1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-03-03 16:19:41 +00:00

Merge pull request #2190 from akortunov/terrain

Make Distant Terrain configurable
This commit is contained in:
Bret Curtis 2019-03-02 11:19:45 +01:00 committed by GitHub
commit cd70354f34
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 186 additions and 35 deletions

View file

@ -47,6 +47,7 @@
Feature #4812: Support NiSwitchNode
Feature #4836: Daytime node switch
Feature #4887: Add openmw command option to set initial random seed
Feature #4890: Make Distant Terrain configurable
Task #4686: Upgrade media decoder to a more current FFmpeg API
0.45.0

View file

@ -283,12 +283,29 @@ namespace MWRender
mDistantFog = Settings::Manager::getBool("use distant fog", "Fog");
mDistantTerrain = Settings::Manager::getBool("distant terrain", "Terrain");
mTerrainStorage = new TerrainStorage(mResourceSystem, Settings::Manager::getString("normal map pattern", "Shaders"), Settings::Manager::getString("normal height map pattern", "Shaders"),
Settings::Manager::getBool("auto use terrain normal maps", "Shaders"), Settings::Manager::getString("terrain specular map pattern", "Shaders"),
Settings::Manager::getBool("auto use terrain specular maps", "Shaders"));
const std::string normalMapPattern = Settings::Manager::getString("normal map pattern", "Shaders");
const std::string heightMapPattern = Settings::Manager::getString("normal height map pattern", "Shaders");
const std::string specularMapPattern = Settings::Manager::getString("terrain specular map pattern", "Shaders");
const bool useTerrainNormalMaps = Settings::Manager::getBool("auto use terrain normal maps", "Shaders");
const bool useTerrainSpecularMaps = Settings::Manager::getBool("auto use terrain specular maps", "Shaders");
mTerrainStorage = new TerrainStorage(mResourceSystem, normalMapPattern, heightMapPattern, useTerrainNormalMaps, specularMapPattern, useTerrainSpecularMaps);
if (mDistantTerrain)
mTerrain.reset(new Terrain::QuadTreeWorld(sceneRoot, mRootNode, mResourceSystem, mTerrainStorage, Mask_Terrain, Mask_PreCompile, Mask_Debug));
{
const int compMapResolution = Settings::Manager::getInt("composite map resolution", "Terrain");
int compMapPower = Settings::Manager::getInt("composite map level", "Terrain");
compMapPower = std::max(-3, compMapPower);
float compMapLevel = pow(2, compMapPower);
const float lodFactor = Settings::Manager::getFloat("lod factor", "Terrain");
const int vertexLodMod = Settings::Manager::getInt("vertex lod mod", "Terrain");
float maxCompGeometrySize = Settings::Manager::getFloat("max composite geometry size", "Terrain");
maxCompGeometrySize = std::max(maxCompGeometrySize, 1.f);
mTerrain.reset(new Terrain::QuadTreeWorld(
sceneRoot, mRootNode, mResourceSystem, mTerrainStorage, Mask_Terrain, Mask_PreCompile, Mask_Debug,
compMapResolution, compMapLevel, lodFactor, vertexLodMod, maxCompGeometrySize));
}
else
mTerrain.reset(new Terrain::TerrainGrid(sceneRoot, mRootNode, mResourceSystem, mTerrainStorage, Mask_Terrain, Mask_PreCompile, Mask_Debug));

View file

@ -28,6 +28,8 @@ ChunkManager::ChunkManager(Storage *storage, Resource::SceneManager *sceneMgr, T
, mTextureManager(textureManager)
, mCompositeMapRenderer(renderer)
, mCompositeMapSize(512)
, mCompositeMapLevel(1.f)
, mMaxCompGeometrySize(1.f)
, mCullingActive(true)
{
@ -68,11 +70,6 @@ void ChunkManager::releaseGLObjects(osg::State *state)
mBufferCache.releaseGLObjects(state);
}
void ChunkManager::setCullingActive(bool active)
{
mCullingActive = active;
}
osg::ref_ptr<osg::Texture2D> ChunkManager::createCompositeMapRTT()
{
osg::ref_ptr<osg::Texture2D> texture = new osg::Texture2D;
@ -89,7 +86,7 @@ osg::ref_ptr<osg::Texture2D> ChunkManager::createCompositeMapRTT()
void ChunkManager::createCompositeMapGeometry(float chunkSize, const osg::Vec2f& chunkCenter, const osg::Vec4f& texCoords, CompositeMap& compositeMap)
{
if (chunkSize > 1.f)
if (chunkSize > mMaxCompGeometrySize)
{
createCompositeMapGeometry(chunkSize/2.f, chunkCenter + osg::Vec2f(chunkSize/4.f, chunkSize/4.f), osg::Vec4f(texCoords.x() + texCoords.z()/2.f, texCoords.y(), texCoords.z()/2.f, texCoords.w()/2.f), compositeMap);
createCompositeMapGeometry(chunkSize/2.f, chunkCenter + osg::Vec2f(-chunkSize/4.f, chunkSize/4.f), osg::Vec4f(texCoords.x(), texCoords.y(), texCoords.z()/2.f, texCoords.w()/2.f), compositeMap);
@ -199,7 +196,7 @@ osg::ref_ptr<osg::Node> ChunkManager::createChunk(float chunkSize, const osg::Ve
geometry->addPrimitiveSet(mBufferCache.getIndexBuffer(numVerts, lodFlags));
bool useCompositeMap = chunkSize >= 1.f;
bool useCompositeMap = chunkSize >= mCompositeMapLevel;
unsigned int numUvSets = useCompositeMap ? 1 : 2;
for (unsigned int i=0; i<numUvSets; ++i)

View file

@ -32,14 +32,17 @@ namespace Terrain
osg::ref_ptr<osg::Node> getChunk(float size, const osg::Vec2f& center, int lod, unsigned int lodFlags);
void setCullingActive(bool active) { mCullingActive = active; }
void setCompositeMapSize(unsigned int size) { mCompositeMapSize = size; }
void setCompositeMapLevel(float level) { mCompositeMapLevel = level; }
void setMaxCompositeGeometrySize(float maxCompGeometrySize) { mMaxCompGeometrySize = maxCompGeometrySize; }
void reportStats(unsigned int frameNumber, osg::Stats* stats) const override;
void clearCache() override;
void releaseGLObjects(osg::State* state) override;
void setCullingActive(bool active);
private:
osg::ref_ptr<osg::Node> createChunk(float size, const osg::Vec2f& center, int lod, unsigned int lodFlags);
@ -56,6 +59,8 @@ namespace Terrain
BufferCache mBufferCache;
unsigned int mCompositeMapSize;
float mCompositeMapLevel;
float mMaxCompGeometrySize;
bool mCullingActive;
};

View file

@ -75,8 +75,9 @@ namespace Terrain
class DefaultLodCallback : public LodCallback
{
public:
DefaultLodCallback(float minSize)
: mMinSize(minSize)
DefaultLodCallback(float factor, float minSize)
: mFactor(factor)
, mMinSize(minSize)
{
}
@ -84,12 +85,13 @@ public:
{
float dist = distanceToBox(node->getBoundingBox(), eyePoint);
int nativeLodLevel = Log2(static_cast<unsigned int>(node->getSize()/mMinSize));
int lodLevel = Log2(static_cast<unsigned int>(dist/(Constants::CellSizeInUnits*mMinSize)));
int lodLevel = Log2(static_cast<unsigned int>(dist/(Constants::CellSizeInUnits*mMinSize*mFactor)));
return nativeLodLevel <= lodLevel;
}
private:
float mFactor;
float mMinSize;
};
@ -123,8 +125,9 @@ private:
class QuadTreeBuilder
{
public:
QuadTreeBuilder(Terrain::Storage* storage, ViewDataMap* viewDataMap, float minSize)
QuadTreeBuilder(Terrain::Storage* storage, ViewDataMap* viewDataMap, float lodFactor, float minSize)
: mStorage(storage)
, mLodFactor(lodFactor)
, mMinX(0.f), mMaxX(0.f), mMinY(0.f), mMaxY(0.f)
, mMinSize(minSize)
, mViewDataMap(viewDataMap)
@ -146,7 +149,7 @@ public:
mRootNode = new RootNode(size, osg::Vec2f(centerX, centerY));
mRootNode->setViewDataMap(mViewDataMap);
mRootNode->setLodCallback(new DefaultLodCallback(mMinSize));
mRootNode->setLodCallback(new DefaultLodCallback(mLodFactor, mMinSize));
addChildren(mRootNode);
mRootNode->initNeighbours();
@ -224,6 +227,7 @@ public:
private:
Terrain::Storage* mStorage;
float mLodFactor;
float mMinX, mMaxX, mMinY, mMaxY;
float mMinSize;
ViewDataMap* mViewDataMap;
@ -231,13 +235,19 @@ private:
osg::ref_ptr<RootNode> mRootNode;
};
QuadTreeWorld::QuadTreeWorld(osg::Group *parent, osg::Group *compileRoot, Resource::ResourceSystem *resourceSystem, Storage *storage, int nodeMask, int preCompileMask, int borderMask)
QuadTreeWorld::QuadTreeWorld(osg::Group *parent, osg::Group *compileRoot, Resource::ResourceSystem *resourceSystem, Storage *storage, int nodeMask, int preCompileMask, int borderMask, int compMapResolution, float compMapLevel, float lodFactor, int vertexLodMod, float maxCompGeometrySize)
: World(parent, compileRoot, resourceSystem, storage, nodeMask, preCompileMask, borderMask)
, mViewDataMap(new ViewDataMap)
, mQuadTreeBuilt(false)
, mLodFactor(lodFactor)
, mVertexLodMod(vertexLodMod)
{
// No need for culling on the Drawable / Transform level as the quad tree performs the culling already.
mChunkManager->setCullingActive(false);
mChunkManager->setCompositeMapSize(compMapResolution);
mChunkManager->setCompositeMapLevel(compMapLevel);
mChunkManager->setMaxCompositeGeometrySize(maxCompGeometrySize);
}
QuadTreeWorld::~QuadTreeWorld()
@ -287,7 +297,30 @@ void traverseToCell(QuadTreeNode* node, ViewData* vd, int cellX, int cellY)
}
}
unsigned int getLodFlags(QuadTreeNode* node, int ourLod, ViewData* vd)
/// get the level of vertex detail to render this node at, expressed relative to the native resolution of the data set.
unsigned int getVertexLod(QuadTreeNode* node, int vertexLodMod)
{
int lod = Log2(int(node->getSize()));
if (vertexLodMod > 0)
{
lod = std::max(0, lod-vertexLodMod);
}
else if (vertexLodMod < 0)
{
float size = node->getSize();
// Stop to simplify at this level since with size = 1 the node already covers the whole cell and has getCellVertices() vertices.
while (size < 1)
{
size *= 2;
vertexLodMod = std::min(0, vertexLodMod+1);
}
lod += std::abs(vertexLodMod);
}
return lod;
}
/// get the flags to use for stitching in the index buffer so that chunks of different LOD connect seamlessly
unsigned int getLodFlags(QuadTreeNode* node, int ourLod, int vertexLodMod, ViewData* vd)
{
unsigned int lodFlags = 0;
for (unsigned int i=0; i<4; ++i)
@ -302,7 +335,7 @@ unsigned int getLodFlags(QuadTreeNode* node, int ourLod, ViewData* vd)
neighbour = neighbour->getParent();
int lod = 0;
if (neighbour)
lod = Log2(int(neighbour->getSize()));
lod = getVertexLod(neighbour, vertexLodMod);
if (lod <= ourLod) // We only need to worry about neighbours less detailed than we are -
lod = 0; // neighbours with more detail will do the stitching themselves
@ -315,13 +348,17 @@ unsigned int getLodFlags(QuadTreeNode* node, int ourLod, ViewData* vd)
return lodFlags;
}
void loadRenderingNode(ViewData::Entry& entry, ViewData* vd, ChunkManager* chunkManager)
void loadRenderingNode(ViewData::Entry& entry, ViewData* vd, int vertexLodMod, ChunkManager* chunkManager)
{
if (!vd->hasChanged() && entry.mRenderingNode)
return;
int ourLod = getVertexLod(entry.mNode, vertexLodMod);
if (vd->hasChanged())
{
// have to recompute the lodFlags in case a neighbour has changed LOD.
int ourLod = Log2(int(entry.mNode->getSize()));
unsigned int lodFlags = getLodFlags(entry.mNode, ourLod, vd);
unsigned int lodFlags = getLodFlags(entry.mNode, ourLod, vertexLodMod, vd);
if (lodFlags != entry.mLodFlags)
{
entry.mRenderingNode = nullptr;
@ -330,11 +367,8 @@ void loadRenderingNode(ViewData::Entry& entry, ViewData* vd, ChunkManager* chunk
}
if (!entry.mRenderingNode)
{
int ourLod = Log2(int(entry.mNode->getSize()));
entry.mRenderingNode = chunkManager->getChunk(entry.mNode->getSize(), entry.mNode->getCenter(), ourLod, entry.mLodFlags);
}
}
void QuadTreeWorld::accept(osg::NodeVisitor &nv)
{
@ -378,7 +412,7 @@ void QuadTreeWorld::accept(osg::NodeVisitor &nv)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mChunkManager.get());
loadRenderingNode(entry, vd, mVertexLodMod, mChunkManager.get());
if (entry.mVisible)
{
@ -404,7 +438,7 @@ void QuadTreeWorld::ensureQuadTreeBuilt()
return;
const float minSize = 1/8.f;
QuadTreeBuilder builder(mStorage, mViewDataMap.get(), minSize);
QuadTreeBuilder builder(mStorage, mViewDataMap.get(), mLodFactor, minSize);
builder.build();
mRootNode = builder.getRootNode();
@ -435,7 +469,7 @@ void QuadTreeWorld::cacheCell(View *view, int x, int y)
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mChunkManager.get());
loadRenderingNode(entry, vd, mVertexLodMod, mChunkManager.get());
}
}
@ -454,7 +488,7 @@ void QuadTreeWorld::preload(View *view, const osg::Vec3f &eyePoint)
for (unsigned int i=0; i<vd->getNumEntries(); ++i)
{
ViewData::Entry& entry = vd->getEntry(i);
loadRenderingNode(entry, vd, mChunkManager.get());
loadRenderingNode(entry, vd, mVertexLodMod, mChunkManager.get());
}
}

View file

@ -19,7 +19,8 @@ namespace Terrain
class QuadTreeWorld : public Terrain::World
{
public:
QuadTreeWorld(osg::Group* parent, osg::Group* compileRoot, Resource::ResourceSystem* resourceSystem, Storage* storage, int nodeMask, int preCompileMask=~0, int borderMask=0);
QuadTreeWorld(osg::Group* parent, osg::Group* compileRoot, Resource::ResourceSystem* resourceSystem, Storage* storage, int nodeMask, int preCompileMask, int borderMask, int compMapResolution, float comMapLevel, float lodFactor, int vertexLodMod, float maxCompGeometrySize);
~QuadTreeWorld();
void accept(osg::NodeVisitor& nv);
@ -44,6 +45,8 @@ namespace Terrain
OpenThreads::Mutex mQuadTreeMutex;
bool mQuadTreeBuilt;
float mLodFactor;
int mVertexLodMod;
};
}

View file

@ -23,3 +23,81 @@ will still be controlled by cell preloading settings.
The distant terrain engine is currently considered experimental
and may receive updates and/or further configuration options in the future.
The glaring omission of non-terrain objects in the distance somewhat limits this setting's usefulness.
vertex lod mod
--------------
:Type: integer
:Range: any
:Default: 0
Controls only the Vertex LOD of the terrain. The amount of terrain chunks and the detail of composite maps is left unchanged.
Must be changed in increments of 1. Each increment will double (for positive values) or halve (for negative values) the number of vertices rendered.
For example: -2 means 4x reduced detail, +3 means 8x increased detail.
Note this setting will typically not affect near terrain. When set to increase detail, the detail of near terrain can not be increased
because the detail is simply not there in the data files, and when set to reduce detail,
the detail of near terrain will not be reduced because it was already less detailed than the far terrain (in view relative terms) to begin with.
lod factor
----------
:Type: float
:Range: >0
:Default: 1.0
Controls the level of detail if distant terrain is enabled.
Higher values increase detail at the cost of performance, lower values reduce detail but increase performance.
Note: it also changes how the Quad Tree is split.
Increasing detail with this setting results in the visible terrain being divided into more chunks,
where as reducing detail with this setting would reduce the number of chunks.
Fewer terrain chunks is faster for rendering, but on the other hand a larger proportion of the entire terrain
must be rebuilt when LOD levels change as the camera moves.
This could result in frame drops if moving across the map at high speed.
For this reason, it is not recommended to change this setting if you want to change the LOD.
If you want to do that, first try using the 'vertex lod mod' setting to configure the detail of the terrain outlines
to your liking and then use 'composite map resolution' to configure the texture detail to your liking.
But these settings can only be changed in multiples of two, so you may want to adjust 'lod factor' afterwards for even more fine-tuning.
composite map level
-------------------
:Type: integer
:Range: >= -3
:Default: 0
Controls at which minimum size (in 2^value cell units) terrain chunks will start to use a composite map instead of the high-detail textures.
With value -3 composite maps are used everywhere.
A composite map is a pre-rendered texture that contains all the texture layers combined.
Note that resolution of composite maps is currently always fixed at 'composite map resolution',
regardless of the resolution of the underlying terrain textures.
If high-detail texture replacers are used, probably it is worth to increase 'composite map resolution' setting value.
composite map resolution
------------------------
:Type: integer
:Range: >0
:Default: 512
Controls the resolution of composite maps. Larger values result in increased detail,
but may take longer to prepare and thus could result in longer loading times and an increased chance of frame drops during play.
As with most other texture resolution settings, it's most efficient to use values that are powers of two.
An easy way to observe changes to loading time is to load a save in an interior next to an exterior door
(so it will start preloding terrain) and watch how long it takes for the 'Composite' counter on the F4 panel to fall to zero.
max composite geometry size
---------------------------
:Type: float
:Range: >=1.0
:Default: 4.0
Controls the maximum size of simple composite geometry chunk in cell units. With small values there will more draw calls and small textures,
but higher values create more overdraw (not every texture layer is used everywhere).

View file

@ -90,6 +90,22 @@ pointers cache size = 40
# If true, use paging and LOD algorithms to display the entire terrain. If false, only display terrain of the loaded cells
distant terrain = false
# Controls how the Quad Tree is split. This affects Vertex LOD, Texture LOD and load times. Values > 1 increase detail, values < 1 reduce detail.
lod factor = 1.0
# Controls only the Vertex LOD. Change in increments of 1, each change doubles (or halves) the number of vertices. Values > 0 increase detail, values < 0 reduce detail.
vertex lod mod = 0
# Controls when the distant terrain will flip to composited textures instead of high-detail textures, should be >= -3.
# Higher value is more detailed textures.
composite map level = 0
# Controls the resolution of composite maps.
composite map resolution = 512
# Controls the maximum size of composite geometry, should be >= 1.0. With low values there will be many small chunks, with high values - lesser count of bigger chunks.
max composite geometry size = 4.0
[Fog]
# If true, use extended fog parameters for distant terrain not controlled by