Move ESM terrain data handler to esmterrain component so it can be used by the editor (Feature #1597)
parent
accab47724
commit
982453d4f6
@ -0,0 +1,529 @@
|
||||
#include "storage.hpp"
|
||||
|
||||
#include <OgreVector2.h>
|
||||
#include <OgreTextureManager.h>
|
||||
#include <OgreStringConverter.h>
|
||||
#include <OgreRenderSystem.h>
|
||||
#include <OgreResourceGroupManager.h>
|
||||
#include <OgreResourceBackgroundQueue.h>
|
||||
#include <OgreRoot.h>
|
||||
|
||||
#include <boost/algorithm/string.hpp>
|
||||
|
||||
#include <components/terrain/quadtreenode.hpp>
|
||||
|
||||
namespace ESMTerrain
|
||||
{
|
||||
|
||||
bool Storage::getMinMaxHeights(float size, const Ogre::Vector2 ¢er, float &min, float &max)
|
||||
{
|
||||
assert (size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
|
||||
|
||||
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
|
||||
|
||||
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
|
||||
|
||||
assert(origin.x == (int) origin.x);
|
||||
assert(origin.y == (int) origin.y);
|
||||
|
||||
int cellX = origin.x;
|
||||
int cellY = origin.y;
|
||||
|
||||
const ESM::Land* land = getLand(cellX, cellY);
|
||||
if (!land)
|
||||
return false;
|
||||
|
||||
min = std::numeric_limits<float>().max();
|
||||
max = -std::numeric_limits<float>().max();
|
||||
for (int row=0; row<ESM::Land::LAND_SIZE; ++row)
|
||||
{
|
||||
for (int col=0; col<ESM::Land::LAND_SIZE; ++col)
|
||||
{
|
||||
float h = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
|
||||
if (h > max)
|
||||
max = h;
|
||||
if (h < min)
|
||||
min = h;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void Storage::fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row)
|
||||
{
|
||||
while (col >= ESM::Land::LAND_SIZE-1)
|
||||
{
|
||||
++cellY;
|
||||
col -= ESM::Land::LAND_SIZE-1;
|
||||
}
|
||||
while (row >= ESM::Land::LAND_SIZE-1)
|
||||
{
|
||||
++cellX;
|
||||
row -= ESM::Land::LAND_SIZE-1;
|
||||
}
|
||||
while (col < 0)
|
||||
{
|
||||
--cellY;
|
||||
col += ESM::Land::LAND_SIZE-1;
|
||||
}
|
||||
while (row < 0)
|
||||
{
|
||||
--cellX;
|
||||
row += ESM::Land::LAND_SIZE-1;
|
||||
}
|
||||
ESM::Land* land = getLand(cellX, cellY);
|
||||
if (land && land->mHasData)
|
||||
{
|
||||
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
|
||||
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
|
||||
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
|
||||
normal.normalise();
|
||||
}
|
||||
else
|
||||
normal = Ogre::Vector3(0,0,1);
|
||||
}
|
||||
|
||||
void Storage::averageNormal(Ogre::Vector3 &normal, int cellX, int cellY, int col, int row)
|
||||
{
|
||||
Ogre::Vector3 n1,n2,n3,n4;
|
||||
fixNormal(n1, cellX, cellY, col+1, row);
|
||||
fixNormal(n2, cellX, cellY, col-1, row);
|
||||
fixNormal(n3, cellX, cellY, col, row+1);
|
||||
fixNormal(n4, cellX, cellY, col, row-1);
|
||||
normal = (n1+n2+n3+n4);
|
||||
normal.normalise();
|
||||
}
|
||||
|
||||
void Storage::fixColour (Ogre::ColourValue& color, int cellX, int cellY, int col, int row)
|
||||
{
|
||||
if (col == ESM::Land::LAND_SIZE-1)
|
||||
{
|
||||
++cellY;
|
||||
col = 0;
|
||||
}
|
||||
if (row == ESM::Land::LAND_SIZE-1)
|
||||
{
|
||||
++cellX;
|
||||
row = 0;
|
||||
}
|
||||
ESM::Land* land = getLand(cellX, cellY);
|
||||
if (land && land->mLandData->mUsingColours)
|
||||
{
|
||||
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
|
||||
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
|
||||
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
|
||||
}
|
||||
else
|
||||
{
|
||||
color.r = 1;
|
||||
color.g = 1;
|
||||
color.b = 1;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Storage::fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center, Terrain::Alignment align,
|
||||
std::vector<float>& positions,
|
||||
std::vector<float>& normals,
|
||||
std::vector<Ogre::uint8>& colours)
|
||||
{
|
||||
// LOD level n means every 2^n-th vertex is kept
|
||||
size_t increment = 1 << lodLevel;
|
||||
|
||||
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
|
||||
assert(origin.x == (int) origin.x);
|
||||
assert(origin.y == (int) origin.y);
|
||||
|
||||
int startX = origin.x;
|
||||
int startY = origin.y;
|
||||
|
||||
size_t numVerts = size*(ESM::Land::LAND_SIZE-1)/increment + 1;
|
||||
|
||||
colours.resize(numVerts*numVerts*4);
|
||||
positions.resize(numVerts*numVerts*3);
|
||||
normals.resize(numVerts*numVerts*3);
|
||||
|
||||
Ogre::Vector3 normal;
|
||||
Ogre::ColourValue color;
|
||||
|
||||
float vertY;
|
||||
float vertX;
|
||||
|
||||
float vertY_ = 0; // of current cell corner
|
||||
for (int cellY = startY; cellY < startY + std::ceil(size); ++cellY)
|
||||
{
|
||||
float vertX_ = 0; // of current cell corner
|
||||
for (int cellX = startX; cellX < startX + std::ceil(size); ++cellX)
|
||||
{
|
||||
ESM::Land* land = getLand(cellX, cellY);
|
||||
if (land && !land->mHasData)
|
||||
land = NULL;
|
||||
bool hasColors = land && land->mLandData->mUsingColours;
|
||||
|
||||
int rowStart = 0;
|
||||
int colStart = 0;
|
||||
// Skip the first row / column unless we're at a chunk edge,
|
||||
// since this row / column is already contained in a previous cell
|
||||
if (colStart == 0 && vertY_ != 0)
|
||||
colStart += increment;
|
||||
if (rowStart == 0 && vertX_ != 0)
|
||||
rowStart += increment;
|
||||
|
||||
vertY = vertY_;
|
||||
for (int col=colStart; col<ESM::Land::LAND_SIZE; col += increment)
|
||||
{
|
||||
vertX = vertX_;
|
||||
for (int row=rowStart; row<ESM::Land::LAND_SIZE; row += increment)
|
||||
{
|
||||
positions[vertX*numVerts*3 + vertY*3] = ((vertX/float(numVerts-1)-0.5) * size * 8192);
|
||||
positions[vertX*numVerts*3 + vertY*3 + 1] = ((vertY/float(numVerts-1)-0.5) * size * 8192);
|
||||
if (land)
|
||||
positions[vertX*numVerts*3 + vertY*3 + 2] = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
|
||||
else
|
||||
positions[vertX*numVerts*3 + vertY*3 + 2] = -2048;
|
||||
|
||||
if (land)
|
||||
{
|
||||
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
|
||||
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
|
||||
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
|
||||
normal.normalise();
|
||||
}
|
||||
else
|
||||
normal = Ogre::Vector3(0,0,1);
|
||||
|
||||
// Normals apparently don't connect seamlessly between cells
|
||||
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
|
||||
fixNormal(normal, cellX, cellY, col, row);
|
||||
|
||||
// some corner normals appear to be complete garbage (z < 0)
|
||||
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
|
||||
averageNormal(normal, cellX, cellY, col, row);
|
||||
|
||||
assert(normal.z > 0);
|
||||
|
||||
normals[vertX*numVerts*3 + vertY*3] = normal.x;
|
||||
normals[vertX*numVerts*3 + vertY*3 + 1] = normal.y;
|
||||
normals[vertX*numVerts*3 + vertY*3 + 2] = normal.z;
|
||||
|
||||
if (hasColors)
|
||||
{
|
||||
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
|
||||
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
|
||||
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
|
||||
}
|
||||
else
|
||||
{
|
||||
color.r = 1;
|
||||
color.g = 1;
|
||||
color.b = 1;
|
||||
}
|
||||
|
||||
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
|
||||
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
|
||||
fixColour(color, cellX, cellY, col, row);
|
||||
|
||||
color.a = 1;
|
||||
Ogre::uint32 rsColor;
|
||||
Ogre::Root::getSingleton().getRenderSystem()->convertColourValue(color, &rsColor);
|
||||
memcpy(&colours[vertX*numVerts*4 + vertY*4], &rsColor, sizeof(Ogre::uint32));
|
||||
|
||||
++vertX;
|
||||
}
|
||||
++vertY;
|
||||
}
|
||||
vertX_ = vertX;
|
||||
}
|
||||
vertY_ = vertY;
|
||||
|
||||
assert(vertX_ == numVerts); // Ensure we covered whole area
|
||||
}
|
||||
assert(vertY_ == numVerts); // Ensure we covered whole area
|
||||
}
|
||||
|
||||
Storage::UniqueTextureId Storage::getVtexIndexAt(int cellX, int cellY,
|
||||
int x, int y)
|
||||
{
|
||||
// For the first/last row/column, we need to get the texture from the neighbour cell
|
||||
// to get consistent blending at the borders
|
||||
--x;
|
||||
if (x < 0)
|
||||
{
|
||||
--cellX;
|
||||
x += ESM::Land::LAND_TEXTURE_SIZE;
|
||||
}
|
||||
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
|
||||
{
|
||||
++cellY;
|
||||
y -= ESM::Land::LAND_TEXTURE_SIZE;
|
||||
}
|
||||
|
||||
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
|
||||
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
|
||||
|
||||
ESM::Land* land = getLand(cellX, cellY);
|
||||
if (land)
|
||||
{
|
||||
int tex = land->mLandData->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
|
||||
if (tex == 0)
|
||||
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
|
||||
return std::make_pair(tex, land->mPlugin);
|
||||
}
|
||||
else
|
||||
return std::make_pair(0,0);
|
||||
}
|
||||
|
||||
std::string Storage::getTextureName(UniqueTextureId id)
|
||||
{
|
||||
if (id.first == 0)
|
||||
return "_land_default.dds"; // Not sure if the default texture really is hardcoded?
|
||||
|
||||
// NB: All vtex ids are +1 compared to the ltex ids
|
||||
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
|
||||
|
||||
std::string texture = ltex->mTexture;
|
||||
//TODO this is needed due to MWs messed up texture handling
|
||||
texture = texture.substr(0, texture.rfind(".")) + ".dds";
|
||||
|
||||
return texture;
|
||||
}
|
||||
|
||||
void Storage::getBlendmaps (const std::vector<Terrain::QuadTreeNode*>& nodes, std::vector<Terrain::LayerCollection>& out, bool pack)
|
||||
{
|
||||
for (std::vector<Terrain::QuadTreeNode*>::const_iterator it = nodes.begin(); it != nodes.end(); ++it)
|
||||
{
|
||||
out.push_back(Terrain::LayerCollection());
|
||||
out.back().mTarget = *it;
|
||||
getBlendmapsImpl((*it)->getSize(), (*it)->getCenter(), pack, out.back().mBlendmaps, out.back().mLayers);
|
||||
}
|
||||
}
|
||||
|
||||
void Storage::getBlendmaps(float chunkSize, const Ogre::Vector2 &chunkCenter,
|
||||
bool pack, std::vector<Ogre::PixelBox> &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
|
||||
{
|
||||
getBlendmapsImpl(chunkSize, chunkCenter, pack, blendmaps, layerList);
|
||||
}
|
||||
|
||||
void Storage::getBlendmapsImpl(float chunkSize, const Ogre::Vector2 &chunkCenter,
|
||||
bool pack, std::vector<Ogre::PixelBox> &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
|
||||
{
|
||||
// TODO - blending isn't completely right yet; the blending radius appears to be
|
||||
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
|
||||
// and interpolate the rest of the cell by hand? :/
|
||||
|
||||
Ogre::Vector2 origin = chunkCenter - Ogre::Vector2(chunkSize/2.f, chunkSize/2.f);
|
||||
int cellX = origin.x;
|
||||
int cellY = origin.y;
|
||||
|
||||
// Save the used texture indices so we know the total number of textures
|
||||
// and number of required blend maps
|
||||
std::set<UniqueTextureId> textureIndices;
|
||||
// Due to the way the blending works, the base layer will always shine through in between
|
||||
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
|
||||
// To get a consistent look, we need to make sure to use the same base layer in all cells.
|
||||
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
|
||||
textureIndices.insert(std::make_pair(0,0));
|
||||
|
||||
for (int y=0; y<ESM::Land::LAND_TEXTURE_SIZE+1; ++y)
|
||||
for (int x=0; x<ESM::Land::LAND_TEXTURE_SIZE+1; ++x)
|
||||
{
|
||||
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
|
||||
textureIndices.insert(id);
|
||||
}
|
||||
|
||||
// Makes sure the indices are sorted, or rather,
|
||||
// retrieved as sorted. This is important to keep the splatting order
|
||||
// consistent across cells.
|
||||
std::map<UniqueTextureId, int> textureIndicesMap;
|
||||
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
|
||||
{
|
||||
int size = textureIndicesMap.size();
|
||||
textureIndicesMap[*it] = size;
|
||||
layerList.push_back(getLayerInfo(getTextureName(*it)));
|
||||
}
|
||||
|
||||
int numTextures = textureIndices.size();
|
||||
// numTextures-1 since the base layer doesn't need blending
|
||||
int numBlendmaps = pack ? std::ceil((numTextures-1) / 4.f) : (numTextures-1);
|
||||
|
||||
int channels = pack ? 4 : 1;
|
||||
|
||||
// Second iteration - create and fill in the blend maps
|
||||
const int blendmapSize = ESM::Land::LAND_TEXTURE_SIZE+1;
|
||||
|
||||
for (int i=0; i<numBlendmaps; ++i)
|
||||
{
|
||||
Ogre::PixelFormat format = pack ? Ogre::PF_A8B8G8R8 : Ogre::PF_A8;
|
||||
|
||||
Ogre::uchar* pData =
|
||||
OGRE_ALLOC_T(Ogre::uchar, blendmapSize*blendmapSize*channels, Ogre::MEMCATEGORY_GENERAL);
|
||||
memset(pData, 0, blendmapSize*blendmapSize*channels);
|
||||
|
||||
for (int y=0; y<blendmapSize; ++y)
|
||||
{
|
||||
for (int x=0; x<blendmapSize; ++x)
|
||||
{
|
||||
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
|
||||
int layerIndex = textureIndicesMap.find(id)->second;
|
||||
int blendIndex = (pack ? std::floor((layerIndex-1)/4.f) : layerIndex-1);
|
||||
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
|
||||
|
||||
if (blendIndex == i)
|
||||
pData[y*blendmapSize*channels + x*channels + channel] = 255;
|
||||
else
|
||||
pData[y*blendmapSize*channels + x*channels + channel] = 0;
|
||||
}
|
||||
}
|
||||
blendmaps.push_back(Ogre::PixelBox(blendmapSize, blendmapSize, 1, format, pData));
|
||||
}
|
||||
}
|
||||
|
||||
float Storage::getHeightAt(const Ogre::Vector3 &worldPos)
|
||||
{
|
||||
int cellX = std::floor(worldPos.x / 8192.f);
|
||||
int cellY = std::floor(worldPos.y / 8192.f);
|
||||
|
||||
ESM::Land* land = getLand(cellX, cellY);
|
||||
if (!land)
|
||||
return -2048;
|
||||
|
||||
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
|
||||
|
||||
// Normalized position in the cell
|
||||
float nX = (worldPos.x - (cellX * 8192))/8192.f;
|
||||
float nY = (worldPos.y - (cellY * 8192))/8192.f;
|
||||
|
||||
// get left / bottom points (rounded down)
|
||||
float factor = ESM::Land::LAND_SIZE - 1.0f;
|
||||
float invFactor = 1.0f / factor;
|
||||
|
||||
int startX = static_cast<int>(nX * factor);
|
||||
int startY = static_cast<int>(nY * factor);
|
||||
int endX = startX + 1;
|
||||
int endY = startY + 1;
|
||||
|
||||
assert(endX < ESM::Land::LAND_SIZE);
|
||||
assert(endY < ESM::Land::LAND_SIZE);
|
||||
|
||||
// now get points in terrain space (effectively rounding them to boundaries)
|
||||
float startXTS = startX * invFactor;
|
||||
float startYTS = startY * invFactor;
|
||||
float endXTS = endX * invFactor;
|
||||
float endYTS = endY * invFactor;
|
||||
|
||||
// get parametric from start coord to next point
|
||||
float xParam = (nX - startXTS) * factor;
|
||||
float yParam = (nY - startYTS) * factor;
|
||||
|
||||
/* For even / odd tri strip rows, triangles are this shape:
|
||||
even odd
|
||||
3---2 3---2
|
||||
| / | | \ |
|
||||
0---1 0---1
|
||||
*/
|
||||
|
||||
// Build all 4 positions in normalized cell space, using point-sampled height
|
||||
Ogre::Vector3 v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
|
||||
Ogre::Vector3 v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
|
||||
Ogre::Vector3 v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
|
||||
Ogre::Vector3 v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
|
||||
// define this plane in terrain space
|
||||
Ogre::Plane plane;
|
||||
// (At the moment, all rows have the same triangle alignment)
|
||||
if (true)
|
||||
{
|
||||
// odd row
|
||||
bool secondTri = ((1.0 - yParam) > xParam);
|
||||
if (secondTri)
|
||||
plane.redefine(v0, v1, v3);
|
||||
else
|
||||
plane.redefine(v1, v2, v3);
|
||||
}
|
||||
else
|
||||
{
|
||||
// even row
|
||||
bool secondTri = (yParam > xParam);
|
||||
if (secondTri)
|
||||
plane.redefine(v0, v2, v3);
|
||||
else
|
||||
plane.redefine(v0, v1, v2);
|
||||
}
|
||||
|
||||
// Solve plane equation for z
|
||||
return (-plane.normal.x * nX
|
||||
-plane.normal.y * nY
|
||||
- plane.d) / plane.normal.z * 8192;
|
||||
|
||||
}
|
||||
|
||||
float Storage::getVertexHeight(const ESM::Land *land, int x, int y)
|
||||
{
|
||||
assert(x < ESM::Land::LAND_SIZE);
|
||||
assert(y < ESM::Land::LAND_SIZE);
|
||||
return land->mLandData->mHeights[y * ESM::Land::LAND_SIZE + x];
|
||||
}
|
||||
|
||||
Terrain::LayerInfo Storage::getLayerInfo(const std::string& texture)
|
||||
{
|
||||
// Already have this cached?
|
||||
if (mLayerInfoMap.find(texture) != mLayerInfoMap.end())
|
||||
return mLayerInfoMap[texture];
|
||||
|
||||
Terrain::LayerInfo info;
|
||||
info.mParallax = false;
|
||||
info.mSpecular = false;
|
||||
info.mDiffuseMap = "textures\\" + texture;
|
||||
std::string texture_ = texture;
|
||||
boost::replace_last(texture_, ".", "_nh.");
|
||||
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
|
||||
{
|
||||
info.mNormalMap = "textures\\" + texture_;
|
||||
info.mParallax = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
texture_ = texture;
|
||||
boost::replace_last(texture_, ".", "_n.");
|
||||
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
|
||||
info.mNormalMap = "textures\\" + texture_;
|
||||
}
|
||||
|
||||
texture_ = texture;
|
||||
boost::replace_last(texture_, ".", "_diffusespec.");
|
||||
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
|
||||
{
|
||||
info.mDiffuseMap = "textures\\" + texture_;
|
||||
info.mSpecular = true;
|
||||
}
|
||||
|
||||
// This wasn't cached, so the textures are probably not loaded either.
|
||||
// Background load them so they are hopefully already loaded once we need them!
|
||||
Ogre::ResourceBackgroundQueue::getSingleton().load("Texture", info.mDiffuseMap, "General");
|
||||
if (!info.mNormalMap.empty())
|
||||
Ogre::ResourceBackgroundQueue::getSingleton().load("Texture", info.mNormalMap, "General");
|
||||
|
||||
mLayerInfoMap[texture] = info;
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
Terrain::LayerInfo Storage::getDefaultLayer()
|
||||
{
|
||||
Terrain::LayerInfo info;
|
||||
info.mDiffuseMap = "textures\\_land_default.dds";
|
||||
info.mParallax = false;
|
||||
info.mSpecular = false;
|
||||
return info;
|
||||
}
|
||||
|
||||
float Storage::getCellWorldSize()
|
||||
{
|
||||
return ESM::Land::REAL_SIZE;
|
||||
}
|
||||
|
||||
int Storage::getCellVertices()
|
||||
{
|
||||
return ESM::Land::LAND_SIZE;
|
||||
}
|
||||
|
||||
}
|
@ -0,0 +1,117 @@
|
||||
#ifndef COMPONENTS_ESM_TERRAIN_STORAGE_H
|
||||
#define COMPONENTS_ESM_TERRAIN_STORAGE_H
|
||||
|
||||
#include <components/terrain/storage.hpp>
|
||||
|
||||
#include <components/esm/loadland.hpp>
|
||||
#include <components/esm/loadltex.hpp>
|
||||
|
||||
namespace ESMTerrain
|
||||
{
|
||||
|
||||
/// @brief Feeds data from ESM terrain records (ESM::Land, ESM::LandTexture)
|
||||
/// into the terrain component, converting it on the fly as needed.
|
||||
class Storage : public Terrain::Storage
|
||||
{
|
||||
private:
|
||||
|
||||
// Not implemented in this class, because we need different Store implementations for game and editor
|
||||
virtual ESM::Land* getLand (int cellX, int cellY) = 0;
|
||||
virtual const ESM::LandTexture* getLandTexture(int index, short plugin) = 0;
|
||||
|
||||
public:
|
||||
|
||||
// Not implemented in this class, because we need different Store implementations for game and editor
|
||||
/// Get bounds of the whole terrain in cell units
|
||||
virtual void getBounds(float& minX, float& maxX, float& minY, float& maxY) = 0;
|
||||
|
||||
/// Get the minimum and maximum heights of a terrain region.
|
||||
/// @note Will only be called for chunks with size = minBatchSize, i.e. leafs of the quad tree.
|
||||
/// Larger chunks can simply merge AABB of children.
|
||||
/// @param size size of the chunk in cell units
|
||||
/// @param center center of the chunk in cell units
|
||||
/// @param min min height will be stored here
|
||||
/// @param max max height will be stored here
|
||||
/// @return true if there was data available for this terrain chunk
|
||||
virtual bool getMinMaxHeights (float size, const Ogre::Vector2& center, float& min, float& max);
|
||||
|
||||
/// Fill vertex buffers for a terrain chunk.
|
||||
/// @note May be called from background threads. Make sure to only call thread-safe functions from here!
|
||||
/// @note returned colors need to be in render-system specific format! Use RenderSystem::convertColourValue.
|
||||
/// @param lodLevel LOD level, 0 = most detailed
|
||||
/// @param size size of the terrain chunk in cell units
|
||||
/// @param center center of the chunk in cell units
|
||||
/// @param positions buffer to write vertices
|
||||
/// @param normals buffer to write vertex normals
|
||||
/// @param colours buffer to write vertex colours
|
||||
virtual void fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center, Terrain::Alignment align,
|
||||
std::vector<float>& positions,
|
||||
std::vector<float>& normals,
|
||||
std::vector<Ogre::uint8>& colours);
|
||||
|
||||
/// Create textures holding layer blend values for a terrain chunk.
|
||||
/// @note The terrain chunk shouldn't be larger than one cell since otherwise we might
|
||||
/// have to do a ridiculous amount of different layers. For larger chunks, composite maps should be used.
|
||||
/// @note May be called from background threads.
|
||||
/// @param chunkSize size of the terrain chunk in cell units
|
||||
/// @param chunkCenter center of the chunk in cell units
|
||||
/// @param pack Whether to pack blend values for up to 4 layers into one texture (one in each channel) -
|
||||
/// otherwise, each texture contains blend values for one layer only. Shader-based rendering
|
||||
/// can utilize packing, FFP can't.
|
||||
/// @param blendmaps created blendmaps will be written here
|
||||
/// @param layerList names of the layer textures used will be written here
|
||||
virtual void getBlendmaps (float chunkSize, const Ogre::Vector2& chunkCenter, bool pack,
|
||||
std::vector<Ogre::PixelBox>& blendmaps,
|
||||
std::vector<Terrain::LayerInfo>& layerList);
|
||||
|
||||
/// Retrieve pixel data for textures holding layer blend values for terrain chunks and layer texture information.
|
||||
/// This variant is provided to eliminate the overhead of virtual function calls when retrieving a large number of blendmaps at once.
|
||||
/// @note The terrain chunks shouldn't be larger than one cell since otherwise we might
|
||||
/// have to do a ridiculous amount of different layers. For larger chunks, composite maps should be used.
|
||||
/// @note May be called from background threads.
|
||||
/// @param nodes A collection of nodes for which to retrieve the aforementioned data
|
||||
/// @param out Output vector
|
||||
/// @param pack Whether to pack blend values for up to 4 layers into one texture (one in each channel) -
|
||||
/// otherwise, each texture contains blend values for one layer only. Shader-based rendering
|
||||
/// can utilize packing, FFP can't.
|
||||
virtual void getBlendmaps (const std::vector<Terrain::QuadTreeNode*>& nodes, std::vector<Terrain::LayerCollection>& out, bool pack);
|
||||
|
||||
virtual float getHeightAt (const Ogre::Vector3& worldPos);
|
||||
|
||||
virtual Terrain::LayerInfo getDefaultLayer();
|
||||
|
||||
/// Get the transformation factor for mapping cell units to world units.
|
||||
virtual float getCellWorldSize();
|
||||
|
||||
/// Get the number of vertices on one side for each cell. Should be (power of two)+1
|
||||
virtual int getCellVertices();
|
||||
|
||||
private:
|
||||
void fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row);
|
||||
void fixColour (Ogre::ColourValue& colour, int cellX, int cellY, int col, int row);
|
||||
void averageNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row);
|
||||
|
||||
float getVertexHeight (const ESM::Land* land, int x, int y);
|
||||
|
||||
// Since plugins can define new texture palettes, we need to know the plugin index too
|
||||
// in order to retrieve the correct texture name.
|
||||
// pair <texture id, plugin id>
|
||||
typedef std::pair<short, short> UniqueTextureId;
|
||||
|
||||
UniqueTextureId getVtexIndexAt(int cellX, int cellY,
|
||||
int x, int y);
|
||||
std::string getTextureName (UniqueTextureId id);
|
||||
|
||||
std::map<std::string, Terrain::LayerInfo> mLayerInfoMap;
|
||||
|
||||
Terrain::LayerInfo getLayerInfo(const std::string& texture);
|
||||
|
||||
// Non-virtual
|
||||
void getBlendmapsImpl (float chunkSize, const Ogre::Vector2& chunkCenter, bool pack,
|
||||
std::vector<Ogre::PixelBox>& blendmaps,
|
||||
std::vector<Terrain::LayerInfo>& layerList);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue