1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-20 08:53:50 +00:00
openmw-tes3mp/extern/recastnavigation/Detour/Source/DetourNavMeshBuilder.cpp

803 lines
24 KiB
C++
Raw Normal View History

2018-10-31 21:20:10 +00:00
//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include "DetourNavMesh.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourNavMeshBuilder.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
static unsigned short MESH_NULL_IDX = 0xffff;
struct BVItem
{
unsigned short bmin[3];
unsigned short bmax[3];
int i;
};
static int compareItemX(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[0] < b->bmin[0])
return -1;
if (a->bmin[0] > b->bmin[0])
return 1;
return 0;
}
static int compareItemY(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[1] < b->bmin[1])
return -1;
if (a->bmin[1] > b->bmin[1])
return 1;
return 0;
}
static int compareItemZ(const void* va, const void* vb)
{
const BVItem* a = (const BVItem*)va;
const BVItem* b = (const BVItem*)vb;
if (a->bmin[2] < b->bmin[2])
return -1;
if (a->bmin[2] > b->bmin[2])
return 1;
return 0;
}
static void calcExtends(BVItem* items, const int /*nitems*/, const int imin, const int imax,
unsigned short* bmin, unsigned short* bmax)
{
bmin[0] = items[imin].bmin[0];
bmin[1] = items[imin].bmin[1];
bmin[2] = items[imin].bmin[2];
bmax[0] = items[imin].bmax[0];
bmax[1] = items[imin].bmax[1];
bmax[2] = items[imin].bmax[2];
for (int i = imin+1; i < imax; ++i)
{
const BVItem& it = items[i];
if (it.bmin[0] < bmin[0]) bmin[0] = it.bmin[0];
if (it.bmin[1] < bmin[1]) bmin[1] = it.bmin[1];
if (it.bmin[2] < bmin[2]) bmin[2] = it.bmin[2];
if (it.bmax[0] > bmax[0]) bmax[0] = it.bmax[0];
if (it.bmax[1] > bmax[1]) bmax[1] = it.bmax[1];
if (it.bmax[2] > bmax[2]) bmax[2] = it.bmax[2];
}
}
inline int longestAxis(unsigned short x, unsigned short y, unsigned short z)
{
int axis = 0;
unsigned short maxVal = x;
if (y > maxVal)
{
axis = 1;
maxVal = y;
}
if (z > maxVal)
{
axis = 2;
}
return axis;
}
static void subdivide(BVItem* items, int nitems, int imin, int imax, int& curNode, dtBVNode* nodes)
{
int inum = imax - imin;
int icur = curNode;
dtBVNode& node = nodes[curNode++];
if (inum == 1)
{
// Leaf
node.bmin[0] = items[imin].bmin[0];
node.bmin[1] = items[imin].bmin[1];
node.bmin[2] = items[imin].bmin[2];
node.bmax[0] = items[imin].bmax[0];
node.bmax[1] = items[imin].bmax[1];
node.bmax[2] = items[imin].bmax[2];
node.i = items[imin].i;
}
else
{
// Split
calcExtends(items, nitems, imin, imax, node.bmin, node.bmax);
int axis = longestAxis(node.bmax[0] - node.bmin[0],
node.bmax[1] - node.bmin[1],
node.bmax[2] - node.bmin[2]);
if (axis == 0)
{
// Sort along x-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemX);
}
else if (axis == 1)
{
// Sort along y-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemY);
}
else
{
// Sort along z-axis
qsort(items+imin, inum, sizeof(BVItem), compareItemZ);
}
int isplit = imin+inum/2;
// Left
subdivide(items, nitems, imin, isplit, curNode, nodes);
// Right
subdivide(items, nitems, isplit, imax, curNode, nodes);
int iescape = curNode - icur;
// Negative index means escape.
node.i = -iescape;
}
}
static int createBVTree(dtNavMeshCreateParams* params, dtBVNode* nodes, int /*nnodes*/)
{
// Build tree
float quantFactor = 1 / params->cs;
BVItem* items = (BVItem*)dtAlloc(sizeof(BVItem)*params->polyCount, DT_ALLOC_TEMP);
for (int i = 0; i < params->polyCount; i++)
{
BVItem& it = items[i];
it.i = i;
// Calc polygon bounds. Use detail meshes if available.
if (params->detailMeshes)
{
int vb = (int)params->detailMeshes[i*4+0];
int ndv = (int)params->detailMeshes[i*4+1];
float bmin[3];
float bmax[3];
const float* dv = &params->detailVerts[vb*3];
dtVcopy(bmin, dv);
dtVcopy(bmax, dv);
for (int j = 1; j < ndv; j++)
{
dtVmin(bmin, &dv[j * 3]);
dtVmax(bmax, &dv[j * 3]);
}
// BV-tree uses cs for all dimensions
it.bmin[0] = (unsigned short)dtClamp((int)((bmin[0] - params->bmin[0])*quantFactor), 0, 0xffff);
it.bmin[1] = (unsigned short)dtClamp((int)((bmin[1] - params->bmin[1])*quantFactor), 0, 0xffff);
it.bmin[2] = (unsigned short)dtClamp((int)((bmin[2] - params->bmin[2])*quantFactor), 0, 0xffff);
it.bmax[0] = (unsigned short)dtClamp((int)((bmax[0] - params->bmin[0])*quantFactor), 0, 0xffff);
it.bmax[1] = (unsigned short)dtClamp((int)((bmax[1] - params->bmin[1])*quantFactor), 0, 0xffff);
it.bmax[2] = (unsigned short)dtClamp((int)((bmax[2] - params->bmin[2])*quantFactor), 0, 0xffff);
}
else
{
const unsigned short* p = &params->polys[i*params->nvp * 2];
it.bmin[0] = it.bmax[0] = params->verts[p[0] * 3 + 0];
it.bmin[1] = it.bmax[1] = params->verts[p[0] * 3 + 1];
it.bmin[2] = it.bmax[2] = params->verts[p[0] * 3 + 2];
for (int j = 1; j < params->nvp; ++j)
{
if (p[j] == MESH_NULL_IDX) break;
unsigned short x = params->verts[p[j] * 3 + 0];
unsigned short y = params->verts[p[j] * 3 + 1];
unsigned short z = params->verts[p[j] * 3 + 2];
if (x < it.bmin[0]) it.bmin[0] = x;
if (y < it.bmin[1]) it.bmin[1] = y;
if (z < it.bmin[2]) it.bmin[2] = z;
if (x > it.bmax[0]) it.bmax[0] = x;
if (y > it.bmax[1]) it.bmax[1] = y;
if (z > it.bmax[2]) it.bmax[2] = z;
}
// Remap y
it.bmin[1] = (unsigned short)dtMathFloorf((float)it.bmin[1] * params->ch / params->cs);
it.bmax[1] = (unsigned short)dtMathCeilf((float)it.bmax[1] * params->ch / params->cs);
}
}
int curNode = 0;
subdivide(items, params->polyCount, 0, params->polyCount, curNode, nodes);
dtFree(items);
return curNode;
}
static unsigned char classifyOffMeshPoint(const float* pt, const float* bmin, const float* bmax)
{
static const unsigned char XP = 1<<0;
static const unsigned char ZP = 1<<1;
static const unsigned char XM = 1<<2;
static const unsigned char ZM = 1<<3;
unsigned char outcode = 0;
outcode |= (pt[0] >= bmax[0]) ? XP : 0;
outcode |= (pt[2] >= bmax[2]) ? ZP : 0;
outcode |= (pt[0] < bmin[0]) ? XM : 0;
outcode |= (pt[2] < bmin[2]) ? ZM : 0;
switch (outcode)
{
case XP: return 0;
case XP|ZP: return 1;
case ZP: return 2;
case XM|ZP: return 3;
case XM: return 4;
case XM|ZM: return 5;
case ZM: return 6;
case XP|ZM: return 7;
};
return 0xff;
}
// TODO: Better error handling.
/// @par
///
/// The output data array is allocated using the detour allocator (dtAlloc()). The method
/// used to free the memory will be determined by how the tile is added to the navigation
/// mesh.
///
/// @see dtNavMesh, dtNavMesh::addTile()
bool dtCreateNavMeshData(dtNavMeshCreateParams* params, unsigned char** outData, int* outDataSize)
{
if (params->nvp > DT_VERTS_PER_POLYGON)
return false;
if (params->vertCount >= 0xffff)
return false;
if (!params->vertCount || !params->verts)
return false;
if (!params->polyCount || !params->polys)
return false;
const int nvp = params->nvp;
// Classify off-mesh connection points. We store only the connections
// whose start point is inside the tile.
unsigned char* offMeshConClass = 0;
int storedOffMeshConCount = 0;
int offMeshConLinkCount = 0;
if (params->offMeshConCount > 0)
{
offMeshConClass = (unsigned char*)dtAlloc(sizeof(unsigned char)*params->offMeshConCount*2, DT_ALLOC_TEMP);
if (!offMeshConClass)
return false;
// Find tight heigh bounds, used for culling out off-mesh start locations.
float hmin = FLT_MAX;
float hmax = -FLT_MAX;
if (params->detailVerts && params->detailVertsCount)
{
for (int i = 0; i < params->detailVertsCount; ++i)
{
const float h = params->detailVerts[i*3+1];
hmin = dtMin(hmin,h);
hmax = dtMax(hmax,h);
}
}
else
{
for (int i = 0; i < params->vertCount; ++i)
{
const unsigned short* iv = &params->verts[i*3];
const float h = params->bmin[1] + iv[1] * params->ch;
hmin = dtMin(hmin,h);
hmax = dtMax(hmax,h);
}
}
hmin -= params->walkableClimb;
hmax += params->walkableClimb;
float bmin[3], bmax[3];
dtVcopy(bmin, params->bmin);
dtVcopy(bmax, params->bmax);
bmin[1] = hmin;
bmax[1] = hmax;
for (int i = 0; i < params->offMeshConCount; ++i)
{
const float* p0 = &params->offMeshConVerts[(i*2+0)*3];
const float* p1 = &params->offMeshConVerts[(i*2+1)*3];
offMeshConClass[i*2+0] = classifyOffMeshPoint(p0, bmin, bmax);
offMeshConClass[i*2+1] = classifyOffMeshPoint(p1, bmin, bmax);
// Zero out off-mesh start positions which are not even potentially touching the mesh.
if (offMeshConClass[i*2+0] == 0xff)
{
if (p0[1] < bmin[1] || p0[1] > bmax[1])
offMeshConClass[i*2+0] = 0;
}
// Cound how many links should be allocated for off-mesh connections.
if (offMeshConClass[i*2+0] == 0xff)
offMeshConLinkCount++;
if (offMeshConClass[i*2+1] == 0xff)
offMeshConLinkCount++;
if (offMeshConClass[i*2+0] == 0xff)
storedOffMeshConCount++;
}
}
// Off-mesh connectionss are stored as polygons, adjust values.
const int totPolyCount = params->polyCount + storedOffMeshConCount;
const int totVertCount = params->vertCount + storedOffMeshConCount*2;
// Find portal edges which are at tile borders.
int edgeCount = 0;
int portalCount = 0;
for (int i = 0; i < params->polyCount; ++i)
{
const unsigned short* p = &params->polys[i*2*nvp];
for (int j = 0; j < nvp; ++j)
{
if (p[j] == MESH_NULL_IDX) break;
edgeCount++;
if (p[nvp+j] & 0x8000)
{
unsigned short dir = p[nvp+j] & 0xf;
if (dir != 0xf)
portalCount++;
}
}
}
const int maxLinkCount = edgeCount + portalCount*2 + offMeshConLinkCount*2;
// Find unique detail vertices.
int uniqueDetailVertCount = 0;
int detailTriCount = 0;
if (params->detailMeshes)
{
// Has detail mesh, count unique detail vertex count and use input detail tri count.
detailTriCount = params->detailTriCount;
for (int i = 0; i < params->polyCount; ++i)
{
const unsigned short* p = &params->polys[i*nvp*2];
int ndv = params->detailMeshes[i*4+1];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == MESH_NULL_IDX) break;
nv++;
}
ndv -= nv;
uniqueDetailVertCount += ndv;
}
}
else
{
// No input detail mesh, build detail mesh from nav polys.
uniqueDetailVertCount = 0; // No extra detail verts.
detailTriCount = 0;
for (int i = 0; i < params->polyCount; ++i)
{
const unsigned short* p = &params->polys[i*nvp*2];
int nv = 0;
for (int j = 0; j < nvp; ++j)
{
if (p[j] == MESH_NULL_IDX) break;
nv++;
}
detailTriCount += nv-2;
}
}
// Calculate data size
const int headerSize = dtAlign4(sizeof(dtMeshHeader));
const int vertsSize = dtAlign4(sizeof(float)*3*totVertCount);
const int polysSize = dtAlign4(sizeof(dtPoly)*totPolyCount);
const int linksSize = dtAlign4(sizeof(dtLink)*maxLinkCount);
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*params->polyCount);
const int detailVertsSize = dtAlign4(sizeof(float)*3*uniqueDetailVertCount);
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*detailTriCount);
const int bvTreeSize = params->buildBvTree ? dtAlign4(sizeof(dtBVNode)*params->polyCount*2) : 0;
const int offMeshConsSize = dtAlign4(sizeof(dtOffMeshConnection)*storedOffMeshConCount);
const int dataSize = headerSize + vertsSize + polysSize + linksSize +
detailMeshesSize + detailVertsSize + detailTrisSize +
bvTreeSize + offMeshConsSize;
unsigned char* data = (unsigned char*)dtAlloc(sizeof(unsigned char)*dataSize, DT_ALLOC_PERM);
if (!data)
{
dtFree(offMeshConClass);
return false;
}
memset(data, 0, dataSize);
unsigned char* d = data;
dtMeshHeader* header = dtGetThenAdvanceBufferPointer<dtMeshHeader>(d, headerSize);
float* navVerts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
dtPoly* navPolys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
d += linksSize; // Ignore links; just leave enough space for them. They'll be created on load.
dtPolyDetail* navDMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
float* navDVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
unsigned char* navDTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
dtBVNode* navBvtree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvTreeSize);
dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshConsSize);
// Store header
header->magic = DT_NAVMESH_MAGIC;
header->version = DT_NAVMESH_VERSION;
header->x = params->tileX;
header->y = params->tileY;
header->layer = params->tileLayer;
header->userId = params->userId;
header->polyCount = totPolyCount;
header->vertCount = totVertCount;
header->maxLinkCount = maxLinkCount;
dtVcopy(header->bmin, params->bmin);
dtVcopy(header->bmax, params->bmax);
header->detailMeshCount = params->polyCount;
header->detailVertCount = uniqueDetailVertCount;
header->detailTriCount = detailTriCount;
header->bvQuantFactor = 1.0f / params->cs;
header->offMeshBase = params->polyCount;
header->walkableHeight = params->walkableHeight;
header->walkableRadius = params->walkableRadius;
header->walkableClimb = params->walkableClimb;
header->offMeshConCount = storedOffMeshConCount;
header->bvNodeCount = params->buildBvTree ? params->polyCount*2 : 0;
const int offMeshVertsBase = params->vertCount;
const int offMeshPolyBase = params->polyCount;
// Store vertices
// Mesh vertices
for (int i = 0; i < params->vertCount; ++i)
{
const unsigned short* iv = &params->verts[i*3];
float* v = &navVerts[i*3];
v[0] = params->bmin[0] + iv[0] * params->cs;
v[1] = params->bmin[1] + iv[1] * params->ch;
v[2] = params->bmin[2] + iv[2] * params->cs;
}
// Off-mesh link vertices.
int n = 0;
for (int i = 0; i < params->offMeshConCount; ++i)
{
// Only store connections which start from this tile.
if (offMeshConClass[i*2+0] == 0xff)
{
const float* linkv = &params->offMeshConVerts[i*2*3];
float* v = &navVerts[(offMeshVertsBase + n*2)*3];
dtVcopy(&v[0], &linkv[0]);
dtVcopy(&v[3], &linkv[3]);
n++;
}
}
// Store polygons
// Mesh polys
const unsigned short* src = params->polys;
for (int i = 0; i < params->polyCount; ++i)
{
dtPoly* p = &navPolys[i];
p->vertCount = 0;
p->flags = params->polyFlags[i];
p->setArea(params->polyAreas[i]);
p->setType(DT_POLYTYPE_GROUND);
for (int j = 0; j < nvp; ++j)
{
if (src[j] == MESH_NULL_IDX) break;
p->verts[j] = src[j];
if (src[nvp+j] & 0x8000)
{
// Border or portal edge.
unsigned short dir = src[nvp+j] & 0xf;
if (dir == 0xf) // Border
p->neis[j] = 0;
else if (dir == 0) // Portal x-
p->neis[j] = DT_EXT_LINK | 4;
else if (dir == 1) // Portal z+
p->neis[j] = DT_EXT_LINK | 2;
else if (dir == 2) // Portal x+
p->neis[j] = DT_EXT_LINK | 0;
else if (dir == 3) // Portal z-
p->neis[j] = DT_EXT_LINK | 6;
}
else
{
// Normal connection
p->neis[j] = src[nvp+j]+1;
}
p->vertCount++;
}
src += nvp*2;
}
// Off-mesh connection vertices.
n = 0;
for (int i = 0; i < params->offMeshConCount; ++i)
{
// Only store connections which start from this tile.
if (offMeshConClass[i*2+0] == 0xff)
{
dtPoly* p = &navPolys[offMeshPolyBase+n];
p->vertCount = 2;
p->verts[0] = (unsigned short)(offMeshVertsBase + n*2+0);
p->verts[1] = (unsigned short)(offMeshVertsBase + n*2+1);
p->flags = params->offMeshConFlags[i];
p->setArea(params->offMeshConAreas[i]);
p->setType(DT_POLYTYPE_OFFMESH_CONNECTION);
n++;
}
}
// Store detail meshes and vertices.
// The nav polygon vertices are stored as the first vertices on each mesh.
// We compress the mesh data by skipping them and using the navmesh coordinates.
if (params->detailMeshes)
{
unsigned short vbase = 0;
for (int i = 0; i < params->polyCount; ++i)
{
dtPolyDetail& dtl = navDMeshes[i];
const int vb = (int)params->detailMeshes[i*4+0];
const int ndv = (int)params->detailMeshes[i*4+1];
const int nv = navPolys[i].vertCount;
dtl.vertBase = (unsigned int)vbase;
dtl.vertCount = (unsigned char)(ndv-nv);
dtl.triBase = (unsigned int)params->detailMeshes[i*4+2];
dtl.triCount = (unsigned char)params->detailMeshes[i*4+3];
// Copy vertices except the first 'nv' verts which are equal to nav poly verts.
if (ndv-nv)
{
memcpy(&navDVerts[vbase*3], &params->detailVerts[(vb+nv)*3], sizeof(float)*3*(ndv-nv));
vbase += (unsigned short)(ndv-nv);
}
}
// Store triangles.
memcpy(navDTris, params->detailTris, sizeof(unsigned char)*4*params->detailTriCount);
}
else
{
// Create dummy detail mesh by triangulating polys.
int tbase = 0;
for (int i = 0; i < params->polyCount; ++i)
{
dtPolyDetail& dtl = navDMeshes[i];
const int nv = navPolys[i].vertCount;
dtl.vertBase = 0;
dtl.vertCount = 0;
dtl.triBase = (unsigned int)tbase;
dtl.triCount = (unsigned char)(nv-2);
// Triangulate polygon (local indices).
for (int j = 2; j < nv; ++j)
{
unsigned char* t = &navDTris[tbase*4];
t[0] = 0;
t[1] = (unsigned char)(j-1);
t[2] = (unsigned char)j;
// Bit for each edge that belongs to poly boundary.
t[3] = (1<<2);
if (j == 2) t[3] |= (1<<0);
if (j == nv-1) t[3] |= (1<<4);
tbase++;
}
}
}
// Store and create BVtree.
if (params->buildBvTree)
{
createBVTree(params, navBvtree, 2*params->polyCount);
}
// Store Off-Mesh connections.
n = 0;
for (int i = 0; i < params->offMeshConCount; ++i)
{
// Only store connections which start from this tile.
if (offMeshConClass[i*2+0] == 0xff)
{
dtOffMeshConnection* con = &offMeshCons[n];
con->poly = (unsigned short)(offMeshPolyBase + n);
// Copy connection end-points.
const float* endPts = &params->offMeshConVerts[i*2*3];
dtVcopy(&con->pos[0], &endPts[0]);
dtVcopy(&con->pos[3], &endPts[3]);
con->rad = params->offMeshConRad[i];
con->flags = params->offMeshConDir[i] ? DT_OFFMESH_CON_BIDIR : 0;
con->side = offMeshConClass[i*2+1];
if (params->offMeshConUserID)
con->userId = params->offMeshConUserID[i];
n++;
}
}
dtFree(offMeshConClass);
*outData = data;
*outDataSize = dataSize;
return true;
}
bool dtNavMeshHeaderSwapEndian(unsigned char* data, const int /*dataSize*/)
{
dtMeshHeader* header = (dtMeshHeader*)data;
int swappedMagic = DT_NAVMESH_MAGIC;
int swappedVersion = DT_NAVMESH_VERSION;
dtSwapEndian(&swappedMagic);
dtSwapEndian(&swappedVersion);
if ((header->magic != DT_NAVMESH_MAGIC || header->version != DT_NAVMESH_VERSION) &&
(header->magic != swappedMagic || header->version != swappedVersion))
{
return false;
}
dtSwapEndian(&header->magic);
dtSwapEndian(&header->version);
dtSwapEndian(&header->x);
dtSwapEndian(&header->y);
dtSwapEndian(&header->layer);
dtSwapEndian(&header->userId);
dtSwapEndian(&header->polyCount);
dtSwapEndian(&header->vertCount);
dtSwapEndian(&header->maxLinkCount);
dtSwapEndian(&header->detailMeshCount);
dtSwapEndian(&header->detailVertCount);
dtSwapEndian(&header->detailTriCount);
dtSwapEndian(&header->bvNodeCount);
dtSwapEndian(&header->offMeshConCount);
dtSwapEndian(&header->offMeshBase);
dtSwapEndian(&header->walkableHeight);
dtSwapEndian(&header->walkableRadius);
dtSwapEndian(&header->walkableClimb);
dtSwapEndian(&header->bmin[0]);
dtSwapEndian(&header->bmin[1]);
dtSwapEndian(&header->bmin[2]);
dtSwapEndian(&header->bmax[0]);
dtSwapEndian(&header->bmax[1]);
dtSwapEndian(&header->bmax[2]);
dtSwapEndian(&header->bvQuantFactor);
// Freelist index and pointers are updated when tile is added, no need to swap.
return true;
}
/// @par
///
/// @warning This function assumes that the header is in the correct endianess already.
/// Call #dtNavMeshHeaderSwapEndian() first on the data if the data is expected to be in wrong endianess
/// to start with. Call #dtNavMeshHeaderSwapEndian() after the data has been swapped if converting from
/// native to foreign endianess.
bool dtNavMeshDataSwapEndian(unsigned char* data, const int /*dataSize*/)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return false;
if (header->version != DT_NAVMESH_VERSION)
return false;
// Patch header pointers.
const int headerSize = dtAlign4(sizeof(dtMeshHeader));
const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
unsigned char* d = data + headerSize;
float* verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
dtPoly* polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
d += linksSize; // Ignore links; they technically should be endian-swapped but all their data is overwritten on load anyway.
//dtLink* links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize);
dtPolyDetail* detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
float* detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
d += detailTrisSize; // Ignore detail tris; single bytes can't be endian-swapped.
//unsigned char* detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
dtBVNode* bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize);
dtOffMeshConnection* offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize);
// Vertices
for (int i = 0; i < header->vertCount*3; ++i)
{
dtSwapEndian(&verts[i]);
}
// Polys
for (int i = 0; i < header->polyCount; ++i)
{
dtPoly* p = &polys[i];
// poly->firstLink is update when tile is added, no need to swap.
for (int j = 0; j < DT_VERTS_PER_POLYGON; ++j)
{
dtSwapEndian(&p->verts[j]);
dtSwapEndian(&p->neis[j]);
}
dtSwapEndian(&p->flags);
}
// Links are rebuild when tile is added, no need to swap.
// Detail meshes
for (int i = 0; i < header->detailMeshCount; ++i)
{
dtPolyDetail* pd = &detailMeshes[i];
dtSwapEndian(&pd->vertBase);
dtSwapEndian(&pd->triBase);
}
// Detail verts
for (int i = 0; i < header->detailVertCount*3; ++i)
{
dtSwapEndian(&detailVerts[i]);
}
// BV-tree
for (int i = 0; i < header->bvNodeCount; ++i)
{
dtBVNode* node = &bvTree[i];
for (int j = 0; j < 3; ++j)
{
dtSwapEndian(&node->bmin[j]);
dtSwapEndian(&node->bmax[j]);
}
dtSwapEndian(&node->i);
}
// Off-mesh Connections.
for (int i = 0; i < header->offMeshConCount; ++i)
{
dtOffMeshConnection* con = &offMeshCons[i];
for (int j = 0; j < 6; ++j)
dtSwapEndian(&con->pos[j]);
dtSwapEndian(&con->rad);
dtSwapEndian(&con->poly);
}
return true;
}