Update Recastnavigation to 3a619d773deb7e3a15ee215217c825995fe71312

pull/541/head
elsid 6 years ago
parent 2b3bc4fe61
commit dbf6780dde
No known key found for this signature in database
GPG Key ID: B845CB9FEE18AB40

@ -1,36 +1,72 @@
sudo: false
language: cpp
branches:
only:
- master
- coverity_scan
- /recast-.*$/
# Build with gcc and clang.
compiler:
- gcc
- clang
# Build both debug and release configurations, through use of an environment variable in the build matrix.
env:
- BUILD_TYPE=debug CMAKE_BUILD_TYPE=Debug
- BUILD_TYPE=release CMAKE_BUILD_TYPE=Release
sudo: false
addons:
apt:
packages:
- libsdl2-dev
sources:
- ubuntu-toolchain-r-test
- llvm-toolchain-xenial-7
packages: [ cmake, clang-7, clang-tools-7, gcc-8, g++-8, libsdl2-dev ]
install:
- wget https://github.com/premake/premake-core/releases/download/v5.0.0-alpha12/premake-5.0.0-alpha12-linux.tar.gz -O premake.tar.gz
- tar -xf premake.tar.gz
- rm premake.tar.gz
matrix:
include:
- name: Recastnavigation (all) on MacOS xcode9.4
os: osx
osx_image: xcode9.4
before_install:
- brew update
- brew install sdl2
if: branch != coverity_scan
- name: Recastnavigation on Ubuntu Xenial GCC-5
os: linux
dist: xenial
sudo: required
if: branch != coverity_scan
- name: Recastnavigation on Ubuntu Xenial GCC-8
os: linux
dist: xenial
sudo: required
env:
- MATRIX_EVAL="CC=gcc-8 && CXX=g++-8"
if: branch != coverity_scan
- name: Recastnavigation on Ubuntu Xenial GCC-5 using Premake5
os: linux
dist: xenial
sudo: required
if: branch != coverity_scan
before_install:
- wget https://github.com/premake/premake-core/releases/download/v5.0.0-alpha12/premake-5.0.0-alpha12-linux.tar.gz -O premake.tar.gz
- tar -xf premake.tar.gz
env:
- PREMAKE=1
- name: Recastnavigation on Ubuntu Xenial Clang-7 with Static Analysis
os: linux
dist: xenial
sudo: required
env:
- MATRIX_EVAL="CC=clang-7 && CXX=clang++-7"
- ANALYZE="scan-build-7 --force-analyze-debug-code --use-cc clang-7 --use-c++ clang++-7"
if: branch != coverity_scan
compiler: clang
- name: Recastnavigation Coverity Scan
os: linux
dist: xenial
sudo: required
if: branch = coverity_scan
# Run premake to generate makefiles.
# Have to cd into directory and back out since premake5 doesn't appear to accept a directory argument.
before_script:
- cd RecastDemo && ../premake5 gmake && cd ..
- mkdir build && cd build && cmake -D CMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} .. && cd ..
- if [ "${TRAVIS_OS_NAME}" = "linux" ]; then eval "${MATRIX_EVAL}"; fi
- if [ "${PREMAKE}" = "1" ]; then cd RecastDemo && ../premake5 gmake && cd ..; fi
- if [ "${PREMAKE}" != "1" ]; then mkdir -p build && cd build && ${ANALYZE} cmake ../ && cd ..; fi
# Run make in the directory containing generated makefiles, on the configuration specified by the environment variable.
script:
- make -C RecastDemo/Build/gmake -j$(nproc) config=${BUILD_TYPE}
- RecastDemo/Bin/Tests
- make -C build -j$(nproc)
- cd build && ctest
script: # 2 CPUs on Travis-CI + 1 extra for IO bound process
- if [ "${PREMAKE}" = "1" ]; then make -C RecastDemo/Build/gmake -j3; fi
- if [ "${PREMAKE}" != "1" ]; then make -C build -j3; fi
- if [ "${PREMAKE}" = "1" ]; then RecastDemo/Bin/Tests; fi
- if [ "${PREMAKE}" != "1" ]; then cd build && ctest; fi

@ -283,6 +283,28 @@ inline bool dtVequal(const float* p0, const float* p1)
return d < thr;
}
/// Checks that the specified vector's components are all finite.
/// @param[in] v A point. [(x, y, z)]
/// @return True if all of the point's components are finite, i.e. not NaN
/// or any of the infinities.
inline bool dtVisfinite(const float* v)
{
bool result =
dtMathIsfinite(v[0]) &&
dtMathIsfinite(v[1]) &&
dtMathIsfinite(v[2]);
return result;
}
/// Checks that the specified vector's 2D components are finite.
/// @param[in] v A point. [(x, y, z)]
inline bool dtVisfinite2D(const float* v)
{
bool result = dtMathIsfinite(v[0]) && dtMathIsfinite(v[2]);
return result;
}
/// Derives the dot product of two vectors on the xz-plane. (@p u . @p v)
/// @param[in] u A vector [(x, y, z)]
/// @param[in] v A vector [(x, y, z)]

@ -8,6 +8,9 @@ Members in this module are wrappers around the standard math library
#define DETOURMATH_H
#include <math.h>
// This include is required because libstdc++ has problems with isfinite
// if cmath is included before math.h.
#include <cmath>
inline float dtMathFabsf(float x) { return fabsf(x); }
inline float dtMathSqrtf(float x) { return sqrtf(x); }
@ -16,5 +19,6 @@ inline float dtMathCeilf(float x) { return ceilf(x); }
inline float dtMathCosf(float x) { return cosf(x); }
inline float dtMathSinf(float x) { return sinf(x); }
inline float dtMathAtan2f(float y, float x) { return atan2f(y, x); }
inline bool dtMathIsfinite(float x) { return std::isfinite(x); }
#endif

@ -204,32 +204,31 @@ void dtCalcPolyCenter(float* tc, const unsigned short* idx, int nidx, const floa
bool dtClosestHeightPointTriangle(const float* p, const float* a, const float* b, const float* c, float& h)
{
float v0[3], v1[3], v2[3];
dtVsub(v0, c,a);
dtVsub(v1, b,a);
dtVsub(v2, p,a);
const float dot00 = dtVdot2D(v0, v0);
const float dot01 = dtVdot2D(v0, v1);
const float dot02 = dtVdot2D(v0, v2);
const float dot11 = dtVdot2D(v1, v1);
const float dot12 = dtVdot2D(v1, v2);
// Compute barycentric coordinates
const float invDenom = 1.0f / (dot00 * dot11 - dot01 * dot01);
const float u = (dot11 * dot02 - dot01 * dot12) * invDenom;
const float v = (dot00 * dot12 - dot01 * dot02) * invDenom;
// Compute scaled barycentric coordinates
float denom = v0[0] * v1[2] - v0[2] * v1[0];
float u = v1[2] * v2[0] - v1[0] * v2[2];
float v = v0[0] * v2[2] - v0[2] * v2[0];
if (denom < 0) {
denom = -denom;
u = -u;
v = -v;
}
// The (sloppy) epsilon is needed to allow to get height of points which
// are interpolated along the edges of the triangles.
static const float EPS = 1e-4f;
float epsilon = - 1e-4f * denom;
// If point lies inside the triangle, return interpolated ycoord.
if (u >= -EPS && v >= -EPS && (u+v) <= 1+EPS)
{
h = a[1] + v0[1]*u + v1[1]*v;
if (u >= epsilon && v >= epsilon && (u+v) <= denom - epsilon) {
h = a[1] + (v0[1]*u + v1[1]*v) / denom;
return true;
}
return false;
}

@ -222,7 +222,10 @@ dtStatus dtNavMeshQuery::findRandomPoint(const dtQueryFilter* filter, float (*fr
dtPolyRef* randomRef, float* randomPt) const
{
dtAssert(m_nav);
if (!filter || !frand || !randomRef || !randomPt)
return DT_FAILURE | DT_INVALID_PARAM;
// Randomly pick one tile. Assume that all tiles cover roughly the same area.
const dtMeshTile* tile = 0;
float tsum = 0.0f;
@ -319,8 +322,13 @@ dtStatus dtNavMeshQuery::findRandomPointAroundCircle(dtPolyRef startRef, const f
dtAssert(m_openList);
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
if (!m_nav->isValidPolyRef(startRef) ||
!centerPos || !dtVisfinite(centerPos) ||
maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
!filter || !frand || !randomRef || !randomPt)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
const dtMeshTile* startTile = 0;
const dtPoly* startPoly = 0;
@ -512,6 +520,9 @@ dtStatus dtNavMeshQuery::closestPointOnPoly(dtPolyRef ref, const float* pos, flo
return DT_FAILURE | DT_INVALID_PARAM;
if (!tile)
return DT_FAILURE | DT_INVALID_PARAM;
if (!pos || !dtVisfinite(pos) || !closest)
return DT_FAILURE | DT_INVALID_PARAM;
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
@ -607,6 +618,9 @@ dtStatus dtNavMeshQuery::closestPointOnPolyBoundary(dtPolyRef ref, const float*
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
if (!pos || !dtVisfinite(pos) || !closest)
return DT_FAILURE | DT_INVALID_PARAM;
// Collect vertices.
float verts[DT_VERTS_PER_POLYGON*3];
@ -659,6 +673,9 @@ dtStatus dtNavMeshQuery::getPolyHeight(dtPolyRef ref, const float* pos, float* h
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
if (!pos || !dtVisfinite2D(pos))
return DT_FAILURE | DT_INVALID_PARAM;
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
@ -767,6 +784,8 @@ dtStatus dtNavMeshQuery::findNearestPoly(const float* center, const float* halfE
if (!nearestRef)
return DT_FAILURE | DT_INVALID_PARAM;
// queryPolygons below will check rest of params
dtFindNearestPolyQuery query(this, center);
@ -972,8 +991,12 @@ dtStatus dtNavMeshQuery::queryPolygons(const float* center, const float* halfExt
{
dtAssert(m_nav);
if (!center || !halfExtents || !filter || !query)
if (!center || !dtVisfinite(center) ||
!halfExtents || !dtVisfinite(halfExtents) ||
!filter || !query)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
float bmin[3], bmax[3];
dtVsub(bmin, center, halfExtents);
@ -1021,14 +1044,20 @@ dtStatus dtNavMeshQuery::findPath(dtPolyRef startRef, dtPolyRef endRef,
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
if (pathCount)
*pathCount = 0;
if (!pathCount)
return DT_FAILURE | DT_INVALID_PARAM;
*pathCount = 0;
// Validate input
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
!startPos || !endPos || !filter || maxPath <= 0 || !path || !pathCount)
!startPos || !dtVisfinite(startPos) ||
!endPos || !dtVisfinite(endPos) ||
!filter || !path || maxPath <= 0)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
if (startRef == endRef)
{
@ -1263,18 +1292,21 @@ dtStatus dtNavMeshQuery::initSlicedFindPath(dtPolyRef startRef, dtPolyRef endRef
m_query.status = DT_FAILURE;
m_query.startRef = startRef;
m_query.endRef = endRef;
dtVcopy(m_query.startPos, startPos);
dtVcopy(m_query.endPos, endPos);
if (startPos)
dtVcopy(m_query.startPos, startPos);
if (endPos)
dtVcopy(m_query.endPos, endPos);
m_query.filter = filter;
m_query.options = options;
m_query.raycastLimitSqr = FLT_MAX;
if (!startRef || !endRef)
return DT_FAILURE | DT_INVALID_PARAM;
// Validate input
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef))
if (!m_nav->isValidPolyRef(startRef) || !m_nav->isValidPolyRef(endRef) ||
!startPos || !dtVisfinite(startPos) ||
!endPos || !dtVisfinite(endPos) || !filter)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
// trade quality with performance?
if (options & DT_FINDPATH_ANY_ANGLE)
@ -1530,7 +1562,13 @@ dtStatus dtNavMeshQuery::updateSlicedFindPath(const int maxIter, int* doneIters)
dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount, const int maxPath)
{
if (!pathCount)
return DT_FAILURE | DT_INVALID_PARAM;
*pathCount = 0;
if (!path || maxPath <= 0)
return DT_FAILURE | DT_INVALID_PARAM;
if (dtStatusFailed(m_query.status))
{
@ -1615,12 +1653,13 @@ dtStatus dtNavMeshQuery::finalizeSlicedFindPath(dtPolyRef* path, int* pathCount,
dtStatus dtNavMeshQuery::finalizeSlicedFindPathPartial(const dtPolyRef* existing, const int existingSize,
dtPolyRef* path, int* pathCount, const int maxPath)
{
if (!pathCount)
return DT_FAILURE | DT_INVALID_PARAM;
*pathCount = 0;
if (existingSize == 0)
{
return DT_FAILURE;
}
if (!existing || existingSize <= 0 || !path || !pathCount || maxPath <= 0)
return DT_FAILURE | DT_INVALID_PARAM;
if (dtStatusFailed(m_query.status))
{
@ -1823,14 +1862,19 @@ dtStatus dtNavMeshQuery::findStraightPath(const float* startPos, const float* en
int* straightPathCount, const int maxStraightPath, const int options) const
{
dtAssert(m_nav);
*straightPathCount = 0;
if (!maxStraightPath)
if (!straightPathCount)
return DT_FAILURE | DT_INVALID_PARAM;
if (!path[0])
*straightPathCount = 0;
if (!startPos || !dtVisfinite(startPos) ||
!endPos || !dtVisfinite(endPos) ||
!path || pathSize <= 0 || !path[0] ||
maxStraightPath <= 0)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
dtStatus stat = 0;
@ -2070,13 +2114,19 @@ dtStatus dtNavMeshQuery::moveAlongSurface(dtPolyRef startRef, const float* start
dtAssert(m_nav);
dtAssert(m_tinyNodePool);
*visitedCount = 0;
// Validate input
if (!startRef)
if (!visitedCount)
return DT_FAILURE | DT_INVALID_PARAM;
if (!m_nav->isValidPolyRef(startRef))
*visitedCount = 0;
if (!m_nav->isValidPolyRef(startRef) ||
!startPos || !dtVisfinite(startPos) ||
!endPos || !dtVisfinite(endPos) ||
!filter || !resultPos || !visited ||
maxVisitedSize <= 0)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
dtStatus status = DT_SUCCESS;
@ -2484,16 +2534,23 @@ dtStatus dtNavMeshQuery::raycast(dtPolyRef startRef, const float* startPos, cons
dtRaycastHit* hit, dtPolyRef prevRef) const
{
dtAssert(m_nav);
if (!hit)
return DT_FAILURE | DT_INVALID_PARAM;
hit->t = 0;
hit->pathCount = 0;
hit->pathCost = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
return DT_FAILURE | DT_INVALID_PARAM;
if (prevRef && !m_nav->isValidPolyRef(prevRef))
if (!m_nav->isValidPolyRef(startRef) ||
!startPos || !dtVisfinite(startPos) ||
!endPos || !dtVisfinite(endPos) ||
!filter ||
(prevRef && !m_nav->isValidPolyRef(prevRef)))
{
return DT_FAILURE | DT_INVALID_PARAM;
}
float dir[3], curPos[3], lastPos[3];
float verts[DT_VERTS_PER_POLYGON*3+3];
@ -2735,11 +2792,18 @@ dtStatus dtNavMeshQuery::findPolysAroundCircle(dtPolyRef startRef, const float*
dtAssert(m_nodePool);
dtAssert(m_openList);
if (!resultCount)
return DT_FAILURE | DT_INVALID_PARAM;
*resultCount = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
if (!m_nav->isValidPolyRef(startRef) ||
!centerPos || !dtVisfinite(centerPos) ||
radius < 0 || !dtMathIsfinite(radius) ||
!filter || maxResult < 0)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
m_nodePool->clear();
m_openList->clear();
@ -2901,8 +2965,18 @@ dtStatus dtNavMeshQuery::findPolysAroundShape(dtPolyRef startRef, const float* v
dtAssert(m_nav);
dtAssert(m_nodePool);
dtAssert(m_openList);
if (!resultCount)
return DT_FAILURE | DT_INVALID_PARAM;
*resultCount = 0;
if (!m_nav->isValidPolyRef(startRef) ||
!verts || nverts < 3 ||
!filter || maxResult < 0)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
@ -3088,13 +3162,20 @@ dtStatus dtNavMeshQuery::findLocalNeighbourhood(dtPolyRef startRef, const float*
{
dtAssert(m_nav);
dtAssert(m_tinyNodePool);
if (!resultCount)
return DT_FAILURE | DT_INVALID_PARAM;
*resultCount = 0;
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
if (!m_nav->isValidPolyRef(startRef) ||
!centerPos || !dtVisfinite(centerPos) ||
radius < 0 || !dtMathIsfinite(radius) ||
!filter || maxResult < 0)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
static const int MAX_STACK = 48;
dtNode* stack[MAX_STACK];
int nstack = 0;
@ -3301,13 +3382,19 @@ dtStatus dtNavMeshQuery::getPolyWallSegments(dtPolyRef ref, const dtQueryFilter*
const int maxSegments) const
{
dtAssert(m_nav);
if (!segmentCount)
return DT_FAILURE | DT_INVALID_PARAM;
*segmentCount = 0;
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
if (dtStatusFailed(m_nav->getTileAndPolyByRef(ref, &tile, &poly)))
return DT_FAILURE | DT_INVALID_PARAM;
if (!filter || !segmentVerts || maxSegments < 0)
return DT_FAILURE | DT_INVALID_PARAM;
int n = 0;
static const int MAX_INTERVAL = 16;
@ -3455,8 +3542,13 @@ dtStatus dtNavMeshQuery::findDistanceToWall(dtPolyRef startRef, const float* cen
dtAssert(m_openList);
// Validate input
if (!startRef || !m_nav->isValidPolyRef(startRef))
if (!m_nav->isValidPolyRef(startRef) ||
!centerPos || !dtVisfinite(centerPos) ||
maxRadius < 0 || !dtMathIsfinite(maxRadius) ||
!filter || !hitDist || !hitPos || !hitNormal)
{
return DT_FAILURE | DT_INVALID_PARAM;
}
m_nodePool->clear();
m_openList->clear();

@ -38,11 +38,13 @@ endif()
add_dependencies(RecastDemo DebugUtils Detour DetourCrowd DetourTileCache Recast)
target_link_libraries(RecastDemo ${OPENGL_LIBRARIES} SDL2::SDL2main DebugUtils Detour DetourCrowd DetourTileCache Recast)
install(TARGETS RecastDemo RUNTIME DESTINATION bin)
install(TARGETS RecastDemo
RUNTIME DESTINATION bin
BUNDLE DESTINATION bin)
install(DIRECTORY Bin/Meshes DESTINATION bin)
install(DIRECTORY Bin/TestCases DESTINATION bin)
install(FILES Bin/DroidSans.ttf DESTINATION bin)
if (WIN32)
install(FILES "${SDL2_RUNTIME_LIBRARY}" DESTINATION bin)
endif()
endif()
Loading…
Cancel
Save