#include "stereo.hpp" #include "stringops.hpp" #include #include #include #include #include #include #include #include #include #include #include namespace Misc { Pose Pose::operator+(const Pose& rhs) { Pose pose = *this; pose.position += this->orientation * rhs.position; pose.orientation = rhs.orientation * this->orientation; return pose; } const Pose& Pose::operator+=(const Pose& rhs) { *this = *this + rhs; return *this; } Pose Pose::operator*(float scalar) { Pose pose = *this; pose.position *= scalar; return pose; } const Pose& Pose::operator*=(float scalar) { *this = *this * scalar; return *this; } Pose Pose::operator/(float scalar) { Pose pose = *this; pose.position /= scalar; return pose; } const Pose& Pose::operator/=(float scalar) { *this = *this / scalar; return *this; } bool Pose::operator==(const Pose& rhs) const { return position == rhs.position && orientation == rhs.orientation; } osg::Matrix Pose::viewMatrix(bool useGLConventions) { if (useGLConventions) { // When applied as an offset to an existing view matrix, // that view matrix will already convert points to a camera space // with opengl conventions. So we need to convert offsets to opengl // conventions. float y = position.y(); float z = position.z(); position.y() = z; position.z() = -y; y = orientation.y(); z = orientation.z(); orientation.y() = z; orientation.z() = -y; osg::Matrix viewMatrix; viewMatrix.setTrans(-position); viewMatrix.postMultRotate(orientation.conj()); return viewMatrix; } else { osg::Vec3d forward = orientation * osg::Vec3d(0, 1, 0); osg::Vec3d up = orientation * osg::Vec3d(0, 0, 1); osg::Matrix viewMatrix; viewMatrix.makeLookAt(position, position + forward, up); return viewMatrix; } } bool FieldOfView::operator==(const FieldOfView& rhs) const { return angleDown == rhs.angleDown && angleUp == rhs.angleUp && angleLeft == rhs.angleLeft && angleRight == rhs.angleRight; } // near and far named with an underscore because of windows' headers galaxy brain defines. osg::Matrix FieldOfView::perspectiveMatrix(float near_, float far_) { const float tanLeft = tanf(angleLeft); const float tanRight = tanf(angleRight); const float tanDown = tanf(angleDown); const float tanUp = tanf(angleUp); const float tanWidth = tanRight - tanLeft; const float tanHeight = tanUp - tanDown; const float offset = near_; float matrix[16] = {}; matrix[0] = 2 / tanWidth; matrix[4] = 0; matrix[8] = (tanRight + tanLeft) / tanWidth; matrix[12] = 0; matrix[1] = 0; matrix[5] = 2 / tanHeight; matrix[9] = (tanUp + tanDown) / tanHeight; matrix[13] = 0; if (far_ <= near_) { matrix[2] = 0; matrix[6] = 0; matrix[10] = -1; matrix[14] = -(near_ + offset); } else { matrix[2] = 0; matrix[6] = 0; matrix[10] = -(far_ + offset) / (far_ - near_); matrix[14] = -(far_ * (near_ + offset)) / (far_ - near_); } matrix[3] = 0; matrix[7] = 0; matrix[11] = -1; matrix[15] = 0; return osg::Matrix(matrix); } bool View::operator==(const View& rhs) const { return pose == rhs.pose && fov == rhs.fov; } std::ostream& operator <<( std::ostream& os, const Pose& pose) { os << "position=" << pose.position << ", orientation=" << pose.orientation; return os; } std::ostream& operator <<( std::ostream& os, const FieldOfView& fov) { os << "left=" << fov.angleLeft << ", right=" << fov.angleRight << ", down=" << fov.angleDown << ", up=" << fov.angleUp; return os; } std::ostream& operator <<( std::ostream& os, const View& view) { os << "pose=< " << view.pose << " >, fov=< " << view.fov << " >"; return os; } // Update stereo view/projection during update class StereoUpdateCallback : public osg::Callback { public: StereoUpdateCallback(StereoView* stereoView) : stereoView(stereoView) {} bool run(osg::Object* object, osg::Object* data) override { auto b = traverse(object, data); stereoView->update(); return b; } StereoView* stereoView; }; // Update states during cull class StereoStatesetUpdateCallback : public SceneUtil::StateSetUpdater { public: StereoStatesetUpdateCallback(StereoView* view) : stereoView(view) { } protected: virtual void setDefaults(osg::StateSet* stateset) { auto stereoViewMatrixUniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, "stereoViewMatrices", 2); stateset->addUniform(stereoViewMatrixUniform, osg::StateAttribute::OVERRIDE); auto stereoViewProjectionsUniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, "stereoViewProjections", 2); stateset->addUniform(stereoViewProjectionsUniform); auto geometryPassthroughUniform = new osg::Uniform("geometryPassthrough", false); stateset->addUniform(geometryPassthroughUniform); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor* /*nv*/) { stereoView->updateStateset(stateset); } private: StereoView* stereoView; }; StereoView* sInstance = nullptr; StereoView& StereoView::instance() { return *sInstance; } StereoView::StereoView(osgViewer::Viewer* viewer, Technique technique, osg::Node::NodeMask geometryShaderMask, osg::Node::NodeMask noShaderMask) : osg::Group() , mViewer(viewer) , mMainCamera(mViewer->getCamera()) , mRoot(mViewer->getSceneData()->asGroup()) , mTechnique(technique) , mGeometryShaderMask(geometryShaderMask) , mNoShaderMask(noShaderMask) , mMasterConfig(new SharedShadowMapConfig) , mSlaveConfig(new SharedShadowMapConfig) , mSharedShadowMaps(Settings::Manager::getBool("shared shadow maps", "Stereo")) { if (technique == Technique::None) // Do nothing return; mRoot->setDataVariance(osg::Object::STATIC); mMasterConfig->_id = "STEREO"; mMasterConfig->_master = true; mSlaveConfig->_id = "STEREO"; mSlaveConfig->_master = false; setName("Stereo Root"); setDataVariance(osg::Object::STATIC); mLeftCamera->setReferenceFrame(osg::Transform::ABSOLUTE_RF); mLeftCamera->setProjectionResizePolicy(osg::Camera::FIXED); mLeftCamera->setProjectionMatrix(osg::Matrix::identity()); mLeftCamera->setViewMatrix(osg::Matrix::identity()); mLeftCamera->setName("Stereo Left"); mLeftCamera->setDataVariance(osg::Object::STATIC); mRightCamera->setReferenceFrame(osg::Transform::ABSOLUTE_RF); mRightCamera->setProjectionResizePolicy(osg::Camera::FIXED); mRightCamera->setProjectionMatrix(osg::Matrix::identity()); mRightCamera->setViewMatrix(osg::Matrix::identity()); mRightCamera->setName("Stereo Right"); mRightCamera->setDataVariance(osg::Object::STATIC); // Update stereo statesets/matrices, but after the main camera updates. auto mainCameraCB = mMainCamera->getUpdateCallback(); mMainCamera->removeUpdateCallback(mainCameraCB); mMainCamera->addUpdateCallback(new StereoUpdateCallback(this)); mMainCamera->addUpdateCallback(mainCameraCB); // Do a blank double buffering of camera statesets on update. Actual state updates are performed in StereoView::Update() mLeftCamera->setUpdateCallback(new SceneUtil::StateSetUpdater()); mRightCamera->setUpdateCallback(new SceneUtil::StateSetUpdater()); if (mTechnique == Technique::GeometryShader_IndexedViewports) { setupGeometryShaderIndexedViewportTechnique(); } else { setupBruteForceTechnique(); } if (sInstance) throw std::logic_error("Double instance og StereoView"); sInstance = this; } void StereoView::setupBruteForceTechnique() { mLeftCamera->setRenderOrder(osg::Camera::NESTED_RENDER); mLeftCamera->setClearColor(mMainCamera->getClearColor()); mLeftCamera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); mLeftCamera->setCullMask(mMainCamera->getCullMask()); mRightCamera->setRenderOrder(osg::Camera::NESTED_RENDER); mRightCamera->setClearColor(mMainCamera->getClearColor()); mRightCamera->setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); mRightCamera->setCullMask(mMainCamera->getCullMask()); if (mSharedShadowMaps) { mLeftCamera->setUserData(mMasterConfig); mRightCamera->setUserData(mSlaveConfig); } // Slave cameras must have their viewports defined immediately auto width = mMainCamera->getViewport()->width(); auto height = mMainCamera->getViewport()->height(); mLeftCamera->setViewport(0, 0, width / 2, height); mRightCamera->setViewport(width / 2, 0, width / 2, height); mViewer->stopThreading(); mViewer->addSlave(mRightCamera, true); mViewer->addSlave(mLeftCamera, true); mRightCamera->setGraphicsContext(mViewer->getCamera()->getGraphicsContext()); mLeftCamera->setGraphicsContext(mViewer->getCamera()->getGraphicsContext()); mViewer->getCamera()->setGraphicsContext(nullptr); mViewer->realize(); } void StereoView::setupGeometryShaderIndexedViewportTechnique() { mLeftCamera->setRenderOrder(osg::Camera::NESTED_RENDER); mLeftCamera->setClearMask(GL_NONE); mLeftCamera->setCullMask(mNoShaderMask); mRightCamera->setRenderOrder(osg::Camera::NESTED_RENDER); mRightCamera->setClearMask(GL_NONE); mRightCamera->setCullMask(mNoShaderMask); mMainCamera->setCullMask(mGeometryShaderMask); addChild(mStereoGeometryShaderRoot); addChild(mStereoBruteForceRoot); mStereoBruteForceRoot->addChild(mLeftCamera); mStereoBruteForceRoot->addChild(mRightCamera); addCullCallback(new StereoStatesetUpdateCallback(this)); // Inject self as the root of the scene graph mStereoGeometryShaderRoot->addChild(mRoot); mViewer->setSceneData(this); } void StereoView::update() { auto viewMatrix = mViewer->getCamera()->getViewMatrix(); auto projectionMatrix = mViewer->getCamera()->getProjectionMatrix(); View left{}; View right{}; double near = 1.f; double far = 10000.f; if (!cb) { Log(Debug::Error) << "No update view callback. Stereo rendering will not work."; } cb->updateView(left, right, near, far); osg::Vec3d leftEye = left.pose.position; osg::Vec3d rightEye = right.pose.position; osg::Matrix leftViewOffset = left.pose.viewMatrix(true); osg::Matrix rightViewOffset = right.pose.viewMatrix(true); osg::Matrix leftViewMatrix = viewMatrix * leftViewOffset; osg::Matrix rightViewMatrix = viewMatrix * rightViewOffset; osg::Matrix leftProjectionMatrix = left.fov.perspectiveMatrix(near, far); osg::Matrix rightProjectionMatrix = right.fov.perspectiveMatrix(near, far); mRightCamera->setViewMatrix(rightViewMatrix); mLeftCamera->setViewMatrix(leftViewMatrix); mRightCamera->setProjectionMatrix(rightProjectionMatrix); mLeftCamera->setProjectionMatrix(leftProjectionMatrix); auto width = mMainCamera->getViewport()->width(); auto height = mMainCamera->getViewport()->height(); // To correctly cull when drawing stereo using the geometry shader, the main camera must // draw a fake view+perspective that includes the full frustums of both the left and right eyes. // This frustum will be computed as a perspective frustum from a position P slightly behind the eyes L and R // where it creates the minimum frustum encompassing both eyes' frustums. // NOTE: I make an assumption that the eyes lie in a horizontal plane relative to the base view, // and lie mirrored around the Y axis (straight ahead). // Re-think this if that turns out to be a bad assumption. View frustumView; // Compute Frustum angles. A simple min/max. /* Example values for reference: Left: angleLeft -0.767549932 float angleRight 0.620896876 float angleDown -0.837898076 float angleUp 0.726982594 float Right: angleLeft -0.620896876 float angleRight 0.767549932 float angleDown -0.837898076 float angleUp 0.726982594 float */ frustumView.fov.angleLeft = std::min(left.fov.angleLeft, right.fov.angleLeft); frustumView.fov.angleRight = std::max(left.fov.angleRight, right.fov.angleRight); frustumView.fov.angleDown = std::min(left.fov.angleDown, right.fov.angleDown); frustumView.fov.angleUp = std::max(left.fov.angleUp, right.fov.angleUp); // Check that the case works for this approach auto maxAngle = std::max(frustumView.fov.angleRight - frustumView.fov.angleLeft, frustumView.fov.angleUp - frustumView.fov.angleDown); if (maxAngle > osg::PI) { Log(Debug::Error) << "Total FOV exceeds 180 degrees. Case cannot be culled in single-pass VR. Disabling culling to cope. Consider switching to dual-pass VR."; mMainCamera->setCullingActive(false); return; // TODO: An explicit frustum projection could cope, so implement that later. Guarantee you there will be VR headsets with total horizontal fov > 180 in the future. Maybe already. } // Use the law of sines on the triangle spanning PLR to determine P double angleLeft = std::abs(frustumView.fov.angleLeft); double angleRight = std::abs(frustumView.fov.angleRight); double lengthRL = (rightEye - leftEye).length(); double ratioRL = lengthRL / std::sin(osg::PI - angleLeft - angleRight); double lengthLP = ratioRL * std::sin(angleRight); osg::Vec3d directionLP = osg::Vec3(std::cos(-angleLeft), std::sin(-angleLeft), 0); osg::Vec3d LP = directionLP * lengthLP; frustumView.pose.position = leftEye + LP; //frustumView.pose.position.x() += 1000; // Base view position is 0.0, by definition. // The length of the vector P is therefore the required offset to near/far. auto nearFarOffset = frustumView.pose.position.length(); // Generate the frustum matrices auto frustumViewMatrix = viewMatrix * frustumView.pose.viewMatrix(true); auto frustumProjectionMatrix = frustumView.fov.perspectiveMatrix(near + nearFarOffset, far + nearFarOffset); if (mTechnique == Technique::GeometryShader_IndexedViewports) { // Update camera with frustum matrices mMainCamera->setViewMatrix(frustumViewMatrix); mMainCamera->setProjectionMatrix(frustumProjectionMatrix); mLeftCamera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, 0, 0, width / 2, height), osg::StateAttribute::OVERRIDE); mRightCamera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, width / 2, 0, width / 2, height), osg::StateAttribute::OVERRIDE); } else { mLeftCamera->setClearColor(mMainCamera->getClearColor()); mRightCamera->setClearColor(mMainCamera->getClearColor()); mLeftCamera->setViewport(0, 0, width / 2, height); mRightCamera->setViewport(width / 2, 0, width / 2, height); if (mMasterConfig->_projection == nullptr) mMasterConfig->_projection = new osg::RefMatrix; if (mMasterConfig->_modelView == nullptr) mMasterConfig->_modelView = new osg::RefMatrix; if (mSharedShadowMaps) { mMasterConfig->_referenceFrame = mMainCamera->getReferenceFrame(); mMasterConfig->_modelView->set(frustumViewMatrix); mMasterConfig->_projection->set(projectionMatrix); } } } void StereoView::updateStateset(osg::StateSet * stateset) { // Manage viewports in update to automatically catch window/resolution changes. auto width = mMainCamera->getViewport()->width(); auto height = mMainCamera->getViewport()->height(); stateset->setAttribute(new osg::ViewportIndexed(0, 0, 0, width / 2, height)); stateset->setAttribute(new osg::ViewportIndexed(1, width / 2, 0, width / 2, height)); // Update stereo uniforms auto frustumViewMatrixInverse = osg::Matrix::inverse(mMainCamera->getViewMatrix()); //auto frustumViewProjectionMatrixInverse = osg::Matrix::inverse(mMainCamera->getProjectionMatrix()) * osg::Matrix::inverse(mMainCamera->getViewMatrix()); auto* stereoViewMatrixUniform = stateset->getUniform("stereoViewMatrices"); auto* stereoViewProjectionsUniform = stateset->getUniform("stereoViewProjections"); stereoViewMatrixUniform->setElement(0, frustumViewMatrixInverse * mLeftCamera->getViewMatrix()); stereoViewMatrixUniform->setElement(1, frustumViewMatrixInverse * mRightCamera->getViewMatrix()); stereoViewProjectionsUniform->setElement(0, frustumViewMatrixInverse * mLeftCamera->getViewMatrix() * mLeftCamera->getProjectionMatrix()); stereoViewProjectionsUniform->setElement(1, frustumViewMatrixInverse * mRightCamera->getViewMatrix() * mRightCamera->getProjectionMatrix()); } void StereoView::setUpdateViewCallback(std::shared_ptr cb_) { cb = cb_; } void StereoView::initializeScene() { SceneUtil::FindByNameVisitor findScene("Scene Root"); mRoot->accept(findScene); mScene = findScene.mFoundNode; if (!mScene) throw std::logic_error("Couldn't find scene root"); if (mTechnique == Technique::GeometryShader_IndexedViewports) { mLeftCamera->addChild(mScene); // Use scene directly to avoid redundant shadow computation. mRightCamera->addChild(mScene); } } void disableStereoForCamera(osg::Camera* camera) { auto* viewport = camera->getViewport(); camera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, viewport->x(), viewport->y(), viewport->width(), viewport->height()), osg::StateAttribute::OVERRIDE); camera->getOrCreateStateSet()->addUniform(new osg::Uniform("geometryPassthrough", true), osg::StateAttribute::OVERRIDE); } void enableStereoForCamera(osg::Camera* camera, bool horizontalSplit) { auto* viewport = camera->getViewport(); auto x1 = viewport->x(); auto y1 = viewport->y(); auto width = viewport->width(); auto height = viewport->height(); auto x2 = x1; auto y2 = y1; if (horizontalSplit) { width /= 2; x2 += width; } else { height /= 2; y2 += height; } camera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, x1, y1, width, height)); camera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(1, x2, y2, width, height)); camera->getOrCreateStateSet()->addUniform(new osg::Uniform("geometryPassthrough", false)); } StereoView::Technique getStereoTechnique(void) { auto stereoMethodString = Settings::Manager::getString("stereo method", "Stereo"); auto stereoMethodStringLowerCase = Misc::StringUtils::lowerCase(stereoMethodString); if (stereoMethodStringLowerCase == "geometryshader") { return Misc::StereoView::Technique::GeometryShader_IndexedViewports; } if (stereoMethodStringLowerCase == "bruteforce") { return Misc::StereoView::Technique::BruteForce; } Log(Debug::Warning) << "Unknown stereo technique \"" << stereoMethodString << "\", defaulting to BruteForce"; return StereoView::Technique::BruteForce; } void StereoView::DefaultUpdateViewCallback::updateView(View& left, View& right, double& near, double& far) { left.pose.position = osg::Vec3(-2.2, 0, 0); right.pose.position = osg::Vec3(2.2, 0, 0); left.fov = { -0.767549932, 0.620896876, -0.837898076, 0.726982594 }; right.fov = { -0.620896876, 0.767549932, -0.837898076, 0.726982594 }; near = 1; far = 6656; } void StereoView::setInitialDrawCallback(osg::ref_ptr cb) { mMainCamera->setInitialDrawCallback(cb); } void StereoView::setPredrawCallback(osg::ref_ptr cb) { if (mTechnique == Technique::GeometryShader_IndexedViewports) { mMainCamera->setPreDrawCallback(cb); } else { mLeftCamera->setPreDrawCallback(cb); } } void StereoView::setPostdrawCallback(osg::ref_ptr cb) { if (mTechnique == Technique::GeometryShader_IndexedViewports) { mMainCamera->setPostDrawCallback(cb); } else { mRightCamera->setPostDrawCallback(cb); } } }