPath);
}
/// @par
///
/// This method is optimized for a small search radius and small number of result
/// polygons.
///
/// Candidate polygons are found by searching the navigation graph beginning at
/// the start polygon.
///
/// The same intersection test restrictions that apply to the findPolysAroundCircle
/// mehtod applies to this method.
///
/// The value of the center point is used as the start point for cost calculations.
/// It is not projected onto the surface of the mesh, so its y-value will effect
/// the costs.
///
/// Intersection tests occur in 2D. All polygons and the search circle are
/// projected onto the xz-plane. So the y-value of the center point does not
/// effect intersection tests.
///
/// If the result arrays are is too small to hold the entire result set, they will
/// be filled to capacity.
///
dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float* centerPos, const float radius,
const dtQueryFilter* filter,
dtPolyRef* resultRef, dtPolyRef* resultParent,
int* resultCount, const int maxResult) const
{
dtAssert(m_nav);
dtAssert(m_tinyNodePool);
*resultCount = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
static const int MAX_STACK = 48;
dtNode* stack[MAX_STACK];
int nstack = 0;
m_tinyNodePool->clear();
dtNode* startNode = m_tinyNodePool->getNode(startRef);
startNode->pidx = 0;
startNode->id = startRef;
startNode->flags = DT_NODE_CLOSED;
stack[nstack++] = startNode;
const float radiusSqr = dtSqr(radius);
float pa[DT_VERTS_PER_POLYGON*3];
float pb[DT_VERTS_PER_POLYGON*3];
dtStatus status = DT_SUCCESS;
int n = 0;
if (n < maxResult)
{
resultRef[n] = startNode->id;
if (resultParent)
resultParent[n] = 0;
++n;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
while (nstack)
{
// Pop front.
dtNode* curNode = stack[0];
for (int i = 0; i < nstack-1; ++i)
stack[i] = stack[i+1];
nstack--;
// Get poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef curRef = curNode->id;
const dtMeshTile* curTile = 0;
const dtPoly* curPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(curRef, &curTile, &curPoly);
for (unsigned int i = curPoly->firstLink; i != DT_NULL_LINK; i = curTile->links[i].next)
{
const dtLink* link = &curTile->links[i];
dtPolyRef neighbourRef = link->ref;
// Skip invalid neighbours.
if (!neighbourRef)
continue;
// Skip if cannot alloca more nodes.
dtNode* neighbourNode = m_tinyNodePool->getNode(neighbourRef);
if (!neighbourNode)
continue;
// Skip visited.
if (neighbourNode->flags & DT_NODE_CLOSED)
continue;
// Expand to neighbour
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
// Skip off-mesh connections.
if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Do not advance if the polygon is excluded by the filter.
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
// Find edge and calc distance to the edge.
float va[3], vb[3];
if (!getPortalPoints(curRef, curPoly, curTile, neighbourRef, neighbourPoly, neighbourTile, va, vb))
continue;
// If the circle is not touching the next polygon, skip it.
float tseg;
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
if (distSqr > radiusSqr)
continue;
// Mark node visited, this is done before the overlap test so that
// we will not visit the poly again if the test fails.
neighbourNode->flags |= DT_NODE_CLOSED;
neighbourNode->pidx = m_tinyNodePool->getNodeIdx(curNode);
// Check that the polygon does not collide with existing polygons.
// Collect vertices of the neighbour poly.
const int npa = neighbourPoly->vertCount;
for (int k = 0; k < npa; ++k)
dtVcopy(&pa[k*3], &neighbourTile->verts[neighbourPoly->verts[k]*3]);
bool overlap = false;
for (int j = 0; j < n; ++j)
{
dtPolyRef pastRef = resultRef[j];
// Connected polys do not overlap.
bool connected = false;
for (unsigned int k = curPoly->firstLink; k != DT_NULL_LINK; k = curTile->links[k].next)
{
if (curTile->links[k].ref == pastRef)
{
connected = true;
break;
}
}
if (connected)
continue;
// Potentially overlapping.
const dtMeshTile* pastTile = 0;
const dtPoly* pastPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(pastRef, &pastTile, &pastPoly);
// Get vertices and test overlap
const int npb = pastPoly->vertCount;
for (int k = 0; k < npb; ++k)
dtVcopy(&pb[k*3], &pastTile->verts[pastPoly->verts[k]*3]);
if (dtOverlapPolyPoly2D(pa,npa, pb,npb))
{
overlap = true;
break;
}
}
if (overlap)
continue;
// This poly is fine, store and advance to the poly.
if (n < maxResult)
{
resultRef[n] = neighbourRef;
if (resultParent)
resultParent[n] = curRef;
++n;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
if (nstack < MAX_STACK)
{
stack[nstack++] = neighbourNode;
}
}
}
*resultCount = n;
return status;
}
struct dtSegInterval
{
dtPolyRef ref;
short tmin, tmax;
};
static void insertInterval(dtSegInterval* ints, int& nints, const int maxInts,
const short tmin, const short tmax, const dtPolyRef ref)
{
if (nints+1 > maxInts) return;
// Find insertion point.
int idx = 0;
while (idx < nints)
{
if (tmax <= ints[idx].tmin)
break;
idx++;
}
// Move current results.
if (nints-idx)
memmove(ints+idx+1, ints+idx, sizeof(dtSegInterval)*(nints-idx));
// Store
ints[idx].ref = ref;
ints[idx].tmin = tmin;
ints[idx].tmax = tmax;
nints++;
}
/// @par
///
/// If the @p segmentRefs parameter is provided, then all polygon segments will be returned.
/// Otherwise only the wall segments are returned.
///
/// A segment that is normally a portal will be included in the result set as a
/// wall if the @p filter results in the neighbor polygon becoomming impassable.
///
/// The @p segmentVerts and @p segmentRefs buffers should normally be sized for the
/// maximum segments per polygon of the source navigation mesh.
///
dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter* filter,
float* segmentVerts, dtPolyRef* segmentRefs, int* segmentCount,
const int maxSegments) const
{
dtAssert(m_nav);
*segmentCount = 0;
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
int n = 0;
static const int MAX_INTERVAL = 16;
dtSegInterval ints[MAX_INTERVAL];
int nints;
const bool storePortals = segmentRefs != 0;
dtStatus status = DT_SUCCESS;
for (int i = 0, j = (int)poly->vertCount-1; i < (int)poly->vertCount; j = i++)
{
// Skip non-solid edges.
nints = 0;
if (poly->neis[j] & DT_EXT_LINK)
{
// Tile border.
for (unsigned int k = poly->firstLink; k != DT_NULL_LINK; k = tile->links[k].next)
{
const dtLink* link = &tile->links[k];
if (link->edge == j)
{
if (link->ref != 0)
{
const dtMeshTile* neiTile = 0;
const dtPoly* neiPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
if (filter->passFilter(link->ref, neiTile, neiPoly))
{
insertInterval(ints, nints, MAX_INTERVAL, link->bmin, link->bmax, link->ref);
}
}
}
}
}
else
{
// Internal edge
dtPolyRef neiRef = 0;
if (poly->neis[j])
{
const unsigned int idx = (unsigned int)(poly->neis[j]-1);
neiRef = m_nav->getPolyRefBase(tile) | idx;
if (!filter->passFilter(neiRef, tile, &tile->polys[idx]))
neiRef = 0;
}
// If the edge leads to another polygon and portals are not stored, skip.
if (neiRef != 0 && !storePortals)
continue;
if (n < maxSegments)
{
const float* vj = &tile->verts[poly->verts[j]*3];
const float* vi = &tile->verts[poly->verts[i]*3];
float* seg = &segmentVerts[n*6];
dtVcopy(seg+0, vj);
dtVcopy(seg+3, vi);
if (segmentRefs)
segmentRefs[n] = neiRef;
n++;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
continue;
}
// Add sentinels
insertInterval(ints, nints, MAX_INTERVAL, -1, 0, 0);
insertInterval(ints, nints, MAX_INTERVAL, 255, 256, 0);
// Store segments.
const float* vj = &tile->verts[poly->verts[j]*3];
const float* vi = &tile->verts[poly->verts[i]*3];
for (int k = 1; k < nints; ++k)
{
// Portal segment.
if (storePortals && ints[k].ref)
{
const float tmin = ints[k].tmin/255.0f;
const float tmax = ints[k].tmax/255.0f;
if (n < maxSegments)
{
float* seg = &segmentVerts[n*6];
dtVlerp(seg+0, vj,vi, tmin);
dtVlerp(seg+3, vj,vi, tmax);
if (segmentRefs)
segmentRefs[n] = ints[k].ref;
n++;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
}
// Wall segment.
const int imin = ints[k-1].tmax;
const int imax = ints[k].tmin;
if (imin != imax)
{
const float tmin = imin/255.0f;
const float tmax = imax/255.0f;
if (n < maxSegments)
{
float* seg = &segmentVerts[n*6];
dtVlerp(seg+0, vj,vi, tmin);
dtVlerp(seg+3, vj,vi, tmax);
if (segmentRefs)
segmentRefs[n] = 0;
n++;
}
else
{
status |= DT_BUFFER_TOO_SMALL;
}
}
}
}
*segmentCount = n;
return status;
}
/// @par
///
/// @p hitPos is not adjusted using the height detail data.
///
/// @p hitDist will equal the search radius if there is no wall within the
/// radius. In this case the values of @p hitPos and @p hitNormal are
/// undefined.
///
/// The normal will become unpredicable if @p hitDist is a very small number.
///
dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* centerPos, const float maxRadius,
const dtQueryFilter* filter,
float* hitDist, float* hitPos, float* hitNormal) const
{
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
m_nodePool->clear();
m_openList->clear();
dtNode* startNode = m_nodePool->getNode(startRef);
dtVcopy(startNode->pos, centerPos);
startNode->pidx = 0;
startNode->cost = 0;
startNode->total = 0;
startNode->id = startRef;
startNode->flags = DT_NODE_OPEN;
m_openList->push(startNode);
float radiusSqr = dtSqr(maxRadius);
dtStatus status = DT_SUCCESS;
while (!m_openList->empty())
{
dtNode* bestNode = m_openList->pop();
bestNode->flags &= ~DT_NODE_OPEN;
bestNode->flags |= DT_NODE_CLOSED;
// Get poly and tile.
// The API input has been cheked already, skip checking internal data.
const dtPolyRef bestRef = bestNode->id;
const dtMeshTile* bestTile = 0;
const dtPoly* bestPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(bestRef, &bestTile, &bestPoly);
// Get parent poly and tile.
dtPolyRef parentRef = 0;
const dtMeshTile* parentTile = 0;
const dtPoly* parentPoly = 0;
if (bestNode->pidx)
parentRef = m_nodePool->getNodeAtIdx(bestNode->pidx)->id;
if (parentRef)
m_nav->getTileAndPolyByRefUnsafe(parentRef, &parentTile, &parentPoly);
// Hit test walls.
for (int i = 0, j = (int)bestPoly->vertCount-1; i < (int)bestPoly->vertCount; j = i++)
{
// Skip non-solid edges.
if (bestPoly->neis[j] & DT_EXT_LINK)
{
// Tile border.
bool solid = true;
for (unsigned int k = bestPoly->firstLink; k != DT_NULL_LINK; k = bestTile->links[k].next)
{
const dtLink* link = &bestTile->links[k];
if (link->edge == j)
{
if (link->ref != 0)
{
const dtMeshTile* neiTile = 0;
const dtPoly* neiPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(link->ref, &neiTile, &neiPoly);
if (filter->passFilter(link->ref, neiTile, neiPoly))
solid = false;
}
break;
}
}
if (!solid) continue;
}
else if (bestPoly->neis[j])
{
// Internal edge
const unsigned int idx = (unsigned int)(bestPoly->neis[j]-1);
const dtPolyRef ref = m_nav->getPolyRefBase(bestTile) | idx;
if (filter->passFilter(ref, bestTile, &bestTile->polys[idx]))
continue;
}
// Calc distance to the edge.
const float* vj = &bestTile->verts[bestPoly->verts[j]*3];
const float* vi = &bestTile->verts[bestPoly->verts[i]*3];
float tseg;
float distSqr = dtDistancePtSegSqr2D(centerPos, vj, vi, tseg);
// Edge is too far, skip.
if (distSqr > radiusSqr)
continue;
// Hit wall, update radius.
radiusSqr = distSqr;
// Calculate hit pos.
hitPos[0] = vj[0] + (vi[0] - vj[0])*tseg;
hitPos[1] = vj[1] + (vi[1] - vj[1])*tseg;
hitPos[2] = vj[2] + (vi[2] - vj[2])*tseg;
}
for (unsigned int i = bestPoly->firstLink; i != DT_NULL_LINK; i = bestTile->links[i].next)
{
const dtLink* link = &bestTile->links[i];
dtPolyRef neighbourRef = link->ref;
// Skip invalid neighbours and do not follow back to parent.
if (!neighbourRef || neighbourRef == parentRef)
continue;
// Expand to neighbour.
const dtMeshTile* neighbourTile = 0;
const dtPoly* neighbourPoly = 0;
m_nav->getTileAndPolyByRefUnsafe(neighbourRef, &neighbourTile, &neighbourPoly);
// Skip off-mesh connections.
if (neighbourPoly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Calc distance to the edge.
const float* va = &bestTile->verts[bestPoly->verts[link->edge]*3];
const float* vb = &bestTile->verts[bestPoly->verts[(link->edge+1) % bestPoly->vertCount]*3];
float tseg;
float distSqr = dtDistancePtSegSqr2D(centerPos, va, vb, tseg);
// If the circle is not touching the next polygon, skip it.
if (distSqr > radiusSqr)
continue;
if (!filter->passFilter(neighbourRef, neighbourTile, neighbourPoly))
continue;
dtNode* neighbourNode = m_nodePool->getNode(neighbourRef);
if (!neighbourNode)
{
status |= DT_OUT_OF_NODES;
continue;
}
if (neighbourNode->flags & DT_NODE_CLOSED)
continue;
// Cost
if (neighbourNode->flags == 0)
{
getEdgeMidPoint(bestRef, bestPoly, bestTile,
neighbourRef, neighbourPoly, neighbourTile, neighbourNode->pos);
}
const float total = bestNode->total + dtVdist(bestNode->pos, neighbourNode->pos);
// The node is already in open list and the new result is worse, skip.
if ((neighbourNode->flags & DT_NODE_OPEN) && total >= neighbourNode->total)
continue;
neighbourNode->id = neighbourRef;
neighbourNode->flags = (neighbourNode->flags & ~DT_NODE_CLOSED);
neighbourNode->pidx = m_nodePool->getNodeIdx(bestNode);
neighbourNode->total = total;
if (neighbourNode->flags & DT_NODE_OPEN)
{
m_openList->modify(neighbourNode);
}
else
{
neighbourNode->flags |= DT_NODE_OPEN;
m_openList->push(neighbourNode);
}
}
}
// Calc hit normal.
dtVsub(hitNormal, centerPos, hitPos);
dtVnormalize(hitNormal);
*hitDist = dtMathSqrtf(radiusSqr);
return status;
}
bool dtNavMeshQuery::isValidPolyRef(dtPolyRef ref, const dtQueryFilter* filter) const
{
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
dtStatus status = m_nav->getTileAndPolyByRef(ref, &tile, &poly);
// If cannot get polygon, assume it does not exists and boundary is invalid.
if (dtStatusFailed(status))
return false;
// If cannot pass filter, assume flags has changed and boundary is invalid.
if (!filter->passFilter(ref, tile, poly))
return false;
return true;
}
/// @par
///
/// The closed list is the list of polygons that were fully evaluated during
/// the last navigation graph search. (A* or Dijkstra)
///
bool dtNavMeshQuery::isInClosedList(dtPolyRef ref) const
{
if (!m_nodePool) return false;
dtNode* nodes[DT_MAX_STATES_PER_NODE];
int n= m_nodePool->findNodes(ref, nodes, DT_MAX_STATES_PER_NODE);
for (int i=0; i<n; i++)
{
if (nodes[i]->flags & DT_NODE_CLOSED)
return true;
}
return false;
}