#include "data.hpp" #include "node.hpp" namespace Nif { void NiSkinInstance::read(NIFStream *nif) { data.read(nif); root.read(nif); bones.read(nif); } void NiSkinInstance::post(NIFFile *nif) { data.post(nif); root.post(nif); bones.post(nif); if(data.empty() || root.empty()) nif->fail("NiSkinInstance missing root or data"); size_t bnum = bones.length(); if(bnum != data->bones.size()) nif->fail("Mismatch in NiSkinData bone count"); for(size_t i=0; ifail("Oops: Missing bone! Don't know how to handle this."); bones[i]->setBone(); } } void ShapeData::read(NIFStream *nif) { int verts = nif->getUShort(); if(nif->getInt()) nif->getVector3s(vertices, verts); if(nif->getInt()) nif->getVector3s(normals, verts); center = nif->getVector3(); radius = nif->getFloat(); if(nif->getInt()) nif->getVector4s(colors, verts); // Only the first 6 bits are used as a count. I think the rest are // flags of some sort. int uvs = nif->getUShort(); uvs &= 0x3f; if(nif->getInt()) { uvlist.resize(uvs); for(int i = 0;i < uvs;i++) { nif->getVector2s(uvlist[i], verts); // flip the texture coordinates to convert them to the OpenGL convention of bottom-left image origin for (unsigned int uv=0; uvgetUShort(); // We have three times as many vertices as triangles, so this // is always equal to tris*3. int cnt = nif->getInt(); nif->getUShorts(triangles, cnt); // Read the match list, which lists the vertices that are equal to // vertices. We don't actually need need this for anything, so // just skip it. int verts = nif->getUShort(); for(int i=0;i < verts;i++) { // Number of vertices matching vertex 'i' int num = nif->getUShort(); nif->skip(num * sizeof(short)); } } void NiTriStripsData::read(NIFStream *nif) { ShapeData::read(nif); // Every strip with n points defines n-2 triangles, so this should be unnecessary. /*int tris =*/ nif->getUShort(); // Number of triangle strips int numStrips = nif->getUShort(); std::vector lengths; nif->getUShorts(lengths, numStrips); for (int i = 0; i < numStrips; i++) { std::vector strip; nif->getUShorts(strip, lengths[i]); strips.emplace_back(strip); } } void NiAutoNormalParticlesData::read(NIFStream *nif) { ShapeData::read(nif); // Should always match the number of vertices numParticles = nif->getUShort(); particleRadius = nif->getFloat(); activeCount = nif->getUShort(); if(nif->getInt()) { // Particle sizes nif->getFloats(sizes, vertices.size()); } } void NiRotatingParticlesData::read(NIFStream *nif) { NiAutoNormalParticlesData::read(nif); if(nif->getInt()) { // Rotation quaternions. nif->getQuaternions(rotations, vertices.size()); } } void NiPosData::read(NIFStream *nif) { mKeyList = std::make_shared(); mKeyList->read(nif); } void NiUVData::read(NIFStream *nif) { for(int i = 0;i < 4;i++) { mKeyList[i] = std::make_shared(); mKeyList[i]->read(nif); } } void NiFloatData::read(NIFStream *nif) { mKeyList = std::make_shared(); mKeyList->read(nif); } void NiPixelData::read(NIFStream *nif) { fmt = (Format)nif->getUInt(); rmask = nif->getUInt(); // usually 0xff gmask = nif->getUInt(); // usually 0xff00 bmask = nif->getUInt(); // usually 0xff0000 amask = nif->getUInt(); // usually 0xff000000 or zero bpp = nif->getUInt(); // 8 bytes of "Old Fast Compare". Whatever that means. nif->skip(8); palette.read(nif); numberOfMipmaps = nif->getUInt(); // Bytes per pixel, should be bpp * 8 /* int bytes = */ nif->getUInt(); for(unsigned int i=0; igetUInt(); m.height = nif->getUInt(); m.dataOffset = nif->getUInt(); mipmaps.push_back(m); } // Read the data unsigned int dataSize = nif->getUInt(); data.reserve(dataSize); for (unsigned i=0; igetChar()); } void NiPixelData::post(NIFFile *nif) { palette.post(nif); } void NiColorData::read(NIFStream *nif) { mKeyMap = std::make_shared(); mKeyMap->read(nif); } void NiVisData::read(NIFStream *nif) { int count = nif->getInt(); mVis.resize(count); for(size_t i = 0;i < mVis.size();i++) { mVis[i].time = nif->getFloat(); mVis[i].isSet = (nif->getChar() != 0); } } void NiSkinData::read(NIFStream *nif) { trafo.rotation = nif->getMatrix3(); trafo.pos = nif->getVector3(); trafo.scale = nif->getFloat(); int boneNum = nif->getInt(); nif->getInt(); // -1 bones.resize(boneNum); for(int i=0;igetMatrix3(); bi.trafo.pos = nif->getVector3(); bi.trafo.scale = nif->getFloat(); bi.boundSphereCenter = nif->getVector3(); bi.boundSphereRadius = nif->getFloat(); // Number of vertex weights bi.weights.resize(nif->getUShort()); for(size_t j = 0;j < bi.weights.size();j++) { bi.weights[j].vertex = nif->getUShort(); bi.weights[j].weight = nif->getFloat(); } } } void NiMorphData::read(NIFStream *nif) { int morphCount = nif->getInt(); int vertCount = nif->getInt(); /*relative targets?*/nif->getChar(); mMorphs.resize(morphCount); for(int i = 0;i < morphCount;i++) { mMorphs[i].mKeyFrames = std::make_shared(); mMorphs[i].mKeyFrames->read(nif, true); nif->getVector3s(mMorphs[i].mVertices, vertCount); } } void NiKeyframeData::read(NIFStream *nif) { mRotations = std::make_shared(); mRotations->read(nif); if(mRotations->mInterpolationType == Vector3KeyMap::sXYZInterpolation) { //Chomp unused float nif->getFloat(); mXRotations = std::make_shared(); mYRotations = std::make_shared(); mZRotations = std::make_shared(); mXRotations->read(nif, true); mYRotations->read(nif, true); mZRotations->read(nif, true); } mTranslations = std::make_shared(); mTranslations->read(nif); mScales = std::make_shared(); mScales->read(nif); } void NiPalette::read(NIFStream *nif) { unsigned int alphaMask = !nif->getChar() ? 0xFF000000 : 0; // Fill the entire palette with black even if there isn't enough entries. colors.resize(256); unsigned int numEntries = nif->getUInt(); for (unsigned int i = 0; i < numEntries; i++) colors[i] = nif->getUInt() | alphaMask; } } // Namespace