/* OpenMW - The completely unofficial reimplementation of Morrowind Copyright (C) 2008-2009 Nicolay Korslund Email: < korslund@gmail.com > WWW: http://openmw.snaptoad.com/ This file (generator.d) is part of the OpenMW package. OpenMW is distributed as free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 3, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License version 3 along with this program. If not, see http://www.gnu.org/licenses/ . */ // This module is responsible for generating the cache files. module terrain.generator; import std.stdio; import std.string; import std.math2; import std.c.string; import terrain.cachewriter; import terrain.archive; import terrain.esmland; import terrain.terrain; import terrain.bindings; import util.cachefile; import monster.util.aa; import monster.util.string; import monster.vm.dbg; int mCount; // Texture sizes for the various levels. For the most detailed level // (level 1), this give the size of the alpha splatting textures rather // than a final texture. int[] texSizes; CacheWriter cache; void generate(char[] filename) { makePath(cacheDir); cache.openFile(filename); // Find the maxiumum distance from (0,0) in any direction int max = mwland.getMaxCoord(); // Round up to nearest power of 2 int depth=1; while(max) { max >>= 1; depth++; assert(depth <= 8); } max = 1 << depth-1; // We already know the answers assert(max == 32); assert(depth == 6); // Set the texture sizes. TODO: These should be config options, // perhaps - or maybe a result of some higher-level detail setting. texSizes.length = depth+1; texSizes[6] = 1024; texSizes[5] = 512; texSizes[4] = 256; texSizes[3] = 256; texSizes[2] = 512; texSizes[1] = 64; // Set some general parameters for the runtime cache.setParams(depth+1, texSizes[1]); // Create some common data first writefln("Generating common data"); genDefaults(); genIndexData(); writefln("Generating quad data"); GenLevelResult gen; // Start at one level above the top, but don't generate data for it genLevel(depth+1, -max, -max, gen, false); writefln("Writing index file"); cache.finish(); writefln("Pregeneration done. Results written to ", filename); } struct GenLevelResult { QuadHolder quad; bool hasMesh; bool isAlpha; int width; ubyte[] data; void allocImage(int _width) { assert(isEmpty()); width = _width; data.length = width*width*3; quad.meshes.length = 1; assert(!hasAlpha()); } void allocAlphas(int _width, int texNum) { assert(isEmpty() || hasMesh); width = _width; data.length = width*width*texNum; isAlpha = true; // Set up the alpha images. TODO: We have to split these over // several meshes, but for now pretend that we're using only // one. assert(quad.meshes.length == 1); quad.meshes[0].alphas.length = texNum; assert(alphaNum() == texNum); int s = width*width; for(int i=0;i 2); genLevel2Map(null, defaults[2]); for(int i=3; i=0&&v>=0); assert(u<=1&&v<=1); vertList[index++] = u; vertList[index++] = v; } assert(index == vertList.length); // Store the buffer cache.addVertexBuffer(lev,vertList); } // Pregenerate triangle indices int size = 64*64*6; auto indList = new ushort[size]; int index = 0; bool flag = false; for ( int y = 0; y < 64; y++ ) { for ( int x = 0; x < 64; x++ ) { int line1 = y*65 + x; int line2 = (y+1)*65 + x; if ( flag ) { indList[index++] = line1; indList[index++] = line1 + 1; indList[index++] = line2; indList[index++] = line2; indList[index++] = line1 + 1; indList[index++] = line2 + 1; } else { indList[index++] = line1; indList[index++] = line2 + 1; indList[index++] = line2; indList[index++] = line1; indList[index++] = line1 + 1; indList[index++] = line2 + 1; } flag = !flag; //flip tris for next time } flag = !flag; //flip tries for next row } assert(index == indList.length); cache.setIndexBuffer(indList); } void genLevel(int level, int X, int Y, ref GenLevelResult result, bool makeData = true) { scope auto _trc = new MTrace(format("genLevel(%s,%s,%s)",level,X,Y)); result.quad.info.cellX = X; result.quad.info.cellY = Y; result.quad.info.level = level; result.quad.info.worldWidth = 8192 << (level-1); assert(result.isEmpty); // Level 1 (most detailed) is handled differently from the // other leves. if(level == 1) { assert(makeData); if(!mwland.hasData(X,Y)) // Oops, there's no data for this cell. Skip it. return; // The mesh is generated in pieces rather than as one part. genLevel1Meshes(result); // We also generate alpha maps instead of the actual textures. genCellAlpha(result); if(!result.isEmpty()) { // Store the information we just created assert(result.hasAlpha()); cache.writeQuad(result.quad); } return; } assert(level > 1); // Number of cells along one side in each sub-quad (not in this // quad) int cells = 1 << (level-2); // Call the sub-levels and store the result GenLevelResult sub[4]; genLevel(level-1, X, Y, sub[0]); // NW genLevel(level-1, X+cells, Y, sub[1]); // NE genLevel(level-1, X, Y+cells, sub[2]); // SW genLevel(level-1, X+cells, Y+cells, sub[3]); // SE // Make sure we deallocate everything when the function exists scope(exit) { foreach(ref s; sub) s.kill(); } // Mark the sub-quads that have data bool anyUsed = false; for(int i=0;i<4;i++) { bool used = !sub[i].isEmpty(); result.quad.info.hasChild[i] = used; anyUsed = anyUsed || used; } if(!anyUsed) { // If our children are empty, then we are also empty. assert(result.isEmpty()); return; } if(makeData) { if(level == 2) // For level==2, generate a new texture from the alpha maps. genLevel2Map(sub, result); else // Level 3+, merge the images from the previous levels mergeMaps(sub, result); // Create the landscape mesh by merging the result from the // children. mergeMesh(sub, result); } // Store the result in the cache file cache.writeQuad(result.quad); } // Generate mesh data for one cell void genLevel1Meshes(ref GenLevelResult res) { // Constants int intervals = 64; int vertNum = intervals+1; int vertSep = 128; // Allocate the mesh buffer res.allocMesh(vertNum); int cellX = res.quad.info.cellX; int cellY = res.quad.info.cellY; assert(res.quad.info.level==1); MeshHolder *mh = &res.quad.meshes[0]; MeshInfo *mi = &mh.info; // Set some basic data mi.worldWidth = vertSep*intervals; assert(mi.worldWidth == 8192); auto land = mwland.getLandData(cellX, cellY); byte[] heightData = land.vhgt.heightData; byte[] normals = land.normals; mi.heightOffset = land.vhgt.heightOffset; float max=-1000000.0; float min=1000000.0; byte[] verts = mh.vertexBuffer; int index = 0; // Loop over all the vertices in the mesh float rowheight = mi.heightOffset; float height; for(int y=0; y<65; y++) for(int x=0; x<65; x++) { // Offset of this vertex within the source buffer int offs=y*65+x; // The vertex data from the ESM byte data = heightData[offs]; // Write the height value as a short (2 bytes) *(cast(short*)&verts[index]) = data; index+=2; // Calculate the height here, even though we don't store // it. We use it to find the min and max values. if(x == 0) { // Set the height to the row height height = rowheight; // First value in each row adjusts the row height rowheight += data; } // Adjust the accumulated height with the new data. height += data; // Calculate the min and max max = height > max ? height : max; min = height < min ? height : min; // Store the normals for(int k=0; k<3; k++) verts[index++] = normals[offs*3+k]; } // Make sure we wrote exactly the right amount of data assert(index == verts.length); // Store the min/max values mi.minHeight = min * 8; mi.maxHeight = max * 8; } // Generate the alpha splatting bitmap for one cell. void genCellAlpha(ref GenLevelResult res) { scope auto _trc = new MTrace("genCellAlpha"); int cellX = res.quad.info.cellX; int cellY = res.quad.info.cellY; assert(res.quad.info.level == 1); // Set the texture name - it's used internally as the material name // at runtime. assert(res.quad.meshes.length == 1); res.setTexName("AMAT_"~toString(cellX)~"_"~toString(cellY)); // List of texture indices for this cell. A cell has 16x16 texture // squares. int ltex[16][16]; auto ltexData = mwland.getLTEXData(cellX, cellY); // A map from the global texture index to the local index for this // cell. int[int] textureMap; int texNum = 0; // Number of local indices // Loop through all the textures in the cell and get the indices bool isDef = true; for(int ty = 0; ty < 16; ty++) for(int tx = 0; tx < 16; tx++) { // Get the texture in a given cell char[] textureName = ltexData.getTexture(tx,ty); // If the default texture is used, skip it. The background // texture covers it (for now - we might change that later.) if(textureName == "") { ltex[ty][tx] = -1; continue; } isDef = false; // Store the global index int index = cache.addTexture(textureName); ltex[ty][tx] = index; // Add the index to the map if(!(index in textureMap)) textureMap[index] = texNum++; } assert(texNum == textureMap.length); // If we only found default textures, exit now. if(isDef) return; int imageRes = texSizes[1]; int dataSize = imageRes*imageRes; // Number of alpha pixels per texture square int pps = imageRes/16; // Make sure there are at least as many alpha pixels as there are // textures assert(imageRes >= 16); assert(imageRes%16 == 0); assert(pps >= 1); assert(texNum >= 1); // Allocate the alpha images res.allocAlphas(imageRes, texNum); assert(res.hasAlpha() && !res.isEmpty()); // Write the indices to the result list foreach(int global, int local; textureMap) res.setAlphaTex(local, global); ubyte *uptr = res.data.ptr; // Loop over all textures again. This time, do alpha splatting. for(int ty = 0; ty < 16; ty++) for(int tx = 0; tx < 16; tx++) { // Get the global texture index for this square, if any. int index = ltex[ty][tx]; if(index == -1) continue; // Get the local index index = textureMap[index]; // Get the offset of this square long offs = index*dataSize + pps*(ty*imageRes + tx); // FIXME: Make real splatting later. This is just // placeholder code. // Set alphas to full for this square for(int y=0; y level); assert(level > 2); int fromSize = texSizes[level-1]; int toSize = texSizes[level]; // Create a new image buffer large enough to hold the four // sub textures res.allocImage(fromSize*2); // Add the four sub-textures for(int mi=0;mi<4;mi++) { ubyte[] src; // Use default texture if no source is present if(maps.length == 0 || maps[mi].isEmpty()) src = defaults[level-1].data; else src = maps[mi].data; assert(src.length == 3*fromSize*fromSize); // Find the sub-part of the destination buffer to write to int x = (mi%2) * fromSize; int y = (mi/2) * fromSize; // Copy the image into the new buffer copyBox(src, res.data, fromSize, fromSize*2, x, y, 3); } // Resize image if necessary if(toSize != 2*fromSize) res.resize(toSize); // Texture file name char[] outname = res.getPNGName(maps.length == 0); // Save the image res.save(outname); } // Copy from one buffer into a sub-region of another buffer void copyBox(ubyte[] src, ubyte[] dst, int srcWidth, int dstWidth, int dstX, int dstY, int pixSize) { int fskip = srcWidth * pixSize; int tskip = dstWidth * pixSize; int rows = srcWidth; int rowSize = srcWidth*pixSize; assert(src.length == pixSize*srcWidth*srcWidth); assert(dst.length == pixSize*dstWidth*dstWidth); assert(srcWidth <= dstWidth); assert(dstX <= dstWidth-srcWidth && dstY <= dstWidth-srcWidth); // Source and destination pointers ubyte *from = src.ptr; ubyte *to = dst.ptr + dstY*tskip + dstX*pixSize; for(;rows>0;rows--) { memcpy(to, from, rowSize); to += tskip; from += fskip; } } // Create the mesh for this level, by merging the meshes from the // previous levels. void mergeMesh(GenLevelResult[] sub, ref GenLevelResult res) { // How much to shift various numbers to the left at this level // (ie. multiply by 2^shift). The height at each vertex is // multiplied by 8 in each cell to get the final value. However, // when we're merging two cells (in each direction), we have to // scale down all the height values by 2 in order to fit the result // in one byte. This means multiplying the factor by 2 for each // level above the cell level. int shift = res.quad.info.level - 1; assert(shift >= 1); assert(sub.length == 4); // Allocate the result buffer res.allocMesh(65); MeshHolder *mh = &res.quad.meshes[0]; MeshInfo *mi = &mh.info; // Basic info mi.worldWidth = 8192 << shift; // Copy the mesh height from the top left mesh mi.heightOffset = sub[0].getHeight(); // Output buffer byte verts[] = mh.vertexBuffer; // Bytes per vertex const int VSIZE = 5; // Used to calculate the max and min heights float minh = 300000.0; float maxh = -300000.0; foreach(si, s; sub) { int SX = si % 2; int SY = si / 2; // Find the offset in the destination buffer int dest = SX*32 + SY*65*32; dest *= VSIZE; void putValue(int val) { assert(val >= short.min && val <= short.max); *(cast(short*)&verts[dest]) = val; dest += 2; } if(s.hasMesh) { auto m = &s.quad.meshes[0]; auto i = &m.info; minh = min(minh, i.minHeight); maxh = max(maxh, i.maxHeight); byte[] source = m.vertexBuffer; int src = 0; int getValue() { int s = *(cast(short*)&source[src]); src += 2; return s; } // Loop through all the vertices in the mesh for(int y=0;y<33;y++) { // Skip the first row in the mesh if there was a mesh // above us. We assume that the previously written row // already has the correct information. if(y==0 && SY != 0) { src += 65*VSIZE; dest += 65*VSIZE; continue; } // Handle the first vertex of the row outside the // loop. int height = getValue(); // If this isn't the very first row, sum up two row // heights and skip the first row. if(y!=0) { // Skip the rest of the row. src += 64*VSIZE + 3; // Add the second height height += getValue(); } putValue(height); // Copy the normal verts[dest++] = source[src++]; verts[dest++] = source[src++]; verts[dest++] = source[src++]; // Loop through the remaining 64 vertices in this row, // processing two at a time. for(int x=0;x<32;x++) { height = getValue(); // Sum up the next two heights src += 3; // Skip normal height += getValue(); // Set the height putValue(height); // Copy the normal verts[dest++] = source[src++]; verts[dest++] = source[src++]; verts[dest++] = source[src++]; } // Skip to the next row dest += 32*VSIZE; } assert(src == source.length); } else { minh = min(minh, -2048); maxh = max(maxh, -2048); // Set all the vertices to zero. for(int y=0;y<33;y++) { if(y==0 && SY != 0) { dest += 65*VSIZE; continue; } for(int x=0;x<33;x++) { if(x==0 && SX != 0) { dest += VSIZE; continue; } // Zero height and vertical normal verts[dest++] = 0; verts[dest++] = 0; verts[dest++] = 0; verts[dest++] = 0; verts[dest++] = 0x7f; } // Skip to the next row dest += 32*VSIZE; } } } mi.minHeight = minh; mi.maxHeight = maxh; assert(minh <= maxh); } // ------- OLD CODE - use these snippets later ------- // About segments: /* NOTES for the gen-phase: Was: // This is pretty messy. Btw: 128*16 == 2048 == // CELL_WIDTH/4 // 65 points across one cell means 64 intervals, and 17 points // means 16=64/4 intervals. So IOW the number of verts when // dividing by D is (65-1)/D + 1 = 64/D+1, which means that D // should divide 64, that is, be a power of two < 64. addNewObject(Ogre::Vector3(x*16*128, 0, y*16*128), //pos 17, //size false, //skirts 0.25f, float(x)/4.0f, float(y)/4.0f);//quad seg location */ /* This was also declared in the original code, you'll need it when creating the cache data size_t vw = mWidth; // mWidth is 17 or 65 if ( mUseSkirts ) vw += 2; // skirts are used for level 2 and up vertCount=vw*vw; */ /** * @brief fills the vertex buffer with data * @todo I don't think tex co-ords are right void calculateVertexValues() { int start = 0; int end = mWidth; if ( mUseSkirts ) { --start; ++end; } for ( int y = start; y < end; y++ ) for ( int x = start; x < end; x++ ) { if ( y < 0 || y > (mWidth-1) || x < 0 || x > (mWidth-1) ) { // These are the skirt vertices. 'Skirts' are simply a // wall at the edges of the mesh that goes straight down, // cutting off the posibility that you might see 'gaps' // between the meshes. Or at least I think that's the // intention. assert(mUseSkirts); // 1st coordinate if ( x < 0 ) *verts++ = 0; else if ( x > (mWidth-1) ) *verts++ = (mWidth-1)*getVertexSeperation(); else *verts++ = x*getVertexSeperation(); // 2nd coordinate *verts++ = -4096; //2048 below base sea floor height // 3rd coordinate if ( y < 0 ) *verts++ = 0; else if ( y > (mWidth-1) ) *verts++ = (mWidth-1)*getVertexSeperation(); else *verts++ = y*getVertexSeperation(); // No normals for ( Ogre::uint i = 0; i < 3; i++ ) *verts++ = 0; // It shouldn't matter if these go over 1 float u = (float)(x) / (mWidth-1); float v = (float)(y) / (mWidth-1); *verts++ = u; *verts++ = v; } else // Covered already void calculateIndexValues() { size_t vw = mWidth-1; if ( mUseSkirts ) vw += 2; const size_t indexCount = (vw)*(vw)*6; //need to manage allocation if not null assert(mIndices==0); // buffer was created here bool flag = false; Ogre::uint indNum = 0; for ( Ogre::uint y = 0; y < (vw); y+=1 ) { for ( Ogre::uint x = 0; x < (vw); x+=1 ) { const int line1 = y * (vw+1) + x; const int line2 = (y + 1) * (vw+1) + x; if ( flag ) { *indices++ = line1; *indices++ = line2; *indices++ = line1 + 1; *indices++ = line1 + 1; *indices++ = line2; *indices++ = line2 + 1; } else { *indices++ = line1; *indices++ = line2; *indices++ = line2 + 1; *indices++ = line1; *indices++ = line2 + 1; *indices++ = line1 + 1; } flag = !flag; //flip tris for next time indNum+=6; } flag = !flag; //flip tries for next row } assert(indNum==indexCount); //return mIndices; } */