#include "stereo.hpp" #include #include #include #include #include #include #include #include namespace Misc { Pose Pose::operator+(const Pose& rhs) { Pose pose = *this; pose.position += this->orientation * rhs.position; pose.orientation = rhs.orientation * this->orientation; return pose; } const Pose& Pose::operator+=(const Pose& rhs) { *this = *this + rhs; return *this; } Pose Pose::operator*(float scalar) { Pose pose = *this; pose.position *= scalar; return pose; } const Pose& Pose::operator*=(float scalar) { *this = *this * scalar; return *this; } Pose Pose::operator/(float scalar) { Pose pose = *this; pose.position /= scalar; return pose; } const Pose& Pose::operator/=(float scalar) { *this = *this / scalar; return *this; } bool Pose::operator==(const Pose& rhs) const { return position == rhs.position && orientation == rhs.orientation; } osg::Matrix Pose::viewMatrix(bool useGLConventions) { if (useGLConventions) { // When applied as an offset to an existing view matrix, // that view matrix will already convert points to a camera space // with opengl conventions. So we need to convert offsets to opengl // conventions. float y = position.y(); float z = position.z(); position.y() = z; position.z() = -y; y = orientation.y(); z = orientation.z(); orientation.y() = z; orientation.z() = -y; osg::Matrix viewMatrix; viewMatrix.setTrans(-position); viewMatrix.postMultRotate(orientation.conj()); return viewMatrix; } else { osg::Vec3d forward = orientation * osg::Vec3d(0, 1, 0); osg::Vec3d up = orientation * osg::Vec3d(0, 0, 1); osg::Matrix viewMatrix; viewMatrix.makeLookAt(position, position + forward, up); return viewMatrix; } } bool FieldOfView::operator==(const FieldOfView& rhs) const { return angleDown == rhs.angleDown && angleUp == rhs.angleUp && angleLeft == rhs.angleLeft && angleRight == rhs.angleRight; } // near and far named with an underscore because of windows' headers galaxy brain defines. osg::Matrix FieldOfView::perspectiveMatrix(float near_, float far_) { const float tanLeft = tanf(angleLeft); const float tanRight = tanf(angleRight); const float tanDown = tanf(angleDown); const float tanUp = tanf(angleUp); const float tanWidth = tanRight - tanLeft; const float tanHeight = tanUp - tanDown; const float offset = near_; float matrix[16] = {}; matrix[0] = 2 / tanWidth; matrix[4] = 0; matrix[8] = (tanRight + tanLeft) / tanWidth; matrix[12] = 0; matrix[1] = 0; matrix[5] = 2 / tanHeight; matrix[9] = (tanUp + tanDown) / tanHeight; matrix[13] = 0; if (far_ <= near_) { matrix[2] = 0; matrix[6] = 0; matrix[10] = -1; matrix[14] = -(near_ + offset); } else { matrix[2] = 0; matrix[6] = 0; matrix[10] = -(far_ + offset) / (far_ - near_); matrix[14] = -(far_ * (near_ + offset)) / (far_ - near_); } matrix[3] = 0; matrix[7] = 0; matrix[11] = -1; matrix[15] = 0; return osg::Matrix(matrix); } bool View::operator==(const View& rhs) const { return pose == rhs.pose && fov == rhs.fov; } std::ostream& operator <<( std::ostream& os, const Pose& pose) { os << "position=" << pose.position << ", orientation=" << pose.orientation; return os; } std::ostream& operator <<( std::ostream& os, const FieldOfView& fov) { os << "left=" << fov.angleLeft << ", right=" << fov.angleRight << ", down=" << fov.angleDown << ", up=" << fov.angleUp; return os; } std::ostream& operator <<( std::ostream& os, const View& view) { os << "pose=< " << view.pose << " >, fov=< " << view.fov << " >"; return os; } /// Why are you like this class TestCullCallback : public osg::NodeCallback { public: TestCullCallback() {} virtual void operator()(osg::Node* node, osg::NodeVisitor* nv) { //Log(Debug::Verbose) << "Cull: " << node->getName(); osgUtil::CullVisitor* cv = static_cast(nv); traverse(node, nv); } }; class StereoUpdateCallback : public osg::Callback { public: StereoUpdateCallback(StereoView* node) : mNode(node) {} bool run(osg::Object* object, osg::Object* data) override { //Log(Debug::Verbose) << "StereoUpdateCallback"; auto b = traverse(object, data); //mNode->update(); return b; } StereoView* mNode; }; class StereoUpdater : public SceneUtil::StateSetUpdater { public: StereoUpdater(StereoView* view) : stereoView(view) { } protected: virtual void setDefaults(osg::StateSet* stateset) { auto stereoViewMatrixUniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, "stereoViewMatrices", 2); stateset->addUniform(stereoViewMatrixUniform, osg::StateAttribute::OVERRIDE); auto stereoViewProjectionsUniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, "stereoViewProjections", 2); stateset->addUniform(stereoViewProjectionsUniform); auto geometryPassthroughUniform = new osg::Uniform("geometryPassthrough", false); stateset->addUniform(geometryPassthroughUniform); } virtual void apply(osg::StateSet* stateset, osg::NodeVisitor* /*nv*/) { stereoView->update(stateset); } private: StereoView* stereoView; }; StereoView::StereoView(osgViewer::Viewer* viewer, osg::Node::NodeMask geometryShaderMask, osg::Node::NodeMask bruteForceMask) : osg::Group() , mViewer(viewer) , mMainCamera(mViewer->getCamera()) , mRoot(viewer->getSceneData()->asGroup()) , mGeometryShaderMask(geometryShaderMask) , mBruteForceMask(bruteForceMask) { SceneUtil::FindByNameVisitor findScene("Scene Root"); mRoot->accept(findScene); mScene = findScene.mFoundNode; if (!mScene) throw std::logic_error("Couldn't find scene root"); setName("Sky Root"); mRoot->setDataVariance(osg::Object::STATIC); setDataVariance(osg::Object::STATIC); mLeftCamera->setReferenceFrame(osg::Transform::ABSOLUTE_RF); mLeftCamera->setProjectionResizePolicy(osg::Camera::FIXED); mLeftCamera->setProjectionMatrix(osg::Matrix::identity()); mLeftCamera->setViewMatrix(osg::Matrix::identity()); mLeftCamera->setRenderOrder(osg::Camera::NESTED_RENDER); mLeftCamera->setClearMask(GL_NONE); mLeftCamera->setCullMask(bruteForceMask); mLeftCamera->setName("Stereo Left"); mLeftCamera->setDataVariance(osg::Object::STATIC); mRightCamera->setReferenceFrame(osg::Transform::ABSOLUTE_RF); mRightCamera->setProjectionResizePolicy(osg::Camera::FIXED); mRightCamera->setProjectionMatrix(osg::Matrix::identity()); mRightCamera->setViewMatrix(osg::Matrix::identity()); mRightCamera->setRenderOrder(osg::Camera::NESTED_RENDER); mRightCamera->setClearMask(GL_NONE); mRightCamera->setCullMask(bruteForceMask); mRightCamera->setName("Stereo Right"); mRightCamera->setDataVariance(osg::Object::STATIC); mMainCamera->setCullMask(geometryShaderMask); // Inject self as the root of the scene graph, and split into geometry-shader stereo and brute force stereo. addChild(mStereoGeometryShaderRoot); mStereoGeometryShaderRoot->addChild(mRoot); addChild(mStereoBruteForceRoot); mStereoBruteForceRoot->addChild(mLeftCamera); mLeftCamera->addChild(mScene); // Use scene directly to avoid redundant shadow computation. mStereoBruteForceRoot->addChild(mRightCamera); mRightCamera->addChild(mScene); viewer->setSceneData(this); addCullCallback(new StereoUpdater(this)); // Do a blank double buffering of camera statesets on update. StereoView::Update() apply actual changes during cull; mLeftCamera->setUpdateCallback(new SceneUtil::StateSetUpdater()); mRightCamera->setUpdateCallback(new SceneUtil::StateSetUpdater()); } void StereoView::update(osg::StateSet* stateset) { auto viewMatrix = mViewer->getCamera()->getViewMatrix(); auto projectionMatrix = mViewer->getCamera()->getProjectionMatrix(); View left{}; View right{}; double near = 1.f; double far = 10000.f; if (!cb) { Log(Debug::Error) << "No update view callback. Stereo rendering will not work."; } cb->updateView(left, right, near, far); osg::Vec3d leftEye = left.pose.position; osg::Vec3d rightEye = right.pose.position; osg::Matrix leftViewOffset = left.pose.viewMatrix(true); osg::Matrix rightViewOffset = right.pose.viewMatrix(true); osg::Matrix leftViewMatrix = viewMatrix * leftViewOffset; osg::Matrix rightViewMatrix = viewMatrix * rightViewOffset; osg::Matrix leftProjectionMatrix = left.fov.perspectiveMatrix(near, far); osg::Matrix rightProjectionMatrix = right.fov.perspectiveMatrix(near, far); mRightCamera->setViewMatrix(leftViewMatrix); mLeftCamera->setViewMatrix(rightViewMatrix); mRightCamera->setProjectionMatrix(leftProjectionMatrix); mLeftCamera->setProjectionMatrix(rightProjectionMatrix); // Manage viewports in update to automatically catch window/resolution changes. auto width = mMainCamera->getViewport()->width(); auto height = mMainCamera->getViewport()->height(); mLeftCamera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, 0, 0, width / 2, height), osg::StateAttribute::OVERRIDE); mRightCamera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, width / 2, 0, width / 2, height), osg::StateAttribute::OVERRIDE); stateset->setAttribute(new osg::ViewportIndexed(0, 0, 0, width / 2, height)); stateset->setAttribute(new osg::ViewportIndexed(1, width / 2, 0, width / 2, height)); // The persepctive frustum will be computed from a position P slightly behind the eyes L and R // where it creates the minimum frustum encompassing both eyes' frustums. // NOTE: I make an assumption that the eyes lie in a horizontal plane relative to the base view, // and lie mirrored around the Y axis (straight ahead). // Re-think this if that turns out to be a bad assumption View frustumView; // Compute Frustum angles. A simple min/max. /* Example values for reference: Left: angleLeft -0.767549932 float angleRight 0.620896876 float angleDown -0.837898076 float angleUp 0.726982594 float Right: angleLeft -0.620896876 float angleRight 0.767549932 float angleDown -0.837898076 float angleUp 0.726982594 float */ frustumView.fov.angleLeft = std::min(left.fov.angleLeft, right.fov.angleLeft); frustumView.fov.angleRight = std::max(left.fov.angleRight, right.fov.angleRight); frustumView.fov.angleDown = std::min(left.fov.angleDown, right.fov.angleDown); frustumView.fov.angleUp = std::max(left.fov.angleUp, right.fov.angleUp); // Check that the case works for this approach auto maxAngle = std::max(frustumView.fov.angleRight - frustumView.fov.angleLeft, frustumView.fov.angleUp - frustumView.fov.angleDown); if (maxAngle > osg::PI) { Log(Debug::Error) << "Total FOV exceeds 180 degrees. Case cannot be culled in single-pass VR. Disabling culling to cope. Consider switching to dual-pass VR."; mMainCamera->setCullingActive(false); return; // TODO: An explicit frustum projection could cope, so implement that later. Guarantee you there will be VR headsets with total fov > 180 in the future. Maybe already. } // Use the law of sines on the triangle spanning PLR to determine P double angleLeft = std::abs(frustumView.fov.angleLeft); double angleRight = std::abs(frustumView.fov.angleRight); double lengthRL = (rightEye - leftEye).length(); double ratioRL = lengthRL / std::sin(osg::PI - angleLeft - angleRight); double lengthLP = ratioRL * std::sin(angleRight); osg::Vec3d directionLP = osg::Vec3(std::cos(-angleLeft), std::sin(-angleLeft), 0); osg::Vec3d LP = directionLP * lengthLP; frustumView.pose.position = leftEye + LP; // Base view position is 0.0, by definition. // The length of the vector P is therefore the required offset to near/far. auto nearFarOffset = frustumView.pose.position.length(); // Generate the frustum matrices auto frustumViewMatrix = viewMatrix * frustumView.pose.viewMatrix(true); auto frustumProjectionMatrix = frustumView.fov.perspectiveMatrix(near + nearFarOffset, far + nearFarOffset); auto frustumViewMatrixInverse = osg::Matrix::inverse(projectionMatrix) * osg::Matrix::inverse(viewMatrix); // Update camera with frustum matrices mMainCamera->setViewMatrix(frustumViewMatrix); mMainCamera->setProjectionMatrix(frustumProjectionMatrix); mStereoGeometryShaderRoot->setStateSet(stateset); // Create and/or update stereo uniforms auto* stereoViewMatrixUniform = stateset->getUniform("stereoViewMatrices"); auto* stereoViewProjectionsUniform = stateset->getUniform("stereoViewProjections"); stereoViewMatrixUniform->setElement(1, frustumViewMatrixInverse * leftViewMatrix); stereoViewMatrixUniform->setElement(0, frustumViewMatrixInverse * rightViewMatrix); stereoViewProjectionsUniform->setElement(1, frustumViewMatrixInverse * rightViewMatrix * leftProjectionMatrix); stereoViewProjectionsUniform->setElement(0, frustumViewMatrixInverse * rightViewMatrix * rightProjectionMatrix); } void StereoView::setUpdateViewCallback(std::shared_ptr cb) { this->cb = cb; } void StereoView::useSlaveCameraAtIndex(int index) { if (mViewer->getNumSlaves() <= index) { Log(Debug::Error) << "Requested slave at index " << index << " but no such slave exists"; return; } mMainCamera = mViewer->getSlave(index)._camera; mMainCamera->setCullMask(mGeometryShaderMask); } void disableStereoForCamera(osg::Camera* camera) { auto* viewport = camera->getViewport(); camera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, viewport->x(), viewport->y(), viewport->width(), viewport->height()), osg::StateAttribute::OVERRIDE); camera->getOrCreateStateSet()->addUniform(new osg::Uniform("geometryPassthrough", true), osg::StateAttribute::OVERRIDE); } void enableStereoForCamera(osg::Camera* camera, bool horizontalSplit) { auto* viewport = camera->getViewport(); auto x1 = viewport->x(); auto y1 = viewport->y(); auto width = viewport->width(); auto height = viewport->height(); auto x2 = x1; auto y2 = y1; if (horizontalSplit) { width /= 2; x2 += width; } else { height /= 2; y2 += height; } camera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(0, x1, y1, width, height)); camera->getOrCreateStateSet()->setAttribute(new osg::ViewportIndexed(1, x2, y2, width, height)); camera->getOrCreateStateSet()->addUniform(new osg::Uniform("geometryPassthrough", false)); } void StereoView::DefaultUpdateViewCallback::updateView(View& left, View& right, double& near, double& far) { left.pose.position = osg::Vec3(-2.2, 0, 0); right.pose.position = osg::Vec3(2.2, 0, 0); left.fov = { -0.767549932, 0.620896876, -0.837898076, 0.726982594 }; right.fov = { -0.620896876, 0.767549932, -0.837898076, 0.726982594 }; near = 1; far = 10000; } }