1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-19 23:23:52 +00:00

Removed terrain component's dependency on ESM

This commit is contained in:
scrawl 2014-02-13 10:13:53 +01:00
parent fb0c5be536
commit c6fb0f2d9b
8 changed files with 650 additions and 594 deletions

View file

@ -1,5 +1,14 @@
#include "terrainstorage.hpp" #include "terrainstorage.hpp"
#include <OgreVector2.h>
#include <OgreTextureManager.h>
#include <OgreStringConverter.h>
#include <OgreRenderSystem.h>
#include <OgreResourceGroupManager.h>
#include <OgreRoot.h>
#include <boost/algorithm/string.hpp>
#include "../mwbase/world.hpp" #include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp" #include "../mwbase/environment.hpp"
#include "../mwworld/esmstore.hpp" #include "../mwworld/esmstore.hpp"
@ -53,4 +62,509 @@ namespace MWRender
return esmStore.get<ESM::LandTexture>().find(index, plugin); return esmStore.get<ESM::LandTexture>().find(index, plugin);
} }
bool TerrainStorage::getMinMaxHeights(float size, const Ogre::Vector2 &center, float &min, float &max)
{
assert (size <= 1 && "TerrainStorage::getMinMaxHeights, chunk size should be <= 1 cell");
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
assert(origin.x == (int) origin.x);
assert(origin.y == (int) origin.y);
int cellX = origin.x;
int cellY = origin.y;
const ESM::Land* land = getLand(cellX, cellY);
if (!land)
return false;
min = std::numeric_limits<float>().max();
max = -std::numeric_limits<float>().max();
for (int row=0; row<ESM::Land::LAND_SIZE; ++row)
{
for (int col=0; col<ESM::Land::LAND_SIZE; ++col)
{
float h = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
void TerrainStorage::fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mHasData)
{
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalise();
}
else
normal = Ogre::Vector3(0,0,1);
}
void TerrainStorage::averageNormal(Ogre::Vector3 &normal, int cellX, int cellY, int col, int row)
{
Ogre::Vector3 n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row);
fixNormal(n2, cellX, cellY, col-1, row);
fixNormal(n3, cellX, cellY, col, row+1);
fixNormal(n4, cellX, cellY, col, row-1);
normal = (n1+n2+n3+n4);
normal.normalise();
}
void TerrainStorage::fixColour (Ogre::ColourValue& color, int cellX, int cellY, int col, int row)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mLandData->mUsingColours)
{
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r = 1;
color.g = 1;
color.b = 1;
}
}
void TerrainStorage::fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center,
Ogre::HardwareVertexBufferSharedPtr vertexBuffer,
Ogre::HardwareVertexBufferSharedPtr normalBuffer,
Ogre::HardwareVertexBufferSharedPtr colourBuffer)
{
// LOD level n means every 2^n-th vertex is kept
size_t increment = 1 << lodLevel;
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
assert(origin.x == (int) origin.x);
assert(origin.y == (int) origin.y);
int startX = origin.x;
int startY = origin.y;
size_t numVerts = size*(ESM::Land::LAND_SIZE-1)/increment + 1;
std::vector<uint8_t> colors;
colors.resize(numVerts*numVerts*4);
std::vector<float> positions;
positions.resize(numVerts*numVerts*3);
std::vector<float> normals;
normals.resize(numVerts*numVerts*3);
Ogre::Vector3 normal;
Ogre::ColourValue color;
float vertY;
float vertX;
float vertY_ = 0; // of current cell corner
for (int cellY = startY; cellY < startY + std::ceil(size); ++cellY)
{
float vertX_ = 0; // of current cell corner
for (int cellX = startX; cellX < startX + std::ceil(size); ++cellX)
{
ESM::Land* land = getLand(cellX, cellY);
if (land && !land->mHasData)
land = NULL;
bool hasColors = land && land->mLandData->mUsingColours;
int rowStart = 0;
int colStart = 0;
// Skip the first row / column unless we're at a chunk edge,
// since this row / column is already contained in a previous cell
if (colStart == 0 && vertY_ != 0)
colStart += increment;
if (rowStart == 0 && vertX_ != 0)
rowStart += increment;
vertY = vertY_;
for (int col=colStart; col<ESM::Land::LAND_SIZE; col += increment)
{
vertX = vertX_;
for (int row=rowStart; row<ESM::Land::LAND_SIZE; row += increment)
{
positions[vertX*numVerts*3 + vertY*3] = ((vertX/float(numVerts-1)-0.5) * size * 8192);
positions[vertX*numVerts*3 + vertY*3 + 1] = ((vertY/float(numVerts-1)-0.5) * size * 8192);
if (land)
positions[vertX*numVerts*3 + vertY*3 + 2] = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
else
positions[vertX*numVerts*3 + vertY*3 + 2] = -2048;
if (land)
{
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalise();
}
else
normal = Ogre::Vector3(0,0,1);
// Normals apparently don't connect seamlessly between cells
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixNormal(normal, cellX, cellY, col, row);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
averageNormal(normal, cellX, cellY, col, row);
assert(normal.z > 0);
normals[vertX*numVerts*3 + vertY*3] = normal.x;
normals[vertX*numVerts*3 + vertY*3 + 1] = normal.y;
normals[vertX*numVerts*3 + vertY*3 + 2] = normal.z;
if (hasColors)
{
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r = 1;
color.g = 1;
color.b = 1;
}
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixColour(color, cellX, cellY, col, row);
color.a = 1;
Ogre::uint32 rsColor;
Ogre::Root::getSingleton().getRenderSystem()->convertColourValue(color, &rsColor);
memcpy(&colors[vertX*numVerts*4 + vertY*4], &rsColor, sizeof(Ogre::uint32));
++vertX;
}
++vertY;
}
vertX_ = vertX;
}
vertY_ = vertY;
assert(vertX_ == numVerts); // Ensure we covered whole area
}
assert(vertY_ == numVerts); // Ensure we covered whole area
vertexBuffer->writeData(0, vertexBuffer->getSizeInBytes(), &positions[0], true);
normalBuffer->writeData(0, normalBuffer->getSizeInBytes(), &normals[0], true);
colourBuffer->writeData(0, colourBuffer->getSizeInBytes(), &colors[0], true);
}
TerrainStorage::UniqueTextureId TerrainStorage::getVtexIndexAt(int cellX, int cellY,
int x, int y)
{
// For the first/last row/column, we need to get the texture from the neighbour cell
// to get consistent blending at the borders
--x;
if (x < 0)
{
--cellX;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
{
++cellY;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
ESM::Land* land = getLand(cellX, cellY);
if (land)
{
if (!land->isDataLoaded(ESM::Land::DATA_VTEX))
land->loadData(ESM::Land::DATA_VTEX);
int tex = land->mLandData->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
return std::make_pair(tex, land->mPlugin);
}
else
return std::make_pair(0,0);
}
std::string TerrainStorage::getTextureName(UniqueTextureId id)
{
if (id.first == 0)
return "_land_default.dds"; // Not sure if the default texture floatly is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
std::string texture = ltex->mTexture;
//TODO this is needed due to MWs messed up texture handling
texture = texture.substr(0, texture.rfind(".")) + ".dds";
return texture;
}
void TerrainStorage::getBlendmaps(float chunkSize, const Ogre::Vector2 &chunkCenter,
bool pack, std::vector<Ogre::TexturePtr> &blendmaps, std::vector<Terrain::LayerInfo> &layerList)
{
// TODO - blending isn't completely right yet; the blending radius appears to be
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
// and interpolate the rest of the cell by hand? :/
Ogre::Vector2 origin = chunkCenter - Ogre::Vector2(chunkSize/2.f, chunkSize/2.f);
int cellX = origin.x;
int cellY = origin.y;
// Save the used texture indices so we know the total number of textures
// and number of required blend maps
std::set<UniqueTextureId> textureIndices;
// Due to the way the blending works, the base layer will always shine through in between
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
// To get a consistent look, we need to make sure to use the same base layer in all cells.
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
textureIndices.insert(std::make_pair(0,0));
for (int y=0; y<ESM::Land::LAND_TEXTURE_SIZE+1; ++y)
for (int x=0; x<ESM::Land::LAND_TEXTURE_SIZE+1; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
textureIndices.insert(id);
}
// Makes sure the indices are sorted, or rather,
// retrieved as sorted. This is important to keep the splatting order
// consistent across cells.
std::map<UniqueTextureId, int> textureIndicesMap;
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
{
int size = textureIndicesMap.size();
textureIndicesMap[*it] = size;
layerList.push_back(getLayerInfo(getTextureName(*it)));
}
int numTextures = textureIndices.size();
// numTextures-1 since the base layer doesn't need blending
int numBlendmaps = pack ? std::ceil((numTextures-1) / 4.f) : (numTextures-1);
int channels = pack ? 4 : 1;
// Second iteration - create and fill in the blend maps
const int blendmapSize = ESM::Land::LAND_TEXTURE_SIZE+1;
std::vector<Ogre::uchar> data;
data.resize(blendmapSize * blendmapSize * channels, 0);
for (int i=0; i<numBlendmaps; ++i)
{
Ogre::PixelFormat format = pack ? Ogre::PF_A8B8G8R8 : Ogre::PF_A8;
static int count=0;
Ogre::TexturePtr map = Ogre::TextureManager::getSingleton().createManual("terrain/blend/"
+ Ogre::StringConverter::toString(count++), Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
Ogre::TEX_TYPE_2D, blendmapSize, blendmapSize, 0, format);
for (int y=0; y<blendmapSize; ++y)
{
for (int x=0; x<blendmapSize; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
int layerIndex = textureIndicesMap.find(id)->second;
int blendIndex = (pack ? std::floor((layerIndex-1)/4.f) : layerIndex-1);
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
if (blendIndex == i)
data[y*blendmapSize*channels + x*channels + channel] = 255;
else
data[y*blendmapSize*channels + x*channels + channel] = 0;
}
}
// All done, upload to GPU
Ogre::DataStreamPtr stream(new Ogre::MemoryDataStream(&data[0], data.size()));
map->loadRawData(stream, blendmapSize, blendmapSize, format);
blendmaps.push_back(map);
}
}
float TerrainStorage::getHeightAt(const Ogre::Vector3 &worldPos)
{
int cellX = std::floor(worldPos.x / 8192.f);
int cellY = std::floor(worldPos.y / 8192.f);
ESM::Land* land = getLand(cellX, cellY);
if (!land)
return -2048;
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x - (cellX * 8192))/8192.f;
float nY = (worldPos.y - (cellY * 8192))/8192.f;
// get left / bottom points (rounded down)
float factor = ESM::Land::LAND_SIZE - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
assert(endX < ESM::Land::LAND_SIZE);
assert(endY < ESM::Land::LAND_SIZE);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
Ogre::Vector3 v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
Ogre::Vector3 v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
Ogre::Vector3 v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
Ogre::Vector3 v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
// define this plane in terrain space
Ogre::Plane plane;
// (At the moment, all rows have the same triangle alignment)
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane.redefine(v0, v1, v3);
else
plane.redefine(v1, v2, v3);
}
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
// Solve plane equation for z
return (-plane.normal.x * nX
-plane.normal.y * nY
- plane.d) / plane.normal.z * 8192;
}
float TerrainStorage::getVertexHeight(const ESM::Land *land, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return land->mLandData->mHeights[y * ESM::Land::LAND_SIZE + x];
}
Terrain::LayerInfo TerrainStorage::getLayerInfo(const std::string& texture)
{
// Already have this cached?
if (mLayerInfoMap.find(texture) != mLayerInfoMap.end())
return mLayerInfoMap[texture];
Terrain::LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = "textures\\" + texture;
std::string texture_ = texture;
boost::replace_last(texture_, ".", "_nh.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
{
info.mNormalMap = "textures\\" + texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
boost::replace_last(texture_, ".", "_n.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
info.mNormalMap = "textures\\" + texture_;
}
texture_ = texture;
boost::replace_last(texture_, ".", "_diffusespec.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
{
info.mDiffuseMap = "textures\\" + texture_;
info.mSpecular = true;
}
mLayerInfoMap[texture] = info;
return info;
}
Terrain::LayerInfo TerrainStorage::getDefaultLayer()
{
Terrain::LayerInfo info;
info.mDiffuseMap = "textures\\_land_default.dds";
info.mParallax = false;
info.mSpecular = false;
return info;
}
float TerrainStorage::getCellWorldSize()
{
return ESM::Land::REAL_SIZE;
}
int TerrainStorage::getCellVertices()
{
return ESM::Land::LAND_SIZE;
}
} }

View file

@ -12,8 +12,75 @@ namespace MWRender
virtual ESM::Land* getLand (int cellX, int cellY); virtual ESM::Land* getLand (int cellX, int cellY);
virtual const ESM::LandTexture* getLandTexture(int index, short plugin); virtual const ESM::LandTexture* getLandTexture(int index, short plugin);
public: public:
/// Get bounds of the whole terrain in cell units
virtual Ogre::AxisAlignedBox getBounds(); virtual Ogre::AxisAlignedBox getBounds();
///< Get bounds in cell units
/// Get the minimum and maximum heights of a terrain chunk.
/// @note Should only be called for chunks <= 1 cell, i.e. leafs of the quad tree.
/// Larger chunks can simply merge AABB of children.
/// @param size size of the chunk in cell units
/// @param center center of the chunk in cell units
/// @param min min height will be stored here
/// @param max max height will be stored here
/// @return true if there was data available for this terrain chunk
virtual bool getMinMaxHeights (float size, const Ogre::Vector2& center, float& min, float& max);
/// Fill vertex buffers for a terrain chunk.
/// @param lodLevel LOD level, 0 = most detailed
/// @param size size of the terrain chunk in cell units
/// @param center center of the chunk in cell units
/// @param vertexBuffer buffer to write vertices
/// @param normalBuffer buffer to write vertex normals
/// @param colourBuffer buffer to write vertex colours
virtual void fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center,
Ogre::HardwareVertexBufferSharedPtr vertexBuffer,
Ogre::HardwareVertexBufferSharedPtr normalBuffer,
Ogre::HardwareVertexBufferSharedPtr colourBuffer);
/// Create textures holding layer blend values for a terrain chunk.
/// @note The terrain chunk shouldn't be larger than one cell since otherwise we might
/// have to do a ridiculous amount of different layers. For larger chunks, composite maps should be used.
/// @param chunkSize size of the terrain chunk in cell units
/// @param chunkCenter center of the chunk in cell units
/// @param pack Whether to pack blend values for up to 4 layers into one texture (one in each channel) -
/// otherwise, each texture contains blend values for one layer only. Shader-based rendering
/// can utilize packing, FFP can't.
/// @param blendmaps created blendmaps will be written here
/// @param layerList names of the layer textures used will be written here
virtual void getBlendmaps (float chunkSize, const Ogre::Vector2& chunkCenter, bool pack,
std::vector<Ogre::TexturePtr>& blendmaps,
std::vector<Terrain::LayerInfo>& layerList);
virtual float getHeightAt (const Ogre::Vector3& worldPos);
virtual Terrain::LayerInfo getDefaultLayer();
/// Get the transformation factor for mapping cell units to world units.
virtual float getCellWorldSize();
/// Get the number of vertices on one side for each cell. Should be (power of two)+1
virtual int getCellVertices();
private:
void fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row);
void fixColour (Ogre::ColourValue& colour, int cellX, int cellY, int col, int row);
void averageNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row);
float getVertexHeight (const ESM::Land* land, int x, int y);
// Since plugins can define new texture palettes, we need to know the plugin index too
// in order to retrieve the correct texture name.
// pair <texture id, plugin id>
typedef std::pair<short, short> UniqueTextureId;
UniqueTextureId getVtexIndexAt(int cellX, int cellY,
int x, int y);
std::string getTextureName (UniqueTextureId id);
std::map<std::string, Terrain::LayerInfo> mLayerInfoMap;
Terrain::LayerInfo getLayerInfo(const std::string& texture);
}; };
} }

View file

@ -18,11 +18,13 @@ namespace Terrain
mVertexData = OGRE_NEW Ogre::VertexData; mVertexData = OGRE_NEW Ogre::VertexData;
mVertexData->vertexStart = 0; mVertexData->vertexStart = 0;
unsigned int verts = mNode->getTerrain()->getStorage()->getCellVertices();
// Set the total number of vertices // Set the total number of vertices
size_t numVertsOneSide = mNode->getSize() * (ESM::Land::LAND_SIZE-1); size_t numVertsOneSide = mNode->getSize() * (verts-1);
numVertsOneSide /= 1 << lodLevel; numVertsOneSide /= 1 << lodLevel;
numVertsOneSide += 1; numVertsOneSide += 1;
assert((int)numVertsOneSide == ESM::Land::LAND_SIZE); assert(numVertsOneSide == verts);
mVertexData->vertexCount = numVertsOneSide * numVertsOneSide; mVertexData->vertexCount = numVertsOneSide * numVertsOneSide;
// Set up the vertex declaration, which specifies the info for each vertex (normals, colors, UVs, etc) // Set up the vertex declaration, which specifies the info for each vertex (normals, colors, UVs, etc)

View file

@ -430,11 +430,7 @@ void QuadTreeNode::prepareForCompositeMap(Ogre::TRect<float> area)
// TODO - store this default material somewhere instead of creating one for each empty cell // TODO - store this default material somewhere instead of creating one for each empty cell
MaterialGenerator matGen(mTerrain->getShadersEnabled()); MaterialGenerator matGen(mTerrain->getShadersEnabled());
std::vector<LayerInfo> layer; std::vector<LayerInfo> layer;
LayerInfo info; layer.push_back(mTerrain->getStorage()->getDefaultLayer());
info.mDiffuseMap = "textures\\_land_default.dds";
info.mParallax = false;
info.mSpecular = false;
layer.push_back(info);
matGen.setLayerList(layer); matGen.setLayerList(layer);
makeQuad(sceneMgr, area.left, area.top, area.right, area.bottom, matGen.generateForCompositeMapRTT(Ogre::MaterialPtr())); makeQuad(sceneMgr, area.left, area.top, area.right, area.bottom, matGen.generateForCompositeMapRTT(Ogre::MaterialPtr()));
return; return;

View file

@ -108,7 +108,7 @@ namespace Terrain
void destroyChunks(bool children); void destroyChunks(bool children);
/// Get the effective LOD level if this node was rendered in one chunk /// Get the effective LOD level if this node was rendered in one chunk
/// with ESM::Land::LAND_SIZE^2 vertices /// with Storage::getCellVertices^2 vertices
size_t getNativeLodLevel() { return mLodLevel; } size_t getNativeLodLevel() { return mLodLevel; }
/// Get the effective current LOD level used by the chunk rendering this node /// Get the effective current LOD level used by the chunk rendering this node

View file

@ -1,509 +0,0 @@
#include "storage.hpp"
#include <OgreVector2.h>
#include <OgreTextureManager.h>
#include <OgreStringConverter.h>
#include <OgreRenderSystem.h>
#include <OgreResourceGroupManager.h>
#include <OgreRoot.h>
#include <boost/algorithm/string.hpp>
namespace Terrain
{
struct VertexElement
{
Ogre::Vector3 pos;
Ogre::Vector3 normal;
Ogre::ColourValue colour;
};
bool Storage::getMinMaxHeights(float size, const Ogre::Vector2 &center, float &min, float &max)
{
assert (size <= 1 && "Storage::getMinMaxHeights, chunk size should be <= 1 cell");
/// \todo investigate if min/max heights should be stored at load time in ESM::Land instead
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
assert(origin.x == (int) origin.x);
assert(origin.y == (int) origin.y);
int cellX = origin.x;
int cellY = origin.y;
const ESM::Land* land = getLand(cellX, cellY);
if (!land)
return false;
min = std::numeric_limits<float>().max();
max = -std::numeric_limits<float>().max();
for (int row=0; row<ESM::Land::LAND_SIZE; ++row)
{
for (int col=0; col<ESM::Land::LAND_SIZE; ++col)
{
float h = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
if (h > max)
max = h;
if (h < min)
min = h;
}
}
return true;
}
void Storage::fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row)
{
while (col >= ESM::Land::LAND_SIZE-1)
{
++cellY;
col -= ESM::Land::LAND_SIZE-1;
}
while (row >= ESM::Land::LAND_SIZE-1)
{
++cellX;
row -= ESM::Land::LAND_SIZE-1;
}
while (col < 0)
{
--cellY;
col += ESM::Land::LAND_SIZE-1;
}
while (row < 0)
{
--cellX;
row += ESM::Land::LAND_SIZE-1;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mHasData)
{
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalise();
}
else
normal = Ogre::Vector3(0,0,1);
}
void Storage::averageNormal(Ogre::Vector3 &normal, int cellX, int cellY, int col, int row)
{
Ogre::Vector3 n1,n2,n3,n4;
fixNormal(n1, cellX, cellY, col+1, row);
fixNormal(n2, cellX, cellY, col-1, row);
fixNormal(n3, cellX, cellY, col, row+1);
fixNormal(n4, cellX, cellY, col, row-1);
normal = (n1+n2+n3+n4);
normal.normalise();
}
void Storage::fixColour (Ogre::ColourValue& color, int cellX, int cellY, int col, int row)
{
if (col == ESM::Land::LAND_SIZE-1)
{
++cellY;
col = 0;
}
if (row == ESM::Land::LAND_SIZE-1)
{
++cellX;
row = 0;
}
ESM::Land* land = getLand(cellX, cellY);
if (land && land->mLandData->mUsingColours)
{
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r = 1;
color.g = 1;
color.b = 1;
}
}
void Storage::fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center,
Ogre::HardwareVertexBufferSharedPtr vertexBuffer,
Ogre::HardwareVertexBufferSharedPtr normalBuffer,
Ogre::HardwareVertexBufferSharedPtr colourBuffer)
{
// LOD level n means every 2^n-th vertex is kept
size_t increment = 1 << lodLevel;
Ogre::Vector2 origin = center - Ogre::Vector2(size/2.f, size/2.f);
assert(origin.x == (int) origin.x);
assert(origin.y == (int) origin.y);
int startX = origin.x;
int startY = origin.y;
size_t numVerts = size*(ESM::Land::LAND_SIZE-1)/increment + 1;
std::vector<uint8_t> colors;
colors.resize(numVerts*numVerts*4);
std::vector<float> positions;
positions.resize(numVerts*numVerts*3);
std::vector<float> normals;
normals.resize(numVerts*numVerts*3);
Ogre::Vector3 normal;
Ogre::ColourValue color;
float vertY;
float vertX;
float vertY_ = 0; // of current cell corner
for (int cellY = startY; cellY < startY + std::ceil(size); ++cellY)
{
float vertX_ = 0; // of current cell corner
for (int cellX = startX; cellX < startX + std::ceil(size); ++cellX)
{
ESM::Land* land = getLand(cellX, cellY);
if (land && !land->mHasData)
land = NULL;
bool hasColors = land && land->mLandData->mUsingColours;
int rowStart = 0;
int colStart = 0;
// Skip the first row / column unless we're at a chunk edge,
// since this row / column is already contained in a previous cell
if (colStart == 0 && vertY_ != 0)
colStart += increment;
if (rowStart == 0 && vertX_ != 0)
rowStart += increment;
vertY = vertY_;
for (int col=colStart; col<ESM::Land::LAND_SIZE; col += increment)
{
vertX = vertX_;
for (int row=rowStart; row<ESM::Land::LAND_SIZE; row += increment)
{
positions[vertX*numVerts*3 + vertY*3] = ((vertX/float(numVerts-1)-0.5) * size * 8192);
positions[vertX*numVerts*3 + vertY*3 + 1] = ((vertY/float(numVerts-1)-0.5) * size * 8192);
if (land)
positions[vertX*numVerts*3 + vertY*3 + 2] = land->mLandData->mHeights[col*ESM::Land::LAND_SIZE+row];
else
positions[vertX*numVerts*3 + vertY*3 + 2] = -2048;
if (land)
{
normal.x = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3];
normal.y = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+1];
normal.z = land->mLandData->mNormals[col*ESM::Land::LAND_SIZE*3+row*3+2];
normal.normalise();
}
else
normal = Ogre::Vector3(0,0,1);
// Normals apparently don't connect seamlessly between cells
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixNormal(normal, cellX, cellY, col, row);
// some corner normals appear to be complete garbage (z < 0)
if ((row == 0 || row == ESM::Land::LAND_SIZE-1) && (col == 0 || col == ESM::Land::LAND_SIZE-1))
averageNormal(normal, cellX, cellY, col, row);
assert(normal.z > 0);
normals[vertX*numVerts*3 + vertY*3] = normal.x;
normals[vertX*numVerts*3 + vertY*3 + 1] = normal.y;
normals[vertX*numVerts*3 + vertY*3 + 2] = normal.z;
if (hasColors)
{
color.r = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3] / 255.f;
color.g = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+1] / 255.f;
color.b = land->mLandData->mColours[col*ESM::Land::LAND_SIZE*3+row*3+2] / 255.f;
}
else
{
color.r = 1;
color.g = 1;
color.b = 1;
}
// Unlike normals, colors mostly connect seamlessly between cells, but not always...
if (col == ESM::Land::LAND_SIZE-1 || row == ESM::Land::LAND_SIZE-1)
fixColour(color, cellX, cellY, col, row);
color.a = 1;
Ogre::uint32 rsColor;
Ogre::Root::getSingleton().getRenderSystem()->convertColourValue(color, &rsColor);
memcpy(&colors[vertX*numVerts*4 + vertY*4], &rsColor, sizeof(Ogre::uint32));
++vertX;
}
++vertY;
}
vertX_ = vertX;
}
vertY_ = vertY;
assert(vertX_ == numVerts); // Ensure we covered whole area
}
assert(vertY_ == numVerts); // Ensure we covered whole area
vertexBuffer->writeData(0, vertexBuffer->getSizeInBytes(), &positions[0], true);
normalBuffer->writeData(0, normalBuffer->getSizeInBytes(), &normals[0], true);
colourBuffer->writeData(0, colourBuffer->getSizeInBytes(), &colors[0], true);
}
Storage::UniqueTextureId Storage::getVtexIndexAt(int cellX, int cellY,
int x, int y)
{
// For the first/last row/column, we need to get the texture from the neighbour cell
// to get consistent blending at the borders
--x;
if (x < 0)
{
--cellX;
x += ESM::Land::LAND_TEXTURE_SIZE;
}
if (y >= ESM::Land::LAND_TEXTURE_SIZE) // Y appears to be wrapped from the other side because why the hell not?
{
++cellY;
y -= ESM::Land::LAND_TEXTURE_SIZE;
}
assert(x<ESM::Land::LAND_TEXTURE_SIZE);
assert(y<ESM::Land::LAND_TEXTURE_SIZE);
ESM::Land* land = getLand(cellX, cellY);
if (land)
{
if (!land->isDataLoaded(ESM::Land::DATA_VTEX))
land->loadData(ESM::Land::DATA_VTEX);
int tex = land->mLandData->mTextures[y * ESM::Land::LAND_TEXTURE_SIZE + x];
if (tex == 0)
return std::make_pair(0,0); // vtex 0 is always the base texture, regardless of plugin
return std::make_pair(tex, land->mPlugin);
}
else
return std::make_pair(0,0);
}
std::string Storage::getTextureName(UniqueTextureId id)
{
if (id.first == 0)
return "_land_default.dds"; // Not sure if the default texture floatly is hardcoded?
// NB: All vtex ids are +1 compared to the ltex ids
const ESM::LandTexture* ltex = getLandTexture(id.first-1, id.second);
std::string texture = ltex->mTexture;
//TODO this is needed due to MWs messed up texture handling
texture = texture.substr(0, texture.rfind(".")) + ".dds";
return texture;
}
void Storage::getBlendmaps(float chunkSize, const Ogre::Vector2 &chunkCenter,
bool pack, std::vector<Ogre::TexturePtr> &blendmaps, std::vector<LayerInfo> &layerList)
{
// TODO - blending isn't completely right yet; the blending radius appears to be
// different at a cell transition (2 vertices, not 4), so we may need to create a larger blendmap
// and interpolate the rest of the cell by hand? :/
Ogre::Vector2 origin = chunkCenter - Ogre::Vector2(chunkSize/2.f, chunkSize/2.f);
int cellX = origin.x;
int cellY = origin.y;
// Save the used texture indices so we know the total number of textures
// and number of required blend maps
std::set<UniqueTextureId> textureIndices;
// Due to the way the blending works, the base layer will always shine through in between
// blend transitions (eg halfway between two texels, both blend values will be 0.5, so 25% of base layer visible).
// To get a consistent look, we need to make sure to use the same base layer in all cells.
// So we're always adding _land_default.dds as the base layer here, even if it's not referenced in this cell.
textureIndices.insert(std::make_pair(0,0));
for (int y=0; y<ESM::Land::LAND_TEXTURE_SIZE+1; ++y)
for (int x=0; x<ESM::Land::LAND_TEXTURE_SIZE+1; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
textureIndices.insert(id);
}
// Makes sure the indices are sorted, or rather,
// retrieved as sorted. This is important to keep the splatting order
// consistent across cells.
std::map<UniqueTextureId, int> textureIndicesMap;
for (std::set<UniqueTextureId>::iterator it = textureIndices.begin(); it != textureIndices.end(); ++it)
{
int size = textureIndicesMap.size();
textureIndicesMap[*it] = size;
layerList.push_back(getLayerInfo(getTextureName(*it)));
}
int numTextures = textureIndices.size();
// numTextures-1 since the base layer doesn't need blending
int numBlendmaps = pack ? std::ceil((numTextures-1) / 4.f) : (numTextures-1);
int channels = pack ? 4 : 1;
// Second iteration - create and fill in the blend maps
const int blendmapSize = ESM::Land::LAND_TEXTURE_SIZE+1;
std::vector<Ogre::uchar> data;
data.resize(blendmapSize * blendmapSize * channels, 0);
for (int i=0; i<numBlendmaps; ++i)
{
Ogre::PixelFormat format = pack ? Ogre::PF_A8B8G8R8 : Ogre::PF_A8;
static int count=0;
Ogre::TexturePtr map = Ogre::TextureManager::getSingleton().createManual("terrain/blend/"
+ Ogre::StringConverter::toString(count++), Ogre::ResourceGroupManager::DEFAULT_RESOURCE_GROUP_NAME,
Ogre::TEX_TYPE_2D, blendmapSize, blendmapSize, 0, format);
for (int y=0; y<blendmapSize; ++y)
{
for (int x=0; x<blendmapSize; ++x)
{
UniqueTextureId id = getVtexIndexAt(cellX, cellY, x, y);
int layerIndex = textureIndicesMap.find(id)->second;
int blendIndex = (pack ? std::floor((layerIndex-1)/4.f) : layerIndex-1);
int channel = pack ? std::max(0, (layerIndex-1) % 4) : 0;
if (blendIndex == i)
data[y*blendmapSize*channels + x*channels + channel] = 255;
else
data[y*blendmapSize*channels + x*channels + channel] = 0;
}
}
// All done, upload to GPU
Ogre::DataStreamPtr stream(new Ogre::MemoryDataStream(&data[0], data.size()));
map->loadRawData(stream, blendmapSize, blendmapSize, format);
blendmaps.push_back(map);
}
}
float Storage::getHeightAt(const Ogre::Vector3 &worldPos)
{
int cellX = std::floor(worldPos.x / 8192.f);
int cellY = std::floor(worldPos.y / 8192.f);
ESM::Land* land = getLand(cellX, cellY);
if (!land)
return -2048;
// Mostly lifted from Ogre::Terrain::getHeightAtTerrainPosition
// Normalized position in the cell
float nX = (worldPos.x - (cellX * 8192))/8192.f;
float nY = (worldPos.y - (cellY * 8192))/8192.f;
// get left / bottom points (rounded down)
float factor = ESM::Land::LAND_SIZE - 1.0f;
float invFactor = 1.0f / factor;
int startX = static_cast<int>(nX * factor);
int startY = static_cast<int>(nY * factor);
int endX = startX + 1;
int endY = startY + 1;
assert(endX < ESM::Land::LAND_SIZE);
assert(endY < ESM::Land::LAND_SIZE);
// now get points in terrain space (effectively rounding them to boundaries)
float startXTS = startX * invFactor;
float startYTS = startY * invFactor;
float endXTS = endX * invFactor;
float endYTS = endY * invFactor;
// get parametric from start coord to next point
float xParam = (nX - startXTS) * factor;
float yParam = (nY - startYTS) * factor;
/* For even / odd tri strip rows, triangles are this shape:
even odd
3---2 3---2
| / | | \ |
0---1 0---1
*/
// Build all 4 positions in normalized cell space, using point-sampled height
Ogre::Vector3 v0 (startXTS, startYTS, getVertexHeight(land, startX, startY) / 8192.f);
Ogre::Vector3 v1 (endXTS, startYTS, getVertexHeight(land, endX, startY) / 8192.f);
Ogre::Vector3 v2 (endXTS, endYTS, getVertexHeight(land, endX, endY) / 8192.f);
Ogre::Vector3 v3 (startXTS, endYTS, getVertexHeight(land, startX, endY) / 8192.f);
// define this plane in terrain space
Ogre::Plane plane;
// (At the moment, all rows have the same triangle alignment)
if (true)
{
// odd row
bool secondTri = ((1.0 - yParam) > xParam);
if (secondTri)
plane.redefine(v0, v1, v3);
else
plane.redefine(v1, v2, v3);
}
else
{
// even row
bool secondTri = (yParam > xParam);
if (secondTri)
plane.redefine(v0, v2, v3);
else
plane.redefine(v0, v1, v2);
}
// Solve plane equation for z
return (-plane.normal.x * nX
-plane.normal.y * nY
- plane.d) / plane.normal.z * 8192;
}
float Storage::getVertexHeight(const ESM::Land *land, int x, int y)
{
assert(x < ESM::Land::LAND_SIZE);
assert(y < ESM::Land::LAND_SIZE);
return land->mLandData->mHeights[y * ESM::Land::LAND_SIZE + x];
}
LayerInfo Storage::getLayerInfo(const std::string& texture)
{
// Already have this cached?
if (mLayerInfoMap.find(texture) != mLayerInfoMap.end())
return mLayerInfoMap[texture];
LayerInfo info;
info.mParallax = false;
info.mSpecular = false;
info.mDiffuseMap = "textures\\" + texture;
std::string texture_ = texture;
boost::replace_last(texture_, ".", "_nh.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
{
info.mNormalMap = "textures\\" + texture_;
info.mParallax = true;
}
else
{
texture_ = texture;
boost::replace_last(texture_, ".", "_n.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
info.mNormalMap = "textures\\" + texture_;
}
texture_ = texture;
boost::replace_last(texture_, ".", "_diffusespec.");
if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup("textures\\" + texture_))
{
info.mDiffuseMap = "textures\\" + texture_;
info.mSpecular = true;
}
mLayerInfoMap[texture] = info;
return info;
}
}

View file

@ -24,9 +24,6 @@ namespace Terrain
{ {
public: public:
virtual ~Storage() {} virtual ~Storage() {}
private:
virtual ESM::Land* getLand (int cellX, int cellY) = 0;
virtual const ESM::LandTexture* getLandTexture(int index, short plugin) = 0;
public: public:
/// Get bounds of the whole terrain in cell units /// Get bounds of the whole terrain in cell units
@ -40,7 +37,7 @@ namespace Terrain
/// @param min min height will be stored here /// @param min min height will be stored here
/// @param max max height will be stored here /// @param max max height will be stored here
/// @return true if there was data available for this terrain chunk /// @return true if there was data available for this terrain chunk
bool getMinMaxHeights (float size, const Ogre::Vector2& center, float& min, float& max); virtual bool getMinMaxHeights (float size, const Ogre::Vector2& center, float& min, float& max) = 0;
/// Fill vertex buffers for a terrain chunk. /// Fill vertex buffers for a terrain chunk.
/// @param lodLevel LOD level, 0 = most detailed /// @param lodLevel LOD level, 0 = most detailed
@ -49,10 +46,10 @@ namespace Terrain
/// @param vertexBuffer buffer to write vertices /// @param vertexBuffer buffer to write vertices
/// @param normalBuffer buffer to write vertex normals /// @param normalBuffer buffer to write vertex normals
/// @param colourBuffer buffer to write vertex colours /// @param colourBuffer buffer to write vertex colours
void fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center, virtual void fillVertexBuffers (int lodLevel, float size, const Ogre::Vector2& center,
Ogre::HardwareVertexBufferSharedPtr vertexBuffer, Ogre::HardwareVertexBufferSharedPtr vertexBuffer,
Ogre::HardwareVertexBufferSharedPtr normalBuffer, Ogre::HardwareVertexBufferSharedPtr normalBuffer,
Ogre::HardwareVertexBufferSharedPtr colourBuffer); Ogre::HardwareVertexBufferSharedPtr colourBuffer) = 0;
/// Create textures holding layer blend values for a terrain chunk. /// Create textures holding layer blend values for a terrain chunk.
/// @note The terrain chunk shouldn't be larger than one cell since otherwise we might /// @note The terrain chunk shouldn't be larger than one cell since otherwise we might
@ -64,31 +61,19 @@ namespace Terrain
/// can utilize packing, FFP can't. /// can utilize packing, FFP can't.
/// @param blendmaps created blendmaps will be written here /// @param blendmaps created blendmaps will be written here
/// @param layerList names of the layer textures used will be written here /// @param layerList names of the layer textures used will be written here
void getBlendmaps (float chunkSize, const Ogre::Vector2& chunkCenter, bool pack, virtual void getBlendmaps (float chunkSize, const Ogre::Vector2& chunkCenter, bool pack,
std::vector<Ogre::TexturePtr>& blendmaps, std::vector<Ogre::TexturePtr>& blendmaps,
std::vector<LayerInfo>& layerList); std::vector<LayerInfo>& layerList) = 0;
float getHeightAt (const Ogre::Vector3& worldPos); virtual float getHeightAt (const Ogre::Vector3& worldPos) = 0;
private: virtual LayerInfo getDefaultLayer() = 0;
void fixNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row);
void fixColour (Ogre::ColourValue& colour, int cellX, int cellY, int col, int row);
void averageNormal (Ogre::Vector3& normal, int cellX, int cellY, int col, int row);
float getVertexHeight (const ESM::Land* land, int x, int y); /// Get the transformation factor for mapping cell units to world units.
virtual float getCellWorldSize() = 0;
// Since plugins can define new texture palettes, we need to know the plugin index too /// Get the number of vertices on one side for each cell. Should be (power of two)+1
// in order to retrieve the correct texture name. virtual int getCellVertices() = 0;
// pair <texture id, plugin id>
typedef std::pair<short, short> UniqueTextureId;
UniqueTextureId getVtexIndexAt(int cellX, int cellY,
int x, int y);
std::string getTextureName (UniqueTextureId id);
std::map<std::string, LayerInfo> mLayerInfoMap;
LayerInfo getLayerInfo(const std::string& texture);
}; };
} }

View file

@ -6,7 +6,6 @@
#include <OgreHardwarePixelBuffer.h> #include <OgreHardwarePixelBuffer.h>
#include <OgreRoot.h> #include <OgreRoot.h>
#include <components/esm/loadland.hpp>
#include <components/loadinglistener/loadinglistener.hpp> #include <components/loadinglistener/loadinglistener.hpp>
#include "storage.hpp" #include "storage.hpp"
@ -208,6 +207,8 @@ namespace Terrain
Ogre::HardwareIndexBufferSharedPtr World::getIndexBuffer(int flags, size_t& numIndices) Ogre::HardwareIndexBufferSharedPtr World::getIndexBuffer(int flags, size_t& numIndices)
{ {
unsigned int verts = mStorage->getCellVertices();
if (mIndexBufferMap.find(flags) != mIndexBufferMap.end()) if (mIndexBufferMap.find(flags) != mIndexBufferMap.end())
{ {
numIndices = mIndexBufferMap[flags]->getNumIndexes(); numIndices = mIndexBufferMap[flags]->getNumIndexes();
@ -224,11 +225,11 @@ namespace Terrain
bool anyDeltas = (lodDeltas[North] || lodDeltas[South] || lodDeltas[West] || lodDeltas[East]); bool anyDeltas = (lodDeltas[North] || lodDeltas[South] || lodDeltas[West] || lodDeltas[East]);
size_t increment = 1 << lodLevel; size_t increment = 1 << lodLevel;
assert((int)increment < ESM::Land::LAND_SIZE); assert(increment < verts);
std::vector<short> indices; std::vector<short> indices;
indices.reserve((ESM::Land::LAND_SIZE-1)*(ESM::Land::LAND_SIZE-1)*2*3 / increment); indices.reserve((verts-1)*(verts-1)*2*3 / increment);
size_t rowStart = 0, colStart = 0, rowEnd = ESM::Land::LAND_SIZE-1, colEnd = ESM::Land::LAND_SIZE-1; size_t rowStart = 0, colStart = 0, rowEnd = verts-1, colEnd = verts-1;
// If any edge needs stitching we'll skip all edges at this point, // If any edge needs stitching we'll skip all edges at this point,
// mainly because stitching one edge would have an effect on corners and on the adjacent edges // mainly because stitching one edge would have an effect on corners and on the adjacent edges
if (anyDeltas) if (anyDeltas)
@ -242,13 +243,13 @@ namespace Terrain
{ {
for (size_t col = colStart; col < colEnd; col += increment) for (size_t col = colStart; col < colEnd; col += increment)
{ {
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
indices.push_back(ESM::Land::LAND_SIZE*(col+increment)+row+increment); indices.push_back(verts*(col+increment)+row+increment);
indices.push_back(ESM::Land::LAND_SIZE*col+row+increment); indices.push_back(verts*col+row+increment);
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
indices.push_back(ESM::Land::LAND_SIZE*(col+increment)+row); indices.push_back(verts*(col+increment)+row);
indices.push_back(ESM::Land::LAND_SIZE*(col+increment)+row+increment); indices.push_back(verts*(col+increment)+row+increment);
} }
} }
@ -261,96 +262,96 @@ namespace Terrain
// South // South
size_t row = 0; size_t row = 0;
size_t outerStep = 1 << (lodDeltas[South] + lodLevel); size_t outerStep = 1 << (lodDeltas[South] + lodLevel);
for (size_t col = 0; col < ESM::Land::LAND_SIZE-1; col += outerStep) for (size_t col = 0; col < verts-1; col += outerStep)
{ {
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
indices.push_back(ESM::Land::LAND_SIZE*(col+outerStep)+row); indices.push_back(verts*(col+outerStep)+row);
// Make sure not to touch the right edge // Make sure not to touch the right edge
if (col+outerStep == ESM::Land::LAND_SIZE-1) if (col+outerStep == verts-1)
indices.push_back(ESM::Land::LAND_SIZE*(col+outerStep-innerStep)+row+innerStep); indices.push_back(verts*(col+outerStep-innerStep)+row+innerStep);
else else
indices.push_back(ESM::Land::LAND_SIZE*(col+outerStep)+row+innerStep); indices.push_back(verts*(col+outerStep)+row+innerStep);
for (size_t i = 0; i < outerStep; i += innerStep) for (size_t i = 0; i < outerStep; i += innerStep)
{ {
// Make sure not to touch the left or right edges // Make sure not to touch the left or right edges
if (col+i == 0 || col+i == ESM::Land::LAND_SIZE-1-innerStep) if (col+i == 0 || col+i == verts-1-innerStep)
continue; continue;
indices.push_back(ESM::Land::LAND_SIZE*(col)+row); indices.push_back(verts*(col)+row);
indices.push_back(ESM::Land::LAND_SIZE*(col+i+innerStep)+row+innerStep); indices.push_back(verts*(col+i+innerStep)+row+innerStep);
indices.push_back(ESM::Land::LAND_SIZE*(col+i)+row+innerStep); indices.push_back(verts*(col+i)+row+innerStep);
} }
} }
// North // North
row = ESM::Land::LAND_SIZE-1; row = verts-1;
outerStep = 1 << (lodDeltas[North] + lodLevel); outerStep = 1 << (lodDeltas[North] + lodLevel);
for (size_t col = 0; col < ESM::Land::LAND_SIZE-1; col += outerStep) for (size_t col = 0; col < verts-1; col += outerStep)
{ {
indices.push_back(ESM::Land::LAND_SIZE*(col+outerStep)+row); indices.push_back(verts*(col+outerStep)+row);
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
// Make sure not to touch the left edge // Make sure not to touch the left edge
if (col == 0) if (col == 0)
indices.push_back(ESM::Land::LAND_SIZE*(col+innerStep)+row-innerStep); indices.push_back(verts*(col+innerStep)+row-innerStep);
else else
indices.push_back(ESM::Land::LAND_SIZE*col+row-innerStep); indices.push_back(verts*col+row-innerStep);
for (size_t i = 0; i < outerStep; i += innerStep) for (size_t i = 0; i < outerStep; i += innerStep)
{ {
// Make sure not to touch the left or right edges // Make sure not to touch the left or right edges
if (col+i == 0 || col+i == ESM::Land::LAND_SIZE-1-innerStep) if (col+i == 0 || col+i == verts-1-innerStep)
continue; continue;
indices.push_back(ESM::Land::LAND_SIZE*(col+i)+row-innerStep); indices.push_back(verts*(col+i)+row-innerStep);
indices.push_back(ESM::Land::LAND_SIZE*(col+i+innerStep)+row-innerStep); indices.push_back(verts*(col+i+innerStep)+row-innerStep);
indices.push_back(ESM::Land::LAND_SIZE*(col+outerStep)+row); indices.push_back(verts*(col+outerStep)+row);
} }
} }
// West // West
size_t col = 0; size_t col = 0;
outerStep = 1 << (lodDeltas[West] + lodLevel); outerStep = 1 << (lodDeltas[West] + lodLevel);
for (size_t row = 0; row < ESM::Land::LAND_SIZE-1; row += outerStep) for (size_t row = 0; row < verts-1; row += outerStep)
{ {
indices.push_back(ESM::Land::LAND_SIZE*col+row+outerStep); indices.push_back(verts*col+row+outerStep);
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
// Make sure not to touch the top edge // Make sure not to touch the top edge
if (row+outerStep == ESM::Land::LAND_SIZE-1) if (row+outerStep == verts-1)
indices.push_back(ESM::Land::LAND_SIZE*(col+innerStep)+row+outerStep-innerStep); indices.push_back(verts*(col+innerStep)+row+outerStep-innerStep);
else else
indices.push_back(ESM::Land::LAND_SIZE*(col+innerStep)+row+outerStep); indices.push_back(verts*(col+innerStep)+row+outerStep);
for (size_t i = 0; i < outerStep; i += innerStep) for (size_t i = 0; i < outerStep; i += innerStep)
{ {
// Make sure not to touch the top or bottom edges // Make sure not to touch the top or bottom edges
if (row+i == 0 || row+i == ESM::Land::LAND_SIZE-1-innerStep) if (row+i == 0 || row+i == verts-1-innerStep)
continue; continue;
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
indices.push_back(ESM::Land::LAND_SIZE*(col+innerStep)+row+i); indices.push_back(verts*(col+innerStep)+row+i);
indices.push_back(ESM::Land::LAND_SIZE*(col+innerStep)+row+i+innerStep); indices.push_back(verts*(col+innerStep)+row+i+innerStep);
} }
} }
// East // East
col = ESM::Land::LAND_SIZE-1; col = verts-1;
outerStep = 1 << (lodDeltas[East] + lodLevel); outerStep = 1 << (lodDeltas[East] + lodLevel);
for (size_t row = 0; row < ESM::Land::LAND_SIZE-1; row += outerStep) for (size_t row = 0; row < verts-1; row += outerStep)
{ {
indices.push_back(ESM::Land::LAND_SIZE*col+row); indices.push_back(verts*col+row);
indices.push_back(ESM::Land::LAND_SIZE*col+row+outerStep); indices.push_back(verts*col+row+outerStep);
// Make sure not to touch the bottom edge // Make sure not to touch the bottom edge
if (row == 0) if (row == 0)
indices.push_back(ESM::Land::LAND_SIZE*(col-innerStep)+row+innerStep); indices.push_back(verts*(col-innerStep)+row+innerStep);
else else
indices.push_back(ESM::Land::LAND_SIZE*(col-innerStep)+row); indices.push_back(verts*(col-innerStep)+row);
for (size_t i = 0; i < outerStep; i += innerStep) for (size_t i = 0; i < outerStep; i += innerStep)
{ {
// Make sure not to touch the top or bottom edges // Make sure not to touch the top or bottom edges
if (row+i == 0 || row+i == ESM::Land::LAND_SIZE-1-innerStep) if (row+i == 0 || row+i == verts-1-innerStep)
continue; continue;
indices.push_back(ESM::Land::LAND_SIZE*col+row+outerStep); indices.push_back(verts*col+row+outerStep);
indices.push_back(ESM::Land::LAND_SIZE*(col-innerStep)+row+i+innerStep); indices.push_back(verts*(col-innerStep)+row+i+innerStep);
indices.push_back(ESM::Land::LAND_SIZE*(col-innerStep)+row+i); indices.push_back(verts*(col-innerStep)+row+i);
} }
} }
} }