#include "buffercache.hpp" #include #include #include #include "defs.hpp" namespace { template osg::ref_ptr createIndexBuffer(unsigned int flags, unsigned int verts) { // LOD level n means every 2^n-th vertex is kept size_t lodLevel = (flags >> (4*4)); size_t lodDeltas[4]; for (int i=0; i<4; ++i) lodDeltas[i] = (flags >> (4*i)) & (0xf); bool anyDeltas = (lodDeltas[Terrain::North] || lodDeltas[Terrain::South] || lodDeltas[Terrain::West] || lodDeltas[Terrain::East]); size_t increment = 1 << lodLevel; assert(increment < verts); osg::ref_ptr indices (new IndexArrayType(osg::PrimitiveSet::TRIANGLES)); indices->reserve((verts-1)*(verts-1)*2*3 / increment); size_t rowStart = 0, colStart = 0, rowEnd = verts-1, colEnd = verts-1; // If any edge needs stitching we'll skip all edges at this point, // mainly because stitching one edge would have an effect on corners and on the adjacent edges if (anyDeltas) { colStart += increment; colEnd -= increment; rowEnd -= increment; rowStart += increment; } for (size_t row = rowStart; row < rowEnd; row += increment) { for (size_t col = colStart; col < colEnd; col += increment) { // diamond pattern if ((row + col%2) % 2 == 1) { indices->push_back(verts*(col+increment)+row); indices->push_back(verts*(col+increment)+row+increment); indices->push_back(verts*col+row+increment); indices->push_back(verts*col+row); indices->push_back(verts*(col+increment)+row); indices->push_back(verts*(col)+row+increment); } else { indices->push_back(verts*col+row); indices->push_back(verts*(col+increment)+row+increment); indices->push_back(verts*col+row+increment); indices->push_back(verts*col+row); indices->push_back(verts*(col+increment)+row); indices->push_back(verts*(col+increment)+row+increment); } } } size_t innerStep = increment; if (anyDeltas) { // Now configure LOD transitions at the edges - this is pretty tedious, // and some very long and boring code, but it works great // South size_t row = 0; size_t outerStep = 1 << (lodDeltas[Terrain::South] + lodLevel); for (size_t col = 0; col < verts-1; col += outerStep) { indices->push_back(verts*col+row); indices->push_back(verts*(col+outerStep)+row); // Make sure not to touch the right edge if (col+outerStep == verts-1) indices->push_back(verts*(col+outerStep-innerStep)+row+innerStep); else indices->push_back(verts*(col+outerStep)+row+innerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the left or right edges if (col+i == 0 || col+i == verts-1-innerStep) continue; indices->push_back(verts*(col)+row); indices->push_back(verts*(col+i+innerStep)+row+innerStep); indices->push_back(verts*(col+i)+row+innerStep); } } // North row = verts-1; outerStep = size_t(1) << (lodDeltas[Terrain::North] + lodLevel); for (size_t col = 0; col < verts-1; col += outerStep) { indices->push_back(verts*(col+outerStep)+row); indices->push_back(verts*col+row); // Make sure not to touch the left edge if (col == 0) indices->push_back(verts*(col+innerStep)+row-innerStep); else indices->push_back(verts*col+row-innerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the left or right edges if (col+i == 0 || col+i == verts-1-innerStep) continue; indices->push_back(verts*(col+i)+row-innerStep); indices->push_back(verts*(col+i+innerStep)+row-innerStep); indices->push_back(verts*(col+outerStep)+row); } } // West size_t col = 0; outerStep = size_t(1) << (lodDeltas[Terrain::West] + lodLevel); for (size_t row = 0; row < verts-1; row += outerStep) { indices->push_back(verts*col+row+outerStep); indices->push_back(verts*col+row); // Make sure not to touch the top edge if (row+outerStep == verts-1) indices->push_back(verts*(col+innerStep)+row+outerStep-innerStep); else indices->push_back(verts*(col+innerStep)+row+outerStep); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the top or bottom edges if (row+i == 0 || row+i == verts-1-innerStep) continue; indices->push_back(verts*col+row); indices->push_back(verts*(col+innerStep)+row+i); indices->push_back(verts*(col+innerStep)+row+i+innerStep); } } // East col = verts-1; outerStep = size_t(1) << (lodDeltas[Terrain::East] + lodLevel); for (size_t row = 0; row < verts-1; row += outerStep) { indices->push_back(verts*col+row); indices->push_back(verts*col+row+outerStep); // Make sure not to touch the bottom edge if (row == 0) indices->push_back(verts*(col-innerStep)+row+innerStep); else indices->push_back(verts*(col-innerStep)+row); for (size_t i = 0; i < outerStep; i += innerStep) { // Make sure not to touch the top or bottom edges if (row+i == 0 || row+i == verts-1-innerStep) continue; indices->push_back(verts*col+row+outerStep); indices->push_back(verts*(col-innerStep)+row+i+innerStep); indices->push_back(verts*(col-innerStep)+row+i); } } } return indices; } } namespace Terrain { osg::ref_ptr BufferCache::getUVBuffer() { OpenThreads::ScopedLock lock(mUvBufferMutex); if (mUvBufferMap.find(mNumVerts) != mUvBufferMap.end()) { return mUvBufferMap[mNumVerts]; } int vertexCount = mNumVerts * mNumVerts; osg::ref_ptr uvs (new osg::Vec2Array); uvs->reserve(vertexCount); for (unsigned int col = 0; col < mNumVerts; ++col) { for (unsigned int row = 0; row < mNumVerts; ++row) { uvs->push_back(osg::Vec2f(col / static_cast(mNumVerts-1), ((mNumVerts-1) - row) / static_cast(mNumVerts-1))); } } // Assign a VBO here to enable state sharing between different Geometries. uvs->setVertexBufferObject(new osg::VertexBufferObject); mUvBufferMap[mNumVerts] = uvs; return uvs; } osg::ref_ptr BufferCache::getIndexBuffer(unsigned int flags) { OpenThreads::ScopedLock lock(mIndexBufferMutex); unsigned int verts = mNumVerts; if (mIndexBufferMap.find(flags) != mIndexBufferMap.end()) { return mIndexBufferMap[flags]; } osg::ref_ptr buffer; if (verts*verts <= (0xffffu)) buffer = createIndexBuffer(flags, verts); else buffer = createIndexBuffer(flags, verts); // Assign a EBO here to enable state sharing between different Geometries. buffer->setElementBufferObject(new osg::ElementBufferObject); mIndexBufferMap[flags] = buffer; return buffer; } }