#include "nifloader.hpp" #include #include #include #include #include #include // resource #include #include #include // skel #include #include #include #include #include // particle #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "particle.hpp" #include "userdata.hpp" namespace { osg::Matrixf toMatrix(const Nif::Transformation& nifTrafo) { osg::Matrixf transform; transform.setTrans(nifTrafo.pos); for (int i=0;i<3;++i) for (int j=0;j<3;++j) transform(j,i) = nifTrafo.rotation.mValues[i][j] * nifTrafo.scale; // NB column/row major difference return transform; } osg::Matrixf getWorldTransform(const Nif::Node* node) { if(node->parent != NULL) return toMatrix(node->trafo) * getWorldTransform(node->parent); return toMatrix(node->trafo); } void getAllNiNodes(const Nif::Node* node, std::vector& outIndices) { const Nif::NiNode* ninode = dynamic_cast(node); if (ninode) { outIndices.push_back(ninode->recIndex); for (unsigned int i=0; ichildren.length(); ++i) if (!ninode->children[i].empty()) getAllNiNodes(ninode->children[i].getPtr(), outIndices); } } osg::BlendFunc::BlendFuncMode getBlendMode(int mode) { switch(mode) { case 0: return osg::BlendFunc::ONE; case 1: return osg::BlendFunc::ZERO; case 2: return osg::BlendFunc::SRC_COLOR; case 3: return osg::BlendFunc::ONE_MINUS_SRC_COLOR; case 4: return osg::BlendFunc::DST_COLOR; case 5: return osg::BlendFunc::ONE_MINUS_DST_COLOR; case 6: return osg::BlendFunc::SRC_ALPHA; case 7: return osg::BlendFunc::ONE_MINUS_SRC_ALPHA; case 8: return osg::BlendFunc::DST_ALPHA; case 9: return osg::BlendFunc::ONE_MINUS_DST_ALPHA; case 10: return osg::BlendFunc::SRC_ALPHA_SATURATE; default: std::cerr<< "Unexpected blend mode: "<< mode << std::endl; return osg::BlendFunc::SRC_ALPHA; } } osg::AlphaFunc::ComparisonFunction getTestMode(int mode) { switch (mode) { case 0: return osg::AlphaFunc::ALWAYS; case 1: return osg::AlphaFunc::LESS; case 2: return osg::AlphaFunc::EQUAL; case 3: return osg::AlphaFunc::LEQUAL; case 4: return osg::AlphaFunc::GREATER; case 5: return osg::AlphaFunc::NOTEQUAL; case 6: return osg::AlphaFunc::GEQUAL; case 7: return osg::AlphaFunc::NEVER; default: std::cerr << "Unexpected blend mode: " << mode << std::endl; return osg::AlphaFunc::LEQUAL; } } osg::Stencil::Function getStencilFunction(int func) { switch (func) { case 0: return osg::Stencil::NEVER; case 1: return osg::Stencil::LESS; case 2: return osg::Stencil::EQUAL; case 3: return osg::Stencil::LEQUAL; case 4: return osg::Stencil::GREATER; case 5: return osg::Stencil::NOTEQUAL; case 6: return osg::Stencil::GEQUAL; case 7: return osg::Stencil::NEVER; // NifSkope says this is GL_ALWAYS, but in MW it's GL_NEVER default: std::cerr << "Unexpected stencil function: " << func << std::endl; return osg::Stencil::NEVER; } } osg::Stencil::Operation getStencilOperation(int op) { switch (op) { case 0: return osg::Stencil::KEEP; case 1: return osg::Stencil::ZERO; case 2: return osg::Stencil::REPLACE; case 3: return osg::Stencil::INCR; case 4: return osg::Stencil::DECR; case 5: return osg::Stencil::INVERT; default: std::cerr << "Unexpected stencil operation: " << op << std::endl; return osg::Stencil::KEEP; } } // Collect all properties affecting the given node that should be applied to an osg::Material. void collectMaterialProperties(const Nif::Node* nifNode, std::vector& out) { const Nif::PropertyList& props = nifNode->props; for (size_t i = 0; i recType) { case Nif::RC_NiMaterialProperty: case Nif::RC_NiVertexColorProperty: case Nif::RC_NiSpecularProperty: out.push_back(props[i].getPtr()); break; default: break; } } } if (nifNode->parent) collectMaterialProperties(nifNode->parent, out); } // NodeCallback used to update the bone matrices in skeleton space as needed for skinning. // Must be set on a Bone. class UpdateBone : public osg::NodeCallback { public: UpdateBone() {} UpdateBone(const UpdateBone& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY) : osg::Object(copy, copyop), osg::NodeCallback(copy, copyop) { } META_Object(NifOsg, UpdateBone) // Callback method called by the NodeVisitor when visiting a node. void operator()(osg::Node* node, osg::NodeVisitor* nv) { if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR) { osgAnimation::Bone* b = dynamic_cast(node); if (!b) { OSG_WARN << "Warning: UpdateBone set on non-Bone object." << std::endl; return; } osgAnimation::Bone* parent = b->getBoneParent(); if (parent) b->setMatrixInSkeletonSpace(b->getMatrixInBoneSpace() * parent->getMatrixInSkeletonSpace()); else b->setMatrixInSkeletonSpace(b->getMatrixInBoneSpace()); } traverse(node,nv); } }; // NodeCallback used to have a transform always oriented towards the camera. Can have translation and scale // set just like a regular MatrixTransform, but the rotation set will be overridden in order to face the camera. class BillboardCallback : public osg::NodeCallback { public: BillboardCallback() { } BillboardCallback(const BillboardCallback& copy, const osg::CopyOp& copyop) : osg::NodeCallback(copy, copyop) { } META_Object(NifOsg, BillboardCallback) virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) { osgUtil::CullVisitor* cv = dynamic_cast(nv); osg::MatrixTransform* billboardNode = dynamic_cast(node); if (billboardNode && cv) { osg::Matrix modelView = *cv->getModelViewMatrix(); // attempt to preserve scale float mag[3]; for (int i=0;i<3;++i) { mag[i] = std::sqrt(modelView(0,i) * modelView(0,i) + modelView(1,i) * modelView(1,i) + modelView(2,i) * modelView(2,i)); } modelView.setRotate(osg::Quat()); modelView(0,0) = mag[0]; modelView(1,1) = mag[1]; modelView(2,2) = mag[2]; cv->pushModelViewMatrix(new osg::RefMatrix(modelView), osg::Transform::RELATIVE_RF); traverse(node, nv); cv->popModelViewMatrix(); } else traverse(node, nv); } }; // NodeCallback used to set the inverse of the parent bone's matrix in skeleton space // on the MatrixTransform that the NodeCallback is attached to. This is used so we can // attach skinned meshes to their actual parent node, while still having the skinning // work in skeleton space as expected. // Must be set on a MatrixTransform. class InvertBoneMatrix : public osg::NodeCallback { public: InvertBoneMatrix() {} InvertBoneMatrix(const InvertBoneMatrix& copy, const osg::CopyOp& copyop = osg::CopyOp::SHALLOW_COPY) : osg::Object(copy, copyop), osg::NodeCallback(copy, copyop) {} META_Object(NifOsg, InvertBoneMatrix) void operator()(osg::Node* node, osg::NodeVisitor* nv) { if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR) { osg::NodePath path = nv->getNodePath(); path.pop_back(); osg::MatrixTransform* trans = dynamic_cast(node); for (osg::NodePath::iterator it = path.begin(); it != path.end(); ++it) { if (dynamic_cast(*it)) { path.erase(path.begin(), it+1); // the bone's transform in skeleton space osg::Matrix boneMat = osg::computeLocalToWorld( path ); trans->setMatrix(osg::Matrix::inverse(boneMat)); break; } } } traverse(node,nv); } }; // NodeVisitor that adds keyframe controllers to an existing scene graph, used when loading .kf files /* class LoadKfVisitor : public osg::NodeVisitor { public: LoadKfVisitor(std::map map, int sourceIndex) : osg::NodeVisitor(TRAVERSE_ALL_CHILDREN) , mMap(map) , mSourceIndex(sourceIndex) { } void apply(osg::Node &node) { std::map::const_iterator found = mMap.find(node.getName()); if (node.asTransform() && found != mMap.end()) { const Nif::NiKeyframeController* keyframectrl = found->second; osg::ref_ptr callback(new NifOsg::SourcedKeyframeController(keyframectrl->data.getPtr(), mSourceIndex)); callback->mFunction = boost::shared_ptr(new NifOsg::ControllerFunction(keyframectrl)); // Insert in front of the callback list, to make sure UpdateBone is last. // The order of SourcedKeyframeControllers doesn't matter since only one of them should be enabled at a time. osg::ref_ptr old = node.getUpdateCallback(); node.setUpdateCallback(callback); callback->setNestedCallback(old); } traverse(node); } private: std::map mMap; int mSourceIndex; }; */ // Node callback used to dirty a RigGeometry's bounding box every frame, so that RigBoundingBoxCallback updates. // This has to be attached to the geode, because the RigGeometry's Drawable::UpdateCallback is already used internally and not extensible. // Kind of awful, not sure of a better way to do this. class DirtyBoundCallback : public osg::NodeCallback { public: DirtyBoundCallback() { } DirtyBoundCallback(const DirtyBoundCallback& copy, const osg::CopyOp& copyop) : osg::NodeCallback(copy, copyop) { } META_Object(NifOsg, DirtyBoundCallback) void operator()(osg::Node* node, osg::NodeVisitor* nv) { osg::Geode* geode = node->asGeode(); if (geode && geode->getNumDrawables()) { geode->getDrawable(0)->dirtyBound(); } traverse(node, nv); } }; struct FindNearestParentSkeleton : public osg::NodeVisitor { osg::ref_ptr _root; FindNearestParentSkeleton() : osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_PARENTS) {} void apply(osg::Transform& node) { if (_root.valid()) return; _root = dynamic_cast(&node); traverse(node); } }; // RigGeometry is skinned from a CullCallback to prevent unnecessary updates of culled rig geometries. // Note: this assumes only one cull thread is using the given RigGeometry, there would be a race condition otherwise. struct UpdateRigGeometry : public osg::Drawable::CullCallback { UpdateRigGeometry() { } UpdateRigGeometry(const UpdateRigGeometry& copy, const osg::CopyOp& copyop) : osg::Drawable::CullCallback(copy, copyop) { } META_Object(NifOsg, UpdateRigGeometry) virtual bool cull(osg::NodeVisitor *, osg::Drawable * drw, osg::State *) const { osgAnimation::RigGeometry* geom = static_cast(drw); if (!geom) return false; if (!geom->getSkeleton() && !geom->getParents().empty()) { FindNearestParentSkeleton finder; if (geom->getParents().size() > 1) osg::notify(osg::WARN) << "A RigGeometry should not have multi parent ( " << geom->getName() << " )" << std::endl; geom->getParents()[0]->accept(finder); if (!finder._root.valid()) { osg::notify(osg::WARN) << "A RigGeometry did not find a parent skeleton for RigGeometry ( " << geom->getName() << " )" << std::endl; return false; } geom->buildVertexInfluenceSet(); geom->setSkeleton(finder._root.get()); } if (!geom->getSkeleton()) return false; if (geom->getNeedToComputeMatrix()) geom->computeMatrixFromRootSkeleton(); geom->update(); return false; } }; // Same for MorphGeometry struct UpdateMorphGeometry : public osg::Drawable::CullCallback { UpdateMorphGeometry() { } UpdateMorphGeometry(const UpdateMorphGeometry& copy, const osg::CopyOp& copyop) : osg::Drawable::CullCallback(copy, copyop) { } META_Object(NifOsg, UpdateMorphGeometry) virtual bool cull(osg::NodeVisitor *, osg::Drawable * drw, osg::State *) const { osgAnimation::MorphGeometry* geom = static_cast(drw); if (!geom) return false; geom->transformSoftwareMethod(); return false; } }; // Callback to return a static bounding box for a MorphGeometry. The idea is to not recalculate the bounding box // every time the morph weights change. To do so we return a maximum containing box that is big enough for all possible combinations of morph targets. class StaticBoundingBoxCallback : public osg::Drawable::ComputeBoundingBoxCallback { public: StaticBoundingBoxCallback() { } StaticBoundingBoxCallback(const osg::BoundingBox& bounds) : mBoundingBox(bounds) { } StaticBoundingBoxCallback(const StaticBoundingBoxCallback& copy, const osg::CopyOp& copyop) : osg::Drawable::ComputeBoundingBoxCallback(copy, copyop) , mBoundingBox(copy.mBoundingBox) { } META_Object(NifOsg, StaticBoundingBoxCallback) virtual osg::BoundingBox computeBound(const osg::Drawable&) const { return mBoundingBox; } private: osg::BoundingBox mBoundingBox; }; class RigBoundingBoxCallback : public osg::Drawable::ComputeBoundingBoxCallback { public: RigBoundingBoxCallback() : mBoneMapInit(false) { } RigBoundingBoxCallback(const RigBoundingBoxCallback& copy, const osg::CopyOp& copyop) : osg::Drawable::ComputeBoundingBoxCallback(copy, copyop) , mBoneMapInit(false) , mBoundSpheres(copy.mBoundSpheres) { } META_Object(NifOsg, RigBoundingBoxCallback) void addBoundSphere(const std::string& bonename, const osg::BoundingSphere& sphere) { mBoundSpheres[bonename] = sphere; } virtual osg::BoundingBox computeBound(const osg::Drawable& drawable) const { osg::BoundingBox box; const osgAnimation::RigGeometry* rig = dynamic_cast(&drawable); if (!rig) { std::cerr << "Warning: RigBoundingBoxCallback set on non-rig" << std::endl; return box; } if (!mBoneMapInit) { initBoneMap(rig); } for (std::map::const_iterator it = mBoneMap.begin(); it != mBoneMap.end(); ++it) { osgAnimation::Bone* bone = it->first; osg::BoundingSphere bs = it->second; SceneUtil::transformBoundingSphere(bone->getMatrixInSkeletonSpace(), bs); box.expandBy(bs); } return box; } void initBoneMap(const osgAnimation::RigGeometry* rig) const { if (!rig->getSkeleton()) { // may happen before the first frame update, but we're not animating yet, so no need for a bounding box return; } osgAnimation::BoneMapVisitor mapVisitor; { // const_cast necessary because there does not seem to be a const variant of NodeVisitor. // Don't worry, we're not actually changing the skeleton. osgAnimation::Skeleton* skel = const_cast(rig->getSkeleton()); skel->accept(mapVisitor); } for (osgAnimation::BoneMap::const_iterator it = mapVisitor.getBoneMap().begin(); it != mapVisitor.getBoneMap().end(); ++it) { std::map::const_iterator found = mBoundSpheres.find(it->first); if (found != mBoundSpheres.end()) // not all bones have to be used for skinning mBoneMap[it->second.get()] = found->second; } mBoneMapInit = true; } private: mutable bool mBoneMapInit; mutable std::map mBoneMap; std::map mBoundSpheres; }; void extractTextKeys(const Nif::NiTextKeyExtraData *tk, NifOsg::TextKeyMap &textkeys) { for(size_t i = 0;i < tk->list.size();i++) { const std::string &str = tk->list[i].text; std::string::size_type pos = 0; while(pos < str.length()) { if(::isspace(str[pos])) { pos++; continue; } std::string::size_type nextpos = std::min(str.find('\r', pos), str.find('\n', pos)); if(nextpos != std::string::npos) { do { nextpos--; } while(nextpos > pos && ::isspace(str[nextpos])); nextpos++; } else if(::isspace(*str.rbegin())) { std::string::const_iterator last = str.end(); do { --last; } while(last != str.begin() && ::isspace(*last)); nextpos = std::distance(str.begin(), ++last); } std::string result = str.substr(pos, nextpos-pos); textkeys.insert(std::make_pair(tk->list[i].time, Misc::StringUtils::toLower(result))); pos = nextpos; } } } } namespace NifOsg { bool Loader::sShowMarkers = false; void Loader::setShowMarkers(bool show) { sShowMarkers = show; } bool Loader::getShowMarkers() { return sShowMarkers; } class LoaderImpl { public: static void loadKf(Nif::NIFFilePtr nif, KeyframeHolder& target) { if(nif->numRoots() < 1) { nif->warn("Found no root nodes"); return; } const Nif::Record *r = nif->getRoot(0); assert(r != NULL); if(r->recType != Nif::RC_NiSequenceStreamHelper) { nif->warn("First root was not a NiSequenceStreamHelper, but a "+ r->recName+"."); return; } const Nif::NiSequenceStreamHelper *seq = static_cast(r); Nif::ExtraPtr extra = seq->extra; if(extra.empty() || extra->recType != Nif::RC_NiTextKeyExtraData) { nif->warn("First extra data was not a NiTextKeyExtraData, but a "+ (extra.empty() ? std::string("nil") : extra->recName)+"."); return; } extractTextKeys(static_cast(extra.getPtr()), target.mTextKeys); extra = extra->extra; Nif::ControllerPtr ctrl = seq->controller; for(;!extra.empty() && !ctrl.empty();(extra=extra->extra),(ctrl=ctrl->next)) { if(extra->recType != Nif::RC_NiStringExtraData || ctrl->recType != Nif::RC_NiKeyframeController) { nif->warn("Unexpected extra data "+extra->recName+" with controller "+ctrl->recName); continue; } if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; const Nif::NiStringExtraData *strdata = static_cast(extra.getPtr()); const Nif::NiKeyframeController *key = static_cast(ctrl.getPtr()); if(key->data.empty()) continue; osg::ref_ptr callback(new NifOsg::SourcedKeyframeController(key->data.getPtr())); callback->mFunction = boost::shared_ptr(new NifOsg::ControllerFunction(key)); target.mKeyframeControllers[strdata->string] = callback; } } static osg::ref_ptr load(Nif::NIFFilePtr nif, Resource::TextureManager* textureManager) { if (nif->getUseSkinning()) return loadAsSkeleton(nif, textureManager); if (nif->numRoots() < 1) nif->fail("Found no root nodes"); const Nif::Record* r = nif->getRoot(0); const Nif::Node* nifNode = dynamic_cast(r); if (nifNode == NULL) nif->fail("First root was not a node, but a " + r->recName); osg::ref_ptr textkeys (new TextKeyMapHolder); osg::ref_ptr created = handleNode(nifNode, NULL, textureManager, false, std::map(), 0, 0, false, &textkeys->mTextKeys); created->getOrCreateUserDataContainer()->addUserObject(textkeys); return created; } static osg::ref_ptr loadAsSkeleton(Nif::NIFFilePtr nif, Resource::TextureManager* textureManager) { if (nif->numRoots() < 1) nif->fail("Found no root nodes"); const Nif::Record* r = nif->getRoot(0); assert(r != NULL); const Nif::Node* nifNode = dynamic_cast(r); if (nifNode == NULL) nif->fail("First root was not a node, but a " + r->recName); osg::ref_ptr textkeys (new TextKeyMapHolder); osg::ref_ptr skel = new osgAnimation::Skeleton; skel->setDefaultUpdateCallback(); // validates the skeleton hierarchy handleNode(nifNode, skel, textureManager, true, std::map(), 0, 0, false, &textkeys->mTextKeys); skel->getOrCreateUserDataContainer()->addUserObject(textkeys); return skel; } static void applyNodeProperties(const Nif::Node *nifNode, osg::Node *applyTo, Resource::TextureManager* textureManager, std::map& boundTextures, int animflags) { const Nif::PropertyList& props = nifNode->props; for (size_t i = 0; i mSource = boost::shared_ptr(new FrameTimeSource); toSetup->mFunction = boost::shared_ptr(new ControllerFunction(ctrl)); } static osg::ref_ptr handleNode(const Nif::Node* nifNode, osg::Group* parentNode, Resource::TextureManager* textureManager, bool createSkeleton, std::map boundTextures, int animflags, int particleflags, bool skipMeshes, TextKeyMap* textKeys, osg::Node* rootNode=NULL) { osg::ref_ptr transformNode; if (createSkeleton) { osgAnimation::Bone* bone = new osgAnimation::Bone; transformNode = bone; bone->setMatrix(toMatrix(nifNode->trafo)); bone->setInvBindMatrixInSkeletonSpace(osg::Matrixf::inverse(getWorldTransform(nifNode))); } else { transformNode = new osg::MatrixTransform(toMatrix(nifNode->trafo)); } if (nifNode->recType == Nif::RC_NiBillboardNode) { transformNode->addCullCallback(new BillboardCallback); } transformNode->setName(nifNode->name); if (parentNode) parentNode->addChild(transformNode); if (!rootNode) rootNode = transformNode; // UserData used for a variety of features: // - finding the correct emitter node for a particle system // - establishing connections to the animated collision shapes, which are handled in a separate loader // - finding a random child NiNode in NiBspArrayController // - storing the previous 3x3 rotation and scale values for when a KeyframeController wants to // change only certain elements of the 4x4 transform transformNode->getOrCreateUserDataContainer()->addUserObject( new NodeUserData(nifNode->recIndex, nifNode->trafo.scale, nifNode->trafo.rotation)); for (Nif::ExtraPtr e = nifNode->extra; !e.empty(); e = e->extra) { if(e->recType == Nif::RC_NiTextKeyExtraData && textKeys) { const Nif::NiTextKeyExtraData *tk = static_cast(e.getPtr()); extractTextKeys(tk, *textKeys); } else if(e->recType == Nif::RC_NiStringExtraData) { const Nif::NiStringExtraData *sd = static_cast(e.getPtr()); // String markers may contain important information // affecting the entire subtree of this obj if(sd->string == "MRK" && !Loader::getShowMarkers()) { // Marker objects. These meshes are only visible in the editor. skipMeshes = true; } } } if (nifNode->recType == Nif::RC_NiBSAnimationNode) animflags |= nifNode->flags; if (nifNode->recType == Nif::RC_NiBSParticleNode) particleflags |= nifNode->flags; // Hide collision shapes, but don't skip the subgraph // We still need to animate the hidden bones so the physics system can access them if (nifNode->recType == Nif::RC_RootCollisionNode) { skipMeshes = true; // Leave mask for UpdateVisitor enabled transformNode->setNodeMask(0x1); } // We can skip creating meshes for hidden nodes if they don't have a VisController that // might make them visible later if (nifNode->flags & Nif::NiNode::Flag_Hidden) { bool hasVisController = false; for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) hasVisController = (ctrl->recType == Nif::RC_NiVisController); if (!hasVisController) skipMeshes = true; // skip child meshes, but still create the child node hierarchy for animating collision shapes // now hide this node, but leave the mask for UpdateVisitor enabled so that KeyframeController works transformNode->setNodeMask(0x1); } applyNodeProperties(nifNode, transformNode, textureManager, boundTextures, animflags); if (nifNode->recType == Nif::RC_NiTriShape && !skipMeshes) { const Nif::NiTriShape* triShape = static_cast(nifNode); if (!createSkeleton || triShape->skin.empty()) handleTriShape(triShape, transformNode, boundTextures, animflags); else handleSkinnedTriShape(triShape, transformNode, boundTextures, animflags); if (!nifNode->controller.empty()) handleMeshControllers(nifNode, transformNode, boundTextures, animflags); } if(nifNode->recType == Nif::RC_NiAutoNormalParticles || nifNode->recType == Nif::RC_NiRotatingParticles) handleParticleSystem(nifNode, transformNode, animflags, particleflags, rootNode); if (!nifNode->controller.empty()) handleNodeControllers(nifNode, transformNode, animflags); // Added last so the changes from KeyframeControllers are taken into account if (osgAnimation::Bone* bone = dynamic_cast(transformNode.get())) bone->addUpdateCallback(new UpdateBone); const Nif::NiNode *ninode = dynamic_cast(nifNode); if(ninode) { const Nif::NodeList &children = ninode->children; for(size_t i = 0;i < children.length();++i) { if(!children[i].empty()) { handleNode(children[i].getPtr(), transformNode, textureManager, createSkeleton, boundTextures, animflags, particleflags, skipMeshes, textKeys, rootNode); } } } return transformNode; } static void handleMeshControllers(const Nif::Node *nifNode, osg::MatrixTransform *transformNode, const std::map &boundTextures, int animflags) { for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiUVController) { const Nif::NiUVController *uvctrl = static_cast(ctrl.getPtr()); std::set texUnits; for (std::map::const_iterator it = boundTextures.begin(); it != boundTextures.end(); ++it) texUnits.insert(it->first); osg::ref_ptr ctrl = new UVController(uvctrl->data.getPtr(), texUnits); setupController(uvctrl, ctrl, animflags); transformNode->addUpdateCallback(ctrl); } } } static void handleNodeControllers(const Nif::Node* nifNode, osg::MatrixTransform* transformNode, int animflags) { for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiKeyframeController) { const Nif::NiKeyframeController *key = static_cast(ctrl.getPtr()); if(!key->data.empty()) { osg::ref_ptr callback(new KeyframeController(key->data.getPtr())); setupController(key, callback, animflags); transformNode->addUpdateCallback(callback); } } else if (ctrl->recType == Nif::RC_NiVisController) { const Nif::NiVisController* visctrl = static_cast(ctrl.getPtr()); osg::ref_ptr callback(new VisController(visctrl->data.getPtr())); setupController(visctrl, callback, animflags); transformNode->addUpdateCallback(callback); } } } static void handleMaterialControllers(const Nif::Property *materialProperty, osg::Node* node, osg::StateSet *stateset, int animflags) { for (Nif::ControllerPtr ctrl = materialProperty->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiAlphaController) { const Nif::NiAlphaController* alphactrl = static_cast(ctrl.getPtr()); osg::ref_ptr ctrl(new AlphaController(alphactrl->data.getPtr())); setupController(alphactrl, ctrl, animflags); node->addUpdateCallback(ctrl); } else if (ctrl->recType == Nif::RC_NiMaterialColorController) { const Nif::NiMaterialColorController* matctrl = static_cast(ctrl.getPtr()); osg::ref_ptr ctrl(new MaterialColorController(matctrl->data.getPtr())); setupController(matctrl, ctrl, animflags); node->addUpdateCallback(ctrl); } else std::cerr << "Unexpected material controller " << ctrl->recType << std::endl; } } static void handleTextureControllers(const Nif::Property *texProperty, osg::Node* node, Resource::TextureManager* textureManager, osg::StateSet *stateset, int animflags) { for (Nif::ControllerPtr ctrl = texProperty->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if (ctrl->recType == Nif::RC_NiFlipController) { const Nif::NiFlipController* flipctrl = static_cast(ctrl.getPtr()); std::vector > textures; for (unsigned int i=0; imSources.length(); ++i) { Nif::NiSourceTexturePtr st = flipctrl->mSources[i]; if (st.empty()) continue; // inherit wrap settings from the target slot osg::Texture2D* inherit = dynamic_cast(stateset->getTextureAttribute(flipctrl->mTexSlot, osg::StateAttribute::TEXTURE)); osg::Texture2D::WrapMode wrapS = osg::Texture2D::CLAMP; osg::Texture2D::WrapMode wrapT = osg::Texture2D::CLAMP; if (inherit) { wrapS = inherit->getWrap(osg::Texture2D::WRAP_S); wrapT = inherit->getWrap(osg::Texture2D::WRAP_T); } std::string filename = Misc::ResourceHelpers::correctTexturePath(st->filename, textureManager->getVFS()); osg::ref_ptr texture = textureManager->getTexture2D(filename, wrapS, wrapT); textures.push_back(texture); } osg::ref_ptr callback(new FlipController(flipctrl, textures)); setupController(ctrl.getPtr(), callback, animflags); node->addUpdateCallback(callback); } else std::cerr << "Unexpected texture controller " << ctrl->recName << std::endl; } } static void handleParticlePrograms(Nif::ExtraPtr affectors, Nif::ExtraPtr colliders, osg::Group *attachTo, osgParticle::ParticleSystem* partsys, osgParticle::ParticleProcessor::ReferenceFrame rf) { osgParticle::ModularProgram* program = new osgParticle::ModularProgram; attachTo->addChild(program); program->setParticleSystem(partsys); program->setReferenceFrame(rf); program->setCullingActive(true); for (; !affectors.empty(); affectors = affectors->extra) { if (affectors->recType == Nif::RC_NiParticleGrowFade) { const Nif::NiParticleGrowFade *gf = static_cast(affectors.getPtr()); program->addOperator(new GrowFadeAffector(gf->growTime, gf->fadeTime)); } else if (affectors->recType == Nif::RC_NiGravity) { const Nif::NiGravity* gr = static_cast(affectors.getPtr()); program->addOperator(new GravityAffector(gr)); } else if (affectors->recType == Nif::RC_NiParticleColorModifier) { const Nif::NiParticleColorModifier *cl = static_cast(affectors.getPtr()); const Nif::NiColorData *clrdata = cl->data.getPtr(); program->addOperator(new ParticleColorAffector(clrdata)); } else if (affectors->recType == Nif::RC_NiParticleRotation) { // unused } else std::cerr << "Unhandled particle modifier " << affectors->recName << std::endl; } for (; !colliders.empty(); colliders = colliders->extra) { if (colliders->recType == Nif::RC_NiPlanarCollider) { const Nif::NiPlanarCollider* planarcollider = static_cast(colliders.getPtr()); program->addOperator(new PlanarCollider(planarcollider)); } } } // Load the initial state of the particle system, i.e. the initial particles and their positions, velocity and colors. static void handleParticleInitialState(const Nif::Node* nifNode, osgParticle::ParticleSystem* partsys, const Nif::NiParticleSystemController* partctrl) { const Nif::NiAutoNormalParticlesData *particledata = NULL; if(nifNode->recType == Nif::RC_NiAutoNormalParticles) particledata = static_cast(nifNode)->data.getPtr(); else if(nifNode->recType == Nif::RC_NiRotatingParticles) particledata = static_cast(nifNode)->data.getPtr(); else return; int i=0; for (std::vector::const_iterator it = partctrl->particles.begin(); iactiveCount && it != partctrl->particles.end(); ++it, ++i) { const Nif::NiParticleSystemController::Particle& particle = *it; ParticleAgeSetter particletemplate(std::max(0.f, particle.lifetime)); osgParticle::Particle* created = partsys->createParticle(&particletemplate); created->setLifeTime(std::max(0.f, particle.lifespan)); // Note this position and velocity is not correct for a particle system with absolute reference frame, // which can not be done in this loader since we are not attached to the scene yet. Will be fixed up post-load in the SceneManager. created->setVelocity(particle.velocity); created->setPosition(particledata->vertices.at(particle.vertex)); osg::Vec4f partcolor (1.f,1.f,1.f,1.f); if (particle.vertex < int(particledata->colors.size())) partcolor = particledata->colors.at(particle.vertex); float size = particledata->sizes.at(particle.vertex) * partctrl->size; created->setSizeRange(osgParticle::rangef(size, size)); } } static osg::ref_ptr handleParticleEmitter(const Nif::NiParticleSystemController* partctrl) { std::vector targets; if (partctrl->recType == Nif::RC_NiBSPArrayController) { getAllNiNodes(partctrl->emitter.getPtr(), targets); } osg::ref_ptr emitter = new Emitter(targets); osgParticle::ConstantRateCounter* counter = new osgParticle::ConstantRateCounter; if (partctrl->emitFlags & Nif::NiParticleSystemController::NoAutoAdjust) counter->setNumberOfParticlesPerSecondToCreate(partctrl->emitRate); else counter->setNumberOfParticlesPerSecondToCreate(partctrl->numParticles / (partctrl->lifetime + partctrl->lifetimeRandom/2)); emitter->setCounter(counter); ParticleShooter* shooter = new ParticleShooter(partctrl->velocity - partctrl->velocityRandom*0.5f, partctrl->velocity + partctrl->velocityRandom*0.5f, partctrl->horizontalDir, partctrl->horizontalAngle, partctrl->verticalDir, partctrl->verticalAngle, partctrl->lifetime, partctrl->lifetimeRandom); emitter->setShooter(shooter); osgParticle::BoxPlacer* placer = new osgParticle::BoxPlacer; placer->setXRange(-partctrl->offsetRandom.x(), partctrl->offsetRandom.x()); placer->setYRange(-partctrl->offsetRandom.y(), partctrl->offsetRandom.y()); placer->setZRange(-partctrl->offsetRandom.z(), partctrl->offsetRandom.z()); emitter->setPlacer(placer); return emitter; } static void handleParticleSystem(const Nif::Node *nifNode, osg::Group *parentNode, int animflags, int particleflags, osg::Node* rootNode) { osg::ref_ptr partsys (new ParticleSystem); partsys->setSortMode(osgParticle::ParticleSystem::SORT_BACK_TO_FRONT); const Nif::NiParticleSystemController* partctrl = NULL; for (Nif::ControllerPtr ctrl = nifNode->controller; !ctrl.empty(); ctrl = ctrl->next) { if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; if(ctrl->recType == Nif::RC_NiParticleSystemController || ctrl->recType == Nif::RC_NiBSPArrayController) partctrl = static_cast(ctrl.getPtr()); } if (!partctrl) { std::cerr << "No particle controller found " << std::endl; return; } osgParticle::ParticleProcessor::ReferenceFrame rf = (particleflags & Nif::NiNode::ParticleFlag_LocalSpace) ? osgParticle::ParticleProcessor::RELATIVE_RF : osgParticle::ParticleProcessor::ABSOLUTE_RF; // HACK: ParticleSystem has no setReferenceFrame method if (rf == osgParticle::ParticleProcessor::ABSOLUTE_RF) { partsys->getOrCreateUserDataContainer()->addDescription("worldspace"); } handleParticleInitialState(nifNode, partsys, partctrl); partsys->setQuota(partctrl->numParticles); partsys->getDefaultParticleTemplate().setSizeRange(osgParticle::rangef(partctrl->size, partctrl->size)); partsys->getDefaultParticleTemplate().setColorRange(osgParticle::rangev4(osg::Vec4f(1.f,1.f,1.f,1.f), osg::Vec4f(1.f,1.f,1.f,1.f))); partsys->getDefaultParticleTemplate().setAlphaRange(osgParticle::rangef(1.f, 1.f)); osg::ref_ptr emitter = handleParticleEmitter(partctrl); emitter->setParticleSystem(partsys); emitter->setReferenceFrame(osgParticle::ParticleProcessor::RELATIVE_RF); emitter->setCullingActive(true); // Note: we assume that the Emitter node is placed *before* the Particle node in the scene graph. // This seems to be true for all NIF files in the game that I've checked, suggesting that NIFs work similar to OSG with regards to update order. // If something ever violates this assumption, the worst that could happen is the culling being one frame late, which wouldn't be a disaster. FindRecIndexVisitor find (partctrl->emitter->recIndex); rootNode->accept(find); if (!find.mFound) { std::cerr << "can't find emitter node, wrong node order?" << std::endl; return; } osg::Group* emitterNode = find.mFound; // Emitter attached to the emitter node. Note one side effect of the emitter using the CullVisitor is that hiding its node // actually causes the emitter to stop firing. Convenient, because MW behaves this way too! emitterNode->addChild(emitter); osg::ref_ptr callback(new ParticleSystemController(partctrl)); setupController(partctrl, callback, animflags); emitter->setUpdateCallback(callback); // affectors must be attached *after* the emitter in the scene graph for correct update order // attach to same node as the ParticleSystem, we need osgParticle Operators to get the correct // localToWorldMatrix for transforming to particle space handleParticlePrograms(partctrl->affectors, partctrl->colliders, parentNode, partsys.get(), rf); osg::ref_ptr geode (new osg::Geode); geode->addDrawable(partsys); std::vector materialProps; collectMaterialProperties(nifNode, materialProps); applyMaterialProperties(geode, materialProps, true, animflags); partsys->getOrCreateStateSet()->setMode(GL_LIGHTING, osg::StateAttribute::OFF); partsys->getOrCreateStateSet()->setRenderingHint(osg::StateSet::TRANSPARENT_BIN); // particle system updater (after the emitters and affectors in the scene graph) // I think for correct culling needs to be *before* the ParticleSystem, though osg examples do it the other way osg::ref_ptr updater = new osgParticle::ParticleSystemUpdater; updater->setCullingActive(true); updater->addParticleSystem(partsys); parentNode->addChild(updater); if (rf == osgParticle::ParticleProcessor::RELATIVE_RF) parentNode->addChild(geode); else { osg::MatrixTransform* trans = new osg::MatrixTransform; trans->setUpdateCallback(new InverseWorldMatrix); trans->addChild(geode); parentNode->addChild(trans); } } static void triShapeToGeometry(const Nif::NiTriShape *triShape, osg::Geometry *geometry, osg::Geode* parentGeode, const std::map& boundTextures, int animflags) { const Nif::NiTriShapeData* data = triShape->data.getPtr(); const Nif::NiSkinInstance *skin = (triShape->skin.empty() ? NULL : triShape->skin.getPtr()); if (skin) { // Convert vertices and normals to bone space from bind position. It would be // better to transform the bones into bind position, but there doesn't seem to // be a reliable way to do that. osg::ref_ptr newVerts (new osg::Vec3Array(data->vertices.size())); osg::ref_ptr newNormals (new osg::Vec3Array(data->normals.size())); const Nif::NiSkinData *skinData = skin->data.getPtr(); const Nif::NodeList &bones = skin->bones; for(size_t b = 0;b < bones.length();b++) { osg::Matrixf mat = toMatrix(skinData->bones[b].trafo); mat = mat * getWorldTransform(bones[b].getPtr()); const std::vector &weights = skinData->bones[b].weights; for(size_t i = 0;i < weights.size();i++) { size_t index = weights[i].vertex; float weight = weights[i].weight; osg::Vec4f mult = (osg::Vec4f(data->vertices.at(index),1.f) * mat) * weight; (*newVerts)[index] += osg::Vec3f(mult.x(),mult.y(),mult.z()); if(newNormals->size() > index) { osg::Vec4 normal(data->normals[index].x(), data->normals[index].y(), data->normals[index].z(), 0.f); normal = (normal * mat) * weight; (*newNormals)[index] += osg::Vec3f(normal.x(),normal.y(),normal.z()); } } } // Interpolating normalized normals doesn't necessarily give you a normalized result // Currently we're using GL_NORMALIZE, so this isn't needed //for (unsigned int i=0;isize();++i) // (*newNormals)[i].normalize(); geometry->setVertexArray(newVerts); if (!data->normals.empty()) geometry->setNormalArray(newNormals, osg::Array::BIND_PER_VERTEX); } else { geometry->setVertexArray(new osg::Vec3Array(data->vertices.size(), &data->vertices[0])); if (!data->normals.empty()) geometry->setNormalArray(new osg::Vec3Array(data->normals.size(), &data->normals[0]), osg::Array::BIND_PER_VERTEX); } for (std::map::const_iterator it = boundTextures.begin(); it != boundTextures.end(); ++it) { int textureStage = it->first; int uvSet = it->second; if (uvSet >= (int)data->uvlist.size()) { // Occurred in "ascendedsleeper.nif", but only for hidden Shadow nodes, apparently //std::cerr << "Warning: using an undefined UV set " << uvSet << " on TriShape " << triShape->name << std::endl; continue; } geometry->setTexCoordArray(textureStage, new osg::Vec2Array(data->uvlist[uvSet].size(), &data->uvlist[uvSet][0]), osg::Array::BIND_PER_VERTEX); } if (!data->colors.empty()) geometry->setColorArray(new osg::Vec4Array(data->colors.size(), &data->colors[0]), osg::Array::BIND_PER_VERTEX); geometry->addPrimitiveSet(new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES, data->triangles.size(), (unsigned short*)&data->triangles[0])); // osg::Material properties are handled here for two reasons: // - if there are no vertex colors, we need to disable colorMode. // - there are 3 "overlapping" nif properties that all affect the osg::Material, handling them // above the actual renderable would be tedious. std::vector materialProps; collectMaterialProperties(triShape, materialProps); applyMaterialProperties(parentGeode, materialProps, !data->colors.empty(), animflags); } static void handleTriShape(const Nif::NiTriShape* triShape, osg::Group* parentNode, const std::map& boundTextures, int animflags) { osg::ref_ptr geometry; if(!triShape->controller.empty()) { Nif::ControllerPtr ctrl = triShape->controller; do { if(ctrl->recType == Nif::RC_NiGeomMorpherController && ctrl->flags & Nif::NiNode::ControllerFlag_Active) { geometry = handleMorphGeometry(static_cast(ctrl.getPtr())); osg::ref_ptr morphctrl = new GeomMorpherController( static_cast(ctrl.getPtr())->data.getPtr()); setupController(ctrl.getPtr(), morphctrl, animflags); geometry->setUpdateCallback(morphctrl); break; } } while(!(ctrl=ctrl->next).empty()); } if (!geometry.get()) geometry = new osg::Geometry; osg::ref_ptr geode (new osg::Geode); geode->setName(triShape->name); // name will be used for part filtering triShapeToGeometry(triShape, geometry, geode, boundTextures, animflags); geode->addDrawable(geometry); parentNode->addChild(geode); } static osg::ref_ptr handleMorphGeometry(const Nif::NiGeomMorpherController* morpher) { osg::ref_ptr morphGeom = new osgAnimation::MorphGeometry; morphGeom->setMethod(osgAnimation::MorphGeometry::RELATIVE); // No normals available in the MorphData morphGeom->setMorphNormals(false); morphGeom->setUpdateCallback(NULL); morphGeom->setCullCallback(new UpdateMorphGeometry); const std::vector& morphs = morpher->data.getPtr()->mMorphs; if (!morphs.size()) return morphGeom; // Note we are not interested in morph 0, which just contains the original vertices for (unsigned int i = 1; i < morphs.size(); ++i) { osg::ref_ptr morphTarget = new osg::Geometry; morphTarget->setVertexArray(new osg::Vec3Array(morphs[i].mVertices.size(), &morphs[i].mVertices[0])); morphGeom->addMorphTarget(morphTarget, 0.f); } // build the bounding box containing all possible morph combinations std::vector vertBounds(morphs[0].mVertices.size()); // Since we don't know what combinations of morphs are being applied we need to keep track of a bounding box for each vertex. // The minimum/maximum of the box is the minimum/maximum offset the vertex can have from its starting position. // Start with zero offsets which will happen when no morphs are applied. for (unsigned int i=0; isetComputeBoundingBoxCallback(new StaticBoundingBoxCallback(box)); return morphGeom; } static void handleSkinnedTriShape(const Nif::NiTriShape *triShape, osg::Group *parentNode, const std::map& boundTextures, int animflags) { osg::ref_ptr geode (new osg::Geode); geode->setName(triShape->name); // name will be used for part filtering osg::ref_ptr geometry (new osg::Geometry); triShapeToGeometry(triShape, geometry, geode, boundTextures, animflags); // Note the RigGeometry's UpdateCallback uses the skeleton space bone matrix, so the bone UpdateCallback has to be fired first. // For this to work properly, all bones used for skinning a RigGeometry need to be created before that RigGeometry. // All NIFs I've checked seem to conform to this restriction, perhaps Gamebryo update method works similarly. // If a file violates this assumption, the worst that could happen is the bone position being a frame late. // If this happens, we should get a warning from the Skeleton's validation update callback on the error log. osg::ref_ptr rig(new osgAnimation::RigGeometry); rig->setSourceGeometry(geometry); const Nif::NiSkinInstance *skin = triShape->skin.getPtr(); RigBoundingBoxCallback* callback = new RigBoundingBoxCallback; rig->setComputeBoundingBoxCallback(callback); // Assign bone weights osg::ref_ptr map (new osgAnimation::VertexInfluenceMap); const Nif::NiSkinData *data = skin->data.getPtr(); const Nif::NodeList &bones = skin->bones; for(size_t i = 0;i < bones.length();i++) { std::string boneName = bones[i].getPtr()->name; callback->addBoundSphere(boneName, osg::BoundingSphere(data->bones[i].boundSphereCenter, data->bones[i].boundSphereRadius)); osgAnimation::VertexInfluence influence; influence.setName(boneName); const std::vector &weights = data->bones[i].weights; influence.reserve(weights.size()); for(size_t j = 0;j < weights.size();j++) { osgAnimation::VertexIndexWeight indexWeight = std::make_pair(weights[j].vertex, weights[j].weight); influence.push_back(indexWeight); } map->insert(std::make_pair(boneName, influence)); } rig->setInfluenceMap(map); // Override default update using cull callback instead for efficiency. rig->setUpdateCallback(NULL); rig->setCullCallback(new UpdateRigGeometry); osg::ref_ptr trans(new osg::MatrixTransform); trans->setUpdateCallback(new InvertBoneMatrix()); geode->addDrawable(rig); geode->addUpdateCallback(new DirtyBoundCallback); trans->addChild(geode); parentNode->addChild(trans); } static void handleProperty(const Nif::Property *property, osg::Node *node, Resource::TextureManager* textureManager, std::map& boundTextures, int animflags) { osg::StateSet* stateset = node->getOrCreateStateSet(); switch (property->recType) { case Nif::RC_NiStencilProperty: { const Nif::NiStencilProperty* stencilprop = static_cast(property); osg::FrontFace* frontFace = new osg::FrontFace; switch (stencilprop->data.drawMode) { case 1: frontFace->setMode(osg::FrontFace::CLOCKWISE); break; case 0: case 2: default: frontFace->setMode(osg::FrontFace::COUNTER_CLOCKWISE); break; } stateset->setAttribute(frontFace, osg::StateAttribute::ON); stateset->setMode(GL_CULL_FACE, stencilprop->data.drawMode == 3 ? osg::StateAttribute::OFF : osg::StateAttribute::ON); if (stencilprop->data.enabled != 0) { osg::Stencil* stencil = new osg::Stencil; stencil->setFunction(getStencilFunction(stencilprop->data.compareFunc), stencilprop->data.stencilRef, stencilprop->data.stencilMask); stencil->setStencilFailOperation(getStencilOperation(stencilprop->data.failAction)); stencil->setStencilPassAndDepthFailOperation(getStencilOperation(stencilprop->data.zFailAction)); stencil->setStencilPassAndDepthPassOperation(getStencilOperation(stencilprop->data.zPassAction)); stateset->setAttributeAndModes(stencil, osg::StateAttribute::ON); } break; } case Nif::RC_NiWireframeProperty: { const Nif::NiWireframeProperty* wireprop = static_cast(property); osg::PolygonMode* mode = new osg::PolygonMode; mode->setMode(osg::PolygonMode::FRONT_AND_BACK, wireprop->flags == 0 ? osg::PolygonMode::FILL : osg::PolygonMode::LINE); stateset->setAttributeAndModes(mode, osg::StateAttribute::ON); break; } case Nif::RC_NiZBufferProperty: { const Nif::NiZBufferProperty* zprop = static_cast(property); // VER_MW doesn't support a DepthFunction according to NifSkope osg::Depth* depth = new osg::Depth; depth->setWriteMask((zprop->flags>>1)&1); stateset->setAttributeAndModes(depth, osg::StateAttribute::ON); break; } // OSG groups the material properties that NIFs have separate, so we have to parse them all again when one changed case Nif::RC_NiMaterialProperty: case Nif::RC_NiVertexColorProperty: case Nif::RC_NiSpecularProperty: { // Handled in handleTriShape so we know whether vertex colors are available break; } case Nif::RC_NiAlphaProperty: { const Nif::NiAlphaProperty* alphaprop = static_cast(property); osg::BlendFunc* blendfunc = new osg::BlendFunc; if (alphaprop->flags&1) { blendfunc->setFunction(getBlendMode((alphaprop->flags>>1)&0xf), getBlendMode((alphaprop->flags>>5)&0xf)); stateset->setAttributeAndModes(blendfunc, osg::StateAttribute::ON); bool noSort = (alphaprop->flags>>13)&1; if (!noSort) { stateset->setNestRenderBins(false); stateset->setRenderingHint(osg::StateSet::TRANSPARENT_BIN); } } else { stateset->setAttributeAndModes(blendfunc, osg::StateAttribute::OFF); stateset->setNestRenderBins(false); stateset->setRenderingHint(osg::StateSet::OPAQUE_BIN); } osg::AlphaFunc* alphafunc = new osg::AlphaFunc; if((alphaprop->flags>>9)&1) { alphafunc->setFunction(getTestMode((alphaprop->flags>>10)&0x7), alphaprop->data.threshold/255.f); stateset->setAttributeAndModes(alphafunc, osg::StateAttribute::ON); } else stateset->setAttributeAndModes(alphafunc, osg::StateAttribute::OFF); break; } case Nif::RC_NiTexturingProperty: { const Nif::NiTexturingProperty* texprop = static_cast(property); for (int i=0; itextures[i].inUse) { if (i != Nif::NiTexturingProperty::BaseTexture && i != Nif::NiTexturingProperty::GlowTexture && i != Nif::NiTexturingProperty::DarkTexture && i != Nif::NiTexturingProperty::DetailTexture) { std::cerr << "Warning: unhandled texture stage " << i << std::endl; continue; } const Nif::NiTexturingProperty::Texture& tex = texprop->textures[i]; if(tex.texture.empty()) { std::cerr << "Warning: texture layer " << i << " is in use but empty " << std::endl; continue; } const Nif::NiSourceTexture *st = tex.texture.getPtr(); if (!st->external) { std::cerr << "Warning: unhandled internal texture " << std::endl; continue; } std::string filename = Misc::ResourceHelpers::correctTexturePath(st->filename, textureManager->getVFS()); unsigned int clamp = static_cast(tex.clamp); int wrapT = (clamp) & 0x1; int wrapS = (clamp >> 1) & 0x1; osg::Texture2D* texture2d = textureManager->getTexture2D(filename, wrapS ? osg::Texture::REPEAT : osg::Texture::CLAMP, wrapT ? osg::Texture::REPEAT : osg::Texture::CLAMP); stateset->setTextureAttributeAndModes(i, texture2d, osg::StateAttribute::ON); if (i == Nif::NiTexturingProperty::GlowTexture) { osg::TexEnv* texEnv = new osg::TexEnv; texEnv->setMode(osg::TexEnv::ADD); stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON); } else if (i == Nif::NiTexturingProperty::DarkTexture) { osg::TexEnv* texEnv = new osg::TexEnv; texEnv->setMode(osg::TexEnv::MODULATE); stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON); } else if (i == Nif::NiTexturingProperty::DetailTexture) { osg::TexEnvCombine* texEnv = new osg::TexEnvCombine; texEnv->setScale_RGB(2.f); texEnv->setCombine_Alpha(GL_MODULATE); texEnv->setOperand0_Alpha(GL_SRC_ALPHA); texEnv->setOperand1_Alpha(GL_SRC_ALPHA); texEnv->setSource0_Alpha(GL_PREVIOUS); texEnv->setSource1_Alpha(GL_TEXTURE); texEnv->setCombine_RGB(GL_MODULATE); texEnv->setOperand0_RGB(GL_SRC_COLOR); texEnv->setOperand1_RGB(GL_SRC_COLOR); texEnv->setSource0_RGB(GL_PREVIOUS); texEnv->setSource1_RGB(GL_TEXTURE); stateset->setTextureAttributeAndModes(i, texEnv, osg::StateAttribute::ON); } boundTextures[i] = tex.uvSet; } else if (boundTextures.find(i) != boundTextures.end()) { stateset->setTextureAttributeAndModes(i, new osg::Texture2D, osg::StateAttribute::OFF); boundTextures.erase(i); } handleTextureControllers(texprop, node, textureManager, stateset, animflags); } break; } // unused by mw case Nif::RC_NiShadeProperty: case Nif::RC_NiDitherProperty: case Nif::RC_NiFogProperty: { break; } default: std::cerr << "Unhandled " << property->recName << std::endl; break; } } static void applyMaterialProperties(osg::Node* node, const std::vector& properties, bool hasVertexColors, int animflags) { osg::StateSet* stateset = node->getOrCreateStateSet(); int specFlags = 0; // Specular is disabled by default, even if there's a specular color in the NiMaterialProperty osg::Material* mat = new osg::Material; mat->setColorMode(hasVertexColors ? osg::Material::AMBIENT_AND_DIFFUSE : osg::Material::OFF); // NIF material defaults don't match OpenGL defaults mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(1,1,1,1)); mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(1,1,1,1)); for (std::vector::const_reverse_iterator it = properties.rbegin(); it != properties.rend(); ++it) { const Nif::Property* property = *it; switch (property->recType) { case Nif::RC_NiSpecularProperty: { specFlags = property->flags; break; } case Nif::RC_NiMaterialProperty: { const Nif::NiMaterialProperty* matprop = static_cast(property); mat->setDiffuse(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.diffuse, matprop->data.alpha)); mat->setAmbient(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.ambient, 1.f)); mat->setEmission(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.emissive, 1.f)); mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(matprop->data.specular, 1.f)); mat->setShininess(osg::Material::FRONT_AND_BACK, matprop->data.glossiness); if (!matprop->controller.empty()) handleMaterialControllers(matprop, node, stateset, animflags); break; } case Nif::RC_NiVertexColorProperty: { const Nif::NiVertexColorProperty* vertprop = static_cast(property); if (!hasVertexColors) break; switch (vertprop->flags) { case 0: mat->setColorMode(osg::Material::OFF); break; case 1: mat->setColorMode(osg::Material::EMISSION); break; case 2: mat->setColorMode(osg::Material::AMBIENT_AND_DIFFUSE); break; } } } } if (specFlags == 0) mat->setSpecular(osg::Material::FRONT_AND_BACK, osg::Vec4f(0.f,0.f,0.f,0.f)); stateset->setAttributeAndModes(mat, osg::StateAttribute::ON); } }; osg::ref_ptr Loader::load(Nif::NIFFilePtr file, Resource::TextureManager* textureManager) { return LoaderImpl::load(file, textureManager); } osg::ref_ptr Loader::loadAsSkeleton(Nif::NIFFilePtr file, Resource::TextureManager* textureManager) { return LoaderImpl::loadAsSkeleton(file, textureManager); } void Loader::loadKf(Nif::NIFFilePtr kf, KeyframeHolder& target) { LoaderImpl::loadKf(kf, target); } }