#include "pathgrid.hpp" #include "../mwbase/world.hpp" #include "../mwbase/environment.hpp" #include "../mwworld/cellstore.hpp" #include "../mwworld/esmstore.hpp" namespace { // See https://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html // // One of the smallest cost in Seyda Neen is between points 77 & 78: // pt x y // 77 = 8026, 4480 // 78 = 7986, 4218 // // Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300 // (again ignoring z). Using a value of about 300 for D seems like a reasonable // starting point for experiments. If in doubt, just use value 1. // // The distance between 3 & 4 are pretty small, too. // 3 = 5435, 223 // 4 = 5948, 193 // // Approx. 514 Euclidean distance and 533 Manhattan distance. // float manhattan(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b) { return 300.0f * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ)); } // Choose a heuristics - Note that these may not be the best for directed // graphs with non-uniform edge costs. // // distance: // - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2) // - slower but more accurate // // Manhattan: // - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z| // - faster but not the shortest path float costAStar(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b) { //return distance(a, b); return manhattan(a, b); } } namespace MWMechanics { PathgridGraph::PathgridGraph(const MWWorld::CellStore *cell) : mCell(nullptr) , mPathgrid(nullptr) , mGraph(0) , mIsGraphConstructed(false) , mSCCId(0) , mSCCIndex(0) { load(cell); } /* * mGraph is populated with the cost of each allowed edge. * * The data structure is based on the code in buildPath2() but modified. * Please check git history if interested. * * mGraph[v].edges[i].index = w * * v = point index of location "from" * i = index of edges from point v * w = point index of location "to" * * * Example: (notice from p(0) to p(2) is not allowed in this example) * * mGraph[0].edges[0].index = 1 * .edges[1].index = 3 * * mGraph[1].edges[0].index = 0 * .edges[1].index = 2 * .edges[2].index = 3 * * mGraph[2].edges[0].index = 1 * * (etc, etc) * * * low * cost * p(0) <---> p(1) <------------> p(2) * ^ ^ * | | * | +-----> p(3) * +----------------> * high cost */ bool PathgridGraph::load(const MWWorld::CellStore *cell) { if(!cell) return false; if(mIsGraphConstructed) return true; mCell = cell->getCell(); mPathgrid = MWBase::Environment::get().getWorld()->getStore().get().search(*cell->getCell()); if(!mPathgrid) return false; mGraph.resize(mPathgrid->mPoints.size()); for(int i = 0; i < static_cast (mPathgrid->mEdges.size()); i++) { ConnectedPoint neighbour; neighbour.cost = costAStar(mPathgrid->mPoints[mPathgrid->mEdges[i].mV0], mPathgrid->mPoints[mPathgrid->mEdges[i].mV1]); // forward path of the edge neighbour.index = mPathgrid->mEdges[i].mV1; mGraph[mPathgrid->mEdges[i].mV0].edges.push_back(neighbour); // reverse path of the edge // NOTE: These are redundant, ESM already contains the required reverse paths //neighbour.index = mPathgrid->mEdges[i].mV0; //mGraph[mPathgrid->mEdges[i].mV1].edges.push_back(neighbour); } buildConnectedPoints(); mIsGraphConstructed = true; return true; } const ESM::Pathgrid *PathgridGraph::getPathgrid() const { return mPathgrid; } // v is the pathgrid point index (some call them vertices) void PathgridGraph::recursiveStrongConnect(int v) { mSCCPoint[v].first = mSCCIndex; // index mSCCPoint[v].second = mSCCIndex; // lowlink mSCCIndex++; mSCCStack.push_back(v); int w; for(int i = 0; i < static_cast (mGraph[v].edges.size()); i++) { w = mGraph[v].edges[i].index; if(mSCCPoint[w].first == -1) // not visited { recursiveStrongConnect(w); // recurse mSCCPoint[v].second = std::min(mSCCPoint[v].second, mSCCPoint[w].second); } else { if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end()) mSCCPoint[v].second = std::min(mSCCPoint[v].second, mSCCPoint[w].first); } } if(mSCCPoint[v].second == mSCCPoint[v].first) { // new component do { w = mSCCStack.back(); mSCCStack.pop_back(); mGraph[w].componentId = mSCCId; } while(w != v); mSCCId++; } return; } /* * mGraph contains the strongly connected component group id's along * with pre-calculated edge costs. * * A cell can have disjointed pathgrids, e.g. Seyda Neen has 3 * * mGraph for Seyda Neen will therefore have 3 different values. When * selecting a random pathgrid point for AiWander, mGraph can be checked * for quickly finding whether the destination is reachable. * * Otherwise, buildPath can automatically select a closest reachable end * pathgrid point (reachable from the closest start point). * * Using Tarjan's algorithm: * * mGraph | graph G | * mSCCPoint | V | derived from mPoints * mGraph[v].edges | E (for v) | * mSCCIndex | index | tracking smallest unused index * mSCCStack | S | * mGraph[v].edges[i].index | w | * */ void PathgridGraph::buildConnectedPoints() { // both of these are set to zero in the constructor //mSCCId = 0; // how many strongly connected components in this cell //mSCCIndex = 0; int pointsSize = static_cast (mPathgrid->mPoints.size()); mSCCPoint.resize(pointsSize, std::pair (-1, -1)); mSCCStack.reserve(pointsSize); for(int v = 0; v < pointsSize; v++) { if(mSCCPoint[v].first == -1) // undefined (haven't visited) recursiveStrongConnect(v); } } bool PathgridGraph::isPointConnected(const int start, const int end) const { return (mGraph[start].componentId == mGraph[end].componentId); } void PathgridGraph::getNeighbouringPoints(const int index, ESM::Pathgrid::PointList &nodes) const { for(int i = 0; i < static_cast (mGraph[index].edges.size()); i++) { int neighbourIndex = mGraph[index].edges[i].index; if (neighbourIndex != index) nodes.push_back(mPathgrid->mPoints[neighbourIndex]); } } /* * NOTE: Based on buildPath2(), please check git history if interested * Should consider using a 3rd party library version (e.g. boost) * * Find the shortest path to the target goal using a well known algorithm. * Uses mGraph which has pre-computed costs for allowed edges. It is assumed * that mGraph is already constructed. * * Should be possible to make this MT safe. * * Returns path which may be empty. path contains pathgrid points in local * cell coordinates (indoors) or world coordinates (external). * * Input params: * start, goal - pathgrid point indexes (for this cell) * * Variables: * openset - point indexes to be traversed, lowest cost at the front * closedset - point indexes already traversed * gScore - past accumulated costs vector indexed by point index * fScore - future estimated costs vector indexed by point index * * TODO: An intersting exercise might be to cache the paths created for a * start/goal pair. To cache the results the paths need to be in * pathgrid points form (currently they are converted to world * coordinates). Essentially trading speed w/ memory. */ std::deque PathgridGraph::aStarSearch(const int start, const int goal) const { std::deque path; if(!isPointConnected(start, goal)) { return path; // there is no path, return an empty path } int graphSize = static_cast (mGraph.size()); std::vector gScore (graphSize, -1); std::vector fScore (graphSize, -1); std::vector graphParent (graphSize, -1); // gScore & fScore keep costs for each pathgrid point in mPoints gScore[start] = 0; fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]); std::list openset; std::list closedset; openset.push_back(start); int current = -1; while(!openset.empty()) { current = openset.front(); // front has the lowest cost openset.pop_front(); if(current == goal) break; closedset.push_back(current); // remember we've been here // check all edges for the current point index for(int j = 0; j < static_cast (mGraph[current].edges.size()); j++) { if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].index) == closedset.end()) { // not in closedset - i.e. have not traversed this edge destination int dest = mGraph[current].edges[j].index; float tentative_g = gScore[current] + mGraph[current].edges[j].cost; bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end(); if(!isInOpenSet || tentative_g < gScore[dest]) { graphParent[dest] = current; gScore[dest] = tentative_g; fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest], mPathgrid->mPoints[goal]); if(!isInOpenSet) { // add this edge to openset, lowest cost goes to the front // TODO: if this causes performance problems a hash table may help std::list::iterator it = openset.begin(); for(it = openset.begin(); it!= openset.end(); ++it) { if(fScore[*it] > fScore[dest]) break; } openset.insert(it, dest); } } } // if in closedset, i.e. traversed this edge already, try the next edge } } if(current != goal) return path; // for some reason couldn't build a path // reconstruct path to return, using local coordinates while(graphParent[current] != -1) { path.push_front(mPathgrid->mPoints[current]); current = graphParent[current]; } // add first node to path explicitly path.push_front(mPathgrid->mPoints[start]); return path; } }