1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-22 07:23:51 +00:00
openmw-tes3mp/old_d_version/terrain/generator.d

1154 lines
28 KiB
D
Raw Normal View History

/*
OpenMW - The completely unofficial reimplementation of Morrowind
Copyright (C) 2008-2009 Nicolay Korslund
Email: < korslund@gmail.com >
WWW: http://openmw.snaptoad.com/
This file (generator.d) is part of the OpenMW package.
OpenMW is distributed as free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 3, as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
version 3 along with this program. If not, see
http://www.gnu.org/licenses/ .
*/
// This module is responsible for generating the cache files.
module terrain.generator;
import std.stdio;
import std.string;
import std.math2;
import std.c.string;
import terrain.cachewriter;
import terrain.archive;
import terrain.esmland;
import terrain.terrain;
import terrain.bindings;
import util.cachefile;
import monster.util.aa;
import monster.util.string;
import monster.vm.dbg;
int mCount;
// Texture sizes for the various levels. For the most detailed level
// (level 1), this give the size of the alpha splatting textures rather
// than a final texture.
int[] texSizes;
CacheWriter cache;
void generate(char[] filename)
{
makePath(cacheDir);
cache.openFile(filename);
// Find the maxiumum distance from (0,0) in any direction
int max = mwland.getMaxCoord();
// Round up to nearest power of 2
int depth=1;
while(max)
{
max >>= 1;
depth++;
assert(depth <= 8);
}
max = 1 << depth-1;
// We already know the answers
assert(max == 32);
assert(depth == 6);
// Set the texture sizes. TODO: These should be config options,
// perhaps - or maybe a result of some higher-level detail setting.
texSizes.length = depth+1;
texSizes[6] = 1024;
texSizes[5] = 512;
texSizes[4] = 256;
texSizes[3] = 256;
texSizes[2] = 512;
texSizes[1] = 64;
// Set some general parameters for the runtime
cache.setParams(depth+1, texSizes[1]);
// Create some common data first
writefln("Generating common data");
genDefaults();
genIndexData();
writefln("Generating quad data");
GenLevelResult gen;
// Start at one level above the top, but don't generate data for it
genLevel(depth+1, -max, -max, gen, false);
writefln("Writing index file");
cache.finish();
writefln("Pregeneration done. Results written to ", filename);
}
struct GenLevelResult
{
QuadHolder quad;
bool hasMesh;
bool isAlpha;
int width;
ubyte[] data;
void allocImage(int _width)
{
assert(isEmpty());
width = _width;
data.length = width*width*3;
quad.meshes.length = 1;
assert(!hasAlpha());
}
void allocAlphas(int _width, int texNum)
{
assert(isEmpty() || hasMesh);
width = _width;
data.length = width*width*texNum;
isAlpha = true;
// Set up the alpha images. TODO: We have to split these over
// several meshes, but for now pretend that we're using only
// one.
assert(quad.meshes.length == 1);
quad.meshes[0].alphas.length = texNum;
assert(alphaNum() == texNum);
int s = width*width;
for(int i=0;i<texNum;i++)
quad.meshes[0].alphas[i].buffer = data[i*s..(i+1)*s];
}
// Get the height offset
float getHeight()
{
if(hasMesh)
{
assert(quad.meshes.length == 1);
return quad.meshes[0].info.heightOffset;
}
else
// The default mesh starts at 2048 = 256*8 units below water
// level.
return -256;
}
bool isEmpty()
{
return (data.length == 0) && !hasMesh;
}
bool hasAlpha()
{
assert(isAlpha == (quad.info.level==1));
return isAlpha;
}
int alphaNum()
{
assert(hasAlpha());
assert(quad.meshes.length == 1);
return quad.meshes[0].alphas.length;
}
int getAlphaTex(int alpha)
{
return quad.meshes[0].alphas[alpha].info.texName;
}
void setAlphaTex(int alpha, int index)
{
quad.meshes[0].alphas[alpha].info.texName = index;
// Create the alpha material name.
char[] aname =
"ALPHA_" ~ .toString(quad.info.cellX)
~ "_" ~ .toString(quad.info.cellY)
~ "_" ~ .toString(alpha)
~ "_" ~ .toString(index);
quad.meshes[0].alphas[alpha].info.alphaName = cache.addString(aname);
}
void setTexName(char[] tex)
{
assert(!isEmpty());
assert(quad.meshes.length == 1);
quad.meshes[0].info.texName = cache.addString(tex);
}
void save(char[] tex)
{
assert(!isEmpty());
assert(!hasAlpha());
// Store the filename in the cache, so the runtime can find the
// file
setTexName(tex);
tex = cacheDir ~ tex;
writefln(" Creating ", tex);
terr_saveImage(data.ptr, width, toStringz(tex));
}
// Calculate the texture name for this quad
char[] getPNGName(bool isDefault)
{
int X = quad.info.cellX;
int Y = quad.info.cellY;
int level = quad.info.level;
char[] outname = toString(level) ~ "_";
if(isDefault)
outname ~= "default";
else
outname ~= toString(X) ~ "_" ~ toString(Y);
outname ~= ".png";
return outname;
}
// Resize the image
void resize(int toSize)
{
assert(!isEmpty());
assert(!hasAlpha());
// Make sure we're scaling down, since we never gain anything by
// scaling up.
assert(toSize < width);
ubyte newBuf[] = new ubyte[toSize*toSize*3];
// Resize
terr_resize(data.ptr, newBuf.ptr, width, toSize);
// Replace the old buffer
delete data;
width = toSize;
data = newBuf;
}
void kill()
{
if(!isEmpty())
{
// This takes care of both normal image data and alpha maps.
delete data;
if(hasMesh)
delete quad.meshes[0].vertexBuffer;
}
}
void allocMesh(int size)
{
quad.meshes.length = 1;
MeshHolder *mh = &quad.meshes[0];
MeshInfo *mi = &mh.info;
mi.vertRows = size;
mi.vertCols = size;
// 2 height bytes + 3 normal components = 5 bytes per vertex.
mh.vertexBuffer = new byte[5*size*size];
hasMesh = true;
}
}
// Default textures
GenLevelResult[] defaults;
// Generates the default texture images "2_default.png" etc
void genDefaults()
{
scope auto _trc = new MTrace("genDefaults");
int size = texSizes.length-1;
defaults.length = size;
for(int i=1; i<size; i++)
defaults[i].quad.info.level = i;
// Sending null as the first parameter tells the function to only
// render the default background.
assert(size > 2);
genLevel2Map(null, defaults[2]);
for(int i=3; i<size; i++)
mergeMaps(null, defaults[i]);
}
// Generates common mesh information that's stored in the .index
// file. This includes the x/y coordinates of meshes on each level,
// the u/v texture coordinates, and the triangle index data.
void genIndexData()
{
scope auto _trc = new MTrace("genIndexData");
// FIXME: Do this at runtime.
for(int lev=1; lev<=6; lev++)
{
// Make a new buffer to store the data
int size = 65*65*4;
auto vertList = new float[size];
int index = 0;
// Find the vertex separation for this level. The vertices are
// 128 units apart in each cell (level 1), and for each level
// above that we double the distance. This gives 128 * 2^(lev-1)
// = 64*2^lev.
int vertSep = 64 << lev;
// Loop over all the vertices in the mesh.
for(int y=0; y<65; y++)
for(int x=0; x<65; x++)
{
// X and Y
vertList[index++] = x*vertSep;
vertList[index++] = y*vertSep;
// U and V (texture coordinates)
float u = x/64.0;
float v = y/64.0;
assert(u>=0&&v>=0);
assert(u<=1&&v<=1);
vertList[index++] = u;
vertList[index++] = v;
}
assert(index == vertList.length);
// Store the buffer
cache.addVertexBuffer(lev,vertList);
}
// Pregenerate triangle indices
int size = 64*64*6;
auto indList = new ushort[size];
int index = 0;
bool flag = false;
for ( int y = 0; y < 64; y++ )
{
for ( int x = 0; x < 64; x++ )
{
int line1 = y*65 + x;
int line2 = (y+1)*65 + x;
if ( flag )
{
indList[index++] = line1;
indList[index++] = line1 + 1;
indList[index++] = line2;
indList[index++] = line2;
indList[index++] = line1 + 1;
indList[index++] = line2 + 1;
}
else
{
indList[index++] = line1;
indList[index++] = line2 + 1;
indList[index++] = line2;
indList[index++] = line1;
indList[index++] = line1 + 1;
indList[index++] = line2 + 1;
}
flag = !flag; //flip tris for next time
}
flag = !flag; //flip tries for next row
}
assert(index == indList.length);
cache.setIndexBuffer(indList);
}
void genLevel(int level, int X, int Y, ref GenLevelResult result,
bool makeData = true)
{
scope auto _trc = new MTrace(format("genLevel(%s,%s,%s)",level,X,Y));
result.quad.info.cellX = X;
result.quad.info.cellY = Y;
result.quad.info.level = level;
result.quad.info.worldWidth = 8192 << (level-1);
assert(result.isEmpty);
// Level 1 (most detailed) is handled differently from the
// other leves.
if(level == 1)
{
assert(makeData);
if(!mwland.hasData(X,Y))
// Oops, there's no data for this cell. Skip it.
return;
// The mesh is generated in pieces rather than as one part.
genLevel1Meshes(result);
// We also generate alpha maps instead of the actual textures.
genCellAlpha(result);
if(!result.isEmpty())
{
// Store the information we just created
assert(result.hasAlpha());
cache.writeQuad(result.quad);
}
return;
}
assert(level > 1);
// Number of cells along one side in each sub-quad (not in this
// quad)
int cells = 1 << (level-2);
// Call the sub-levels and store the result
GenLevelResult sub[4];
genLevel(level-1, X, Y, sub[0]); // NW
genLevel(level-1, X+cells, Y, sub[1]); // NE
genLevel(level-1, X, Y+cells, sub[2]); // SW
genLevel(level-1, X+cells, Y+cells, sub[3]); // SE
// Make sure we deallocate everything when the function exists
scope(exit)
{
foreach(ref s; sub)
s.kill();
}
// Mark the sub-quads that have data
bool anyUsed = false;
for(int i=0;i<4;i++)
{
bool used = !sub[i].isEmpty();
result.quad.info.hasChild[i] = used;
anyUsed = anyUsed || used;
}
if(!anyUsed)
{
// If our children are empty, then we are also empty.
assert(result.isEmpty());
return;
}
if(makeData)
{
if(level == 2)
// For level==2, generate a new texture from the alpha maps.
genLevel2Map(sub, result);
else
// Level 3+, merge the images from the previous levels
mergeMaps(sub, result);
// Create the landscape mesh by merging the result from the
// children.
mergeMesh(sub, result);
}
// Store the result in the cache file
cache.writeQuad(result.quad);
}
// Generate mesh data for one cell
void genLevel1Meshes(ref GenLevelResult res)
{
// Constants
int intervals = 64;
int vertNum = intervals+1;
int vertSep = 128;
// Allocate the mesh buffer
res.allocMesh(vertNum);
int cellX = res.quad.info.cellX;
int cellY = res.quad.info.cellY;
assert(res.quad.info.level==1);
MeshHolder *mh = &res.quad.meshes[0];
MeshInfo *mi = &mh.info;
// Set some basic data
mi.worldWidth = vertSep*intervals;
assert(mi.worldWidth == 8192);
auto land = mwland.getLandData(cellX, cellY);
byte[] heightData = land.vhgt.heightData;
byte[] normals = land.normals;
mi.heightOffset = land.vhgt.heightOffset;
float max=-1000000.0;
float min=1000000.0;
byte[] verts = mh.vertexBuffer;
int index = 0;
// Loop over all the vertices in the mesh
float rowheight = mi.heightOffset;
float height;
for(int y=0; y<65; y++)
for(int x=0; x<65; x++)
{
// Offset of this vertex within the source buffer
int offs=y*65+x;
// The vertex data from the ESM
byte data = heightData[offs];
// Write the height value as a short (2 bytes)
*(cast(short*)&verts[index]) = data;
index+=2;
// Calculate the height here, even though we don't store
// it. We use it to find the min and max values.
if(x == 0)
{
// Set the height to the row height
height = rowheight;
// First value in each row adjusts the row height
rowheight += data;
}
// Adjust the accumulated height with the new data.
height += data;
// Calculate the min and max
max = height > max ? height : max;
min = height < min ? height : min;
// Store the normals
for(int k=0; k<3; k++)
verts[index++] = normals[offs*3+k];
}
// Make sure we wrote exactly the right amount of data
assert(index == verts.length);
// Store the min/max values
mi.minHeight = min * 8;
mi.maxHeight = max * 8;
}
// Generate the alpha splatting bitmap for one cell.
void genCellAlpha(ref GenLevelResult res)
{
scope auto _trc = new MTrace("genCellAlpha");
int cellX = res.quad.info.cellX;
int cellY = res.quad.info.cellY;
assert(res.quad.info.level == 1);
// Set the texture name - it's used internally as the material name
// at runtime.
assert(res.quad.meshes.length == 1);
res.setTexName("AMAT_"~toString(cellX)~"_"~toString(cellY));
// List of texture indices for this cell. A cell has 16x16 texture
// squares.
int ltex[16][16];
auto ltexData = mwland.getLTEXData(cellX, cellY);
// A map from the global texture index to the local index for this
// cell.
int[int] textureMap;
int texNum = 0; // Number of local indices
// Loop through all the textures in the cell and get the indices
bool isDef = true;
for(int ty = 0; ty < 16; ty++)
for(int tx = 0; tx < 16; tx++)
{
// Get the texture in a given cell
char[] textureName = ltexData.getTexture(tx,ty);
// If the default texture is used, skip it. The background
// texture covers it (for now - we might change that later.)
if(textureName == "")
{
ltex[ty][tx] = -1;
continue;
}
isDef = false;
// Store the global index
int index = cache.addTexture(textureName);
ltex[ty][tx] = index;
// Add the index to the map
if(!(index in textureMap))
textureMap[index] = texNum++;
}
assert(texNum == textureMap.length);
// If we only found default textures, exit now.
if(isDef)
return;
int imageRes = texSizes[1];
int dataSize = imageRes*imageRes;
// Number of alpha pixels per texture square
int pps = imageRes/16;
// Make sure there are at least as many alpha pixels as there are
// textures
assert(imageRes >= 16);
assert(imageRes%16 == 0);
assert(pps >= 1);
assert(texNum >= 1);
// Allocate the alpha images
res.allocAlphas(imageRes, texNum);
assert(res.hasAlpha() && !res.isEmpty());
// Write the indices to the result list
foreach(int global, int local; textureMap)
res.setAlphaTex(local, global);
ubyte *uptr = res.data.ptr;
// Loop over all textures again. This time, do alpha splatting.
for(int ty = 0; ty < 16; ty++)
for(int tx = 0; tx < 16; tx++)
{
// Get the global texture index for this square, if any.
int index = ltex[ty][tx];
if(index == -1)
continue;
// Get the local index
index = textureMap[index];
// Get the offset of this square
long offs = index*dataSize + pps*(ty*imageRes + tx);
// FIXME: Make real splatting later. This is just
// placeholder code.
// Set alphas to full for this square
for(int y=0; y<pps; y++)
for(int x=0; x<pps; x++)
{
long toffs = offs + imageRes*y + x;
assert(toffs < dataSize*texNum);
uptr[toffs] = 255;
}
}
}
// Generate a texture for level 2 from four alpha maps generated in
// level 1.
void genLevel2Map(GenLevelResult maps[], ref GenLevelResult res)
{
int fromSize = texSizes[1];
int toSize = texSizes[2];
struct LtexList
{
int[4] inds;
}
// Create an overview of which texture is used where. The 'key' is
// the global texture index, the 'value' is the corresponding
// local indices in each of the four submaps.
HashTable!(int, LtexList) lmap;
if(maps.length) // An empty list means use the default texture
for(int mi=0;mi<4;mi++)
{
if(maps[mi].isEmpty())
continue;
assert(maps[mi].hasAlpha());
assert(maps[mi].width == fromSize);
for(int ltex=0;ltex<maps[mi].alphaNum();ltex++)
{
// Global index for this texture
int gIndex = maps[mi].getAlphaTex(ltex);
// Store it in the map.
LtexList *v;
if(lmap.insertEdit(gIndex, v))
// If a new value was inserted, set all the values to -1
v.inds[] = -1;
v.inds[mi] = ltex;
}
}
float scale = TEX_SCALE/2;
char[] materialName = "MAT" ~ toString(mCount++);
terr_makeLandMaterial(toStringz(materialName),scale);
// Loop through all our textures
if(maps.length)
foreach(int gIndex, LtexList inds; lmap)
{
char[] name = cache.getString(gIndex);
// Skip default image, if present
if ( name.iBegins("_land_default.") )
continue;
// Create a new alpha texture and get a pointer to the pixel
// data
char *alphaName = toStringz(materialName ~ "_A_" ~ name);
auto pDest = terr_makeAlphaLayer(alphaName, 2*fromSize);
// Fill in the alpha values. TODO: Do all this with slices instead.
memset(pDest, 0, 4*fromSize*fromSize);
for(int i=0;i<4;i++)
{
// Does this sub-image have this texture?
int index = inds.inds[i];
if(index == -1) continue;
assert(!maps[i].isEmpty());
// Find the right sub-texture in the alpha map
ubyte *from = maps[i].data.ptr +
(fromSize*fromSize)*index;
// Find the right destination pointer
int x = i%2;
int y = i/2;
ubyte *to = pDest + x*fromSize + y*fromSize*fromSize*2;
// Copy the rows one by one
for(int row = 0; row < fromSize; row++)
{
assert(to+fromSize <= pDest + 4*fromSize*fromSize);
memcpy(to, from, fromSize);
to += 2*fromSize;
from += fromSize;
}
}
terr_closeAlpha(alphaName, toStringz(name), scale);
}
// Create the result buffer
res.allocImage(toSize);
// Texture file name
char[] outname = res.getPNGName(maps.length == 0);
terr_cleanupAlpha(toStringz(outname), res.data.ptr, toSize);
res.save(outname);
}
void mergeMaps(GenLevelResult[] maps, ref GenLevelResult res)
{
int level = res.quad.info.level;
assert(texSizes.length > level);
assert(level > 2);
int fromSize = texSizes[level-1];
int toSize = texSizes[level];
// Create a new image buffer large enough to hold the four
// sub textures
res.allocImage(fromSize*2);
// Add the four sub-textures
for(int mi=0;mi<4;mi++)
{
ubyte[] src;
// Use default texture if no source is present
if(maps.length == 0 || maps[mi].isEmpty())
src = defaults[level-1].data;
else
src = maps[mi].data;
assert(src.length == 3*fromSize*fromSize);
// Find the sub-part of the destination buffer to write to
int x = (mi%2) * fromSize;
int y = (mi/2) * fromSize;
// Copy the image into the new buffer
copyBox(src, res.data, fromSize, fromSize*2, x, y, 3);
}
// Resize image if necessary
if(toSize != 2*fromSize)
res.resize(toSize);
// Texture file name
char[] outname = res.getPNGName(maps.length == 0);
// Save the image
res.save(outname);
}
// Copy from one buffer into a sub-region of another buffer
void copyBox(ubyte[] src, ubyte[] dst,
int srcWidth, int dstWidth,
int dstX, int dstY, int pixSize)
{
int fskip = srcWidth * pixSize;
int tskip = dstWidth * pixSize;
int rows = srcWidth;
int rowSize = srcWidth*pixSize;
assert(src.length == pixSize*srcWidth*srcWidth);
assert(dst.length == pixSize*dstWidth*dstWidth);
assert(srcWidth <= dstWidth);
assert(dstX <= dstWidth-srcWidth && dstY <= dstWidth-srcWidth);
// Source and destination pointers
ubyte *from = src.ptr;
ubyte *to = dst.ptr + dstY*tskip + dstX*pixSize;
for(;rows>0;rows--)
{
memcpy(to, from, rowSize);
to += tskip;
from += fskip;
}
}
// Create the mesh for this level, by merging the meshes from the
// previous levels.
void mergeMesh(GenLevelResult[] sub, ref GenLevelResult res)
{
// How much to shift various numbers to the left at this level
// (ie. multiply by 2^shift). The height at each vertex is
// multiplied by 8 in each cell to get the final value. However,
// when we're merging two cells (in each direction), we have to
// scale down all the height values by 2 in order to fit the result
// in one byte. This means multiplying the factor by 2 for each
// level above the cell level.
int shift = res.quad.info.level - 1;
assert(shift >= 1);
assert(sub.length == 4);
// Allocate the result buffer
res.allocMesh(65);
MeshHolder *mh = &res.quad.meshes[0];
MeshInfo *mi = &mh.info;
// Basic info
mi.worldWidth = 8192 << shift;
// Copy the mesh height from the top left mesh
mi.heightOffset = sub[0].getHeight();
// Output buffer
byte verts[] = mh.vertexBuffer;
// Bytes per vertex
const int VSIZE = 5;
// Used to calculate the max and min heights
float minh = 300000.0;
float maxh = -300000.0;
foreach(si, s; sub)
{
int SX = si % 2;
int SY = si / 2;
// Find the offset in the destination buffer
int dest = SX*32 + SY*65*32;
dest *= VSIZE;
void putValue(int val)
{
assert(val >= short.min && val <= short.max);
*(cast(short*)&verts[dest]) = val;
dest += 2;
}
if(s.hasMesh)
{
auto m = &s.quad.meshes[0];
auto i = &m.info;
minh = min(minh, i.minHeight);
maxh = max(maxh, i.maxHeight);
byte[] source = m.vertexBuffer;
int src = 0;
int getValue()
{
int s = *(cast(short*)&source[src]);
src += 2;
return s;
}
// Loop through all the vertices in the mesh
for(int y=0;y<33;y++)
{
// Skip the first row in the mesh if there was a mesh
// above us. We assume that the previously written row
// already has the correct information.
if(y==0 && SY != 0)
{
src += 65*VSIZE;
dest += 65*VSIZE;
continue;
}
// Handle the first vertex of the row outside the
// loop.
int height = getValue();
// If this isn't the very first row, sum up two row
// heights and skip the first row.
if(y!=0)
{
// Skip the rest of the row.
src += 64*VSIZE + 3;
// Add the second height
height += getValue();
}
putValue(height);
// Copy the normal
verts[dest++] = source[src++];
verts[dest++] = source[src++];
verts[dest++] = source[src++];
// Loop through the remaining 64 vertices in this row,
// processing two at a time.
for(int x=0;x<32;x++)
{
height = getValue();
// Sum up the next two heights
src += 3; // Skip normal
height += getValue();
// Set the height
putValue(height);
// Copy the normal
verts[dest++] = source[src++];
verts[dest++] = source[src++];
verts[dest++] = source[src++];
}
// Skip to the next row
dest += 32*VSIZE;
}
assert(src == source.length);
}
else
{
minh = min(minh, -2048);
maxh = max(maxh, -2048);
// Set all the vertices to zero.
for(int y=0;y<33;y++)
{
if(y==0 && SY != 0)
{
dest += 65*VSIZE;
continue;
}
for(int x=0;x<33;x++)
{
if(x==0 && SX != 0)
{
dest += VSIZE;
continue;
}
// Zero height and vertical normal
verts[dest++] = 0;
verts[dest++] = 0;
verts[dest++] = 0;
verts[dest++] = 0;
verts[dest++] = 0x7f;
}
// Skip to the next row
dest += 32*VSIZE;
}
}
}
mi.minHeight = minh;
mi.maxHeight = maxh;
assert(minh <= maxh);
}
// ------- OLD CODE - use these snippets later -------
// About segments:
/* NOTES for the gen-phase: Was:
// This is pretty messy. Btw: 128*16 == 2048 ==
// CELL_WIDTH/4
// 65 points across one cell means 64 intervals, and 17 points
// means 16=64/4 intervals. So IOW the number of verts when
// dividing by D is (65-1)/D + 1 = 64/D+1, which means that D
// should divide 64, that is, be a power of two < 64.
addNewObject(Ogre::Vector3(x*16*128, 0, y*16*128), //pos
17, //size
false, //skirts
0.25f, float(x)/4.0f, float(y)/4.0f);//quad seg location
*/
/* This was also declared in the original code, you'll need it
when creating the cache data
size_t vw = mWidth; // mWidth is 17 or 65
if ( mUseSkirts ) vw += 2; // skirts are used for level 2 and up
vertCount=vw*vw;
*/
/**
* @brief fills the vertex buffer with data
* @todo I don't think tex co-ords are right
void calculateVertexValues()
{
int start = 0;
int end = mWidth;
if ( mUseSkirts )
{
--start;
++end;
}
for ( int y = start; y < end; y++ )
for ( int x = start; x < end; x++ )
{
if ( y < 0 || y > (mWidth-1) || x < 0 || x > (mWidth-1) )
{
// These are the skirt vertices. 'Skirts' are simply a
// wall at the edges of the mesh that goes straight down,
// cutting off the posibility that you might see 'gaps'
// between the meshes. Or at least I think that's the
// intention.
assert(mUseSkirts);
// 1st coordinate
if ( x < 0 )
*verts++ = 0;
else if ( x > (mWidth-1) )
*verts++ = (mWidth-1)*getVertexSeperation();
else
*verts++ = x*getVertexSeperation();
// 2nd coordinate
*verts++ = -4096; //2048 below base sea floor height
// 3rd coordinate
if ( y < 0 )
*verts++ = 0;
else if ( y > (mWidth-1) )
*verts++ = (mWidth-1)*getVertexSeperation();
else
*verts++ = y*getVertexSeperation();
// No normals
for ( Ogre::uint i = 0; i < 3; i++ )
*verts++ = 0;
// It shouldn't matter if these go over 1
float u = (float)(x) / (mWidth-1);
float v = (float)(y) / (mWidth-1);
*verts++ = u;
*verts++ = v;
}
else // Covered already
void calculateIndexValues()
{
size_t vw = mWidth-1;
if ( mUseSkirts ) vw += 2;
const size_t indexCount = (vw)*(vw)*6;
//need to manage allocation if not null
assert(mIndices==0);
// buffer was created here
bool flag = false;
Ogre::uint indNum = 0;
for ( Ogre::uint y = 0; y < (vw); y+=1 ) {
for ( Ogre::uint x = 0; x < (vw); x+=1 ) {
const int line1 = y * (vw+1) + x;
const int line2 = (y + 1) * (vw+1) + x;
if ( flag ) {
*indices++ = line1;
*indices++ = line2;
*indices++ = line1 + 1;
*indices++ = line1 + 1;
*indices++ = line2;
*indices++ = line2 + 1;
} else {
*indices++ = line1;
*indices++ = line2;
*indices++ = line2 + 1;
*indices++ = line1;
*indices++ = line2 + 1;
*indices++ = line1 + 1;
}
flag = !flag; //flip tris for next time
indNum+=6;
}
flag = !flag; //flip tries for next row
}
assert(indNum==indexCount);
//return mIndices;
}
*/