#include "controller.hpp" #include #include #include #include #include #include #include #include "matrixtransform.hpp" namespace NifOsg { ControllerFunction::ControllerFunction(const Nif::Controller *ctrl) : mFrequency(ctrl->frequency) , mPhase(ctrl->phase) , mStartTime(ctrl->timeStart) , mStopTime(ctrl->timeStop) , mExtrapolationMode(static_cast((ctrl->flags&0x6) >> 1)) { } float ControllerFunction::calculate(float value) const { float time = mFrequency * value + mPhase; if (time >= mStartTime && time <= mStopTime) return time; switch (mExtrapolationMode) { case Cycle: { float delta = mStopTime - mStartTime; if ( delta <= 0 ) return mStartTime; float cycles = ( time - mStartTime ) / delta; float remainder = ( cycles - std::floor( cycles ) ) * delta; return mStartTime + remainder; } case Reverse: { float delta = mStopTime - mStartTime; if ( delta <= 0 ) return mStartTime; float cycles = ( time - mStartTime ) / delta; float remainder = ( cycles - std::floor( cycles ) ) * delta; // Even number of cycles? if ( ( static_cast(std::fabs( std::floor( cycles ) )) % 2 ) == 0 ) return mStartTime + remainder; return mStopTime - remainder; } case Constant: default: return std::min(mStopTime, std::max(mStartTime, time)); } } float ControllerFunction::getMaximum() const { return mStopTime; } KeyframeController::KeyframeController() { } KeyframeController::KeyframeController(const KeyframeController ©, const osg::CopyOp ©op) : SceneUtil::KeyframeController(copy, copyop) , mRotations(copy.mRotations) , mXRotations(copy.mXRotations) , mYRotations(copy.mYRotations) , mZRotations(copy.mZRotations) , mTranslations(copy.mTranslations) , mScales(copy.mScales) { } KeyframeController::KeyframeController(const Nif::NiKeyframeData *data) : mRotations(data->mRotations) , mXRotations(data->mXRotations, 0.f) , mYRotations(data->mYRotations, 0.f) , mZRotations(data->mZRotations, 0.f) , mTranslations(data->mTranslations, osg::Vec3f()) , mScales(data->mScales, 1.f) { } KeyframeController::KeyframeController(const Nif::NiTransformInterpolator* interpolator) : mRotations(interpolator->data->mRotations, interpolator->defaultRot) , mXRotations(interpolator->data->mXRotations, 0.f) , mYRotations(interpolator->data->mYRotations, 0.f) , mZRotations(interpolator->data->mZRotations, 0.f) , mTranslations(interpolator->data->mTranslations, interpolator->defaultPos) , mScales(interpolator->data->mScales, interpolator->defaultScale) { } KeyframeController::KeyframeController(const float scale, const osg::Vec3f& pos, const osg::Quat& rot) : mRotations(Nif::QuaternionKeyMapPtr(), rot) , mXRotations(Nif::FloatKeyMapPtr(), 0.f) , mYRotations(Nif::FloatKeyMapPtr(), 0.f) , mZRotations(Nif::FloatKeyMapPtr(), 0.f) , mTranslations(Nif::Vector3KeyMapPtr(), pos) , mScales(Nif::FloatKeyMapPtr(), scale) { } osg::Quat KeyframeController::getXYZRotation(float time) const { float xrot = 0, yrot = 0, zrot = 0; if (!mXRotations.empty()) xrot = mXRotations.interpKey(time); if (!mYRotations.empty()) yrot = mYRotations.interpKey(time); if (!mZRotations.empty()) zrot = mZRotations.interpKey(time); osg::Quat xr(xrot, osg::Vec3f(1,0,0)); osg::Quat yr(yrot, osg::Vec3f(0,1,0)); osg::Quat zr(zrot, osg::Vec3f(0,0,1)); return (xr*yr*zr); } osg::Vec3f KeyframeController::getTranslation(float time) const { if(!mTranslations.empty()) return mTranslations.interpKey(time); return osg::Vec3f(); } void KeyframeController::operator() (osg::Node* node, osg::NodeVisitor* nv) { if (hasInput()) { NifOsg::MatrixTransform* trans = static_cast(node); osg::Matrix mat = trans->getMatrix(); float time = getInputValue(nv); Nif::Matrix3& rot = trans->mRotationScale; bool setRot = false; if(!mRotations.empty()) { mat.setRotate(mRotations.interpKey(time)); setRot = true; } else if (!mXRotations.empty() || !mYRotations.empty() || !mZRotations.empty()) { mat.setRotate(getXYZRotation(time)); setRot = true; } else { // no rotation specified, use the previous value for (int i=0;i<3;++i) for (int j=0;j<3;++j) mat(j,i) = rot.mValues[i][j]; // NB column/row major difference } if (setRot) // copy the new values back for (int i=0;i<3;++i) for (int j=0;j<3;++j) rot.mValues[i][j] = mat(j,i); // NB column/row major difference float& scale = trans->mScale; if(!mScales.empty()) scale = mScales.interpKey(time); for (int i=0;i<3;++i) for (int j=0;j<3;++j) mat(i,j) *= scale; if(!mTranslations.empty()) mat.setTrans(mTranslations.interpKey(time)); trans->setMatrix(mat); } traverse(node, nv); } GeomMorpherController::GeomMorpherController() { } GeomMorpherController::GeomMorpherController(const GeomMorpherController ©, const osg::CopyOp ©op) : osg::Drawable::UpdateCallback(copy, copyop) , Controller(copy) , mKeyFrames(copy.mKeyFrames) { } GeomMorpherController::GeomMorpherController(const Nif::NiGeomMorpherController* ctrl) { if (ctrl->interpolators.length() == 0) { if (ctrl->data.empty()) return; for (const auto& morph : ctrl->data->mMorphs) mKeyFrames.emplace_back(morph.mKeyFrames); } else { for (size_t i = 0; i < ctrl->interpolators.length(); ++i) { if (!ctrl->interpolators[i].empty()) mKeyFrames.emplace_back(ctrl->interpolators[i].getPtr()); else mKeyFrames.emplace_back(); } } } void GeomMorpherController::update(osg::NodeVisitor *nv, osg::Drawable *drawable) { SceneUtil::MorphGeometry* morphGeom = static_cast(drawable); if (hasInput()) { if (mKeyFrames.size() <= 1) return; float input = getInputValue(nv); int i = 0; for (std::vector::iterator it = mKeyFrames.begin()+1; it != mKeyFrames.end(); ++it,++i) { float val = 0; if (!(*it).empty()) val = it->interpKey(input); SceneUtil::MorphGeometry::MorphTarget& target = morphGeom->getMorphTarget(i); if (target.getWeight() != val) { target.setWeight(val); morphGeom->dirty(); } } } } UVController::UVController() { } UVController::UVController(const Nif::NiUVData *data, const std::set& textureUnits) : mUTrans(data->mKeyList[0], 0.f) , mVTrans(data->mKeyList[1], 0.f) , mUScale(data->mKeyList[2], 1.f) , mVScale(data->mKeyList[3], 1.f) , mTextureUnits(textureUnits) { } UVController::UVController(const UVController& copy, const osg::CopyOp& copyop) : osg::Object(copy, copyop), StateSetUpdater(copy, copyop), Controller(copy) , mUTrans(copy.mUTrans) , mVTrans(copy.mVTrans) , mUScale(copy.mUScale) , mVScale(copy.mVScale) , mTextureUnits(copy.mTextureUnits) { } void UVController::setDefaults(osg::StateSet *stateset) { osg::ref_ptr texMat (new osg::TexMat); for (std::set::const_iterator it = mTextureUnits.begin(); it != mTextureUnits.end(); ++it) stateset->setTextureAttributeAndModes(*it, texMat, osg::StateAttribute::ON); } void UVController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv) { if (hasInput()) { float value = getInputValue(nv); float uTrans = mUTrans.interpKey(value); float vTrans = mVTrans.interpKey(value); float uScale = mUScale.interpKey(value); float vScale = mVScale.interpKey(value); osg::Matrix flipMat; flipMat.preMultTranslate(osg::Vec3f(0,1,0)); flipMat.preMultScale(osg::Vec3f(1,-1,1)); osg::Matrixf mat = osg::Matrixf::scale(uScale, vScale, 1); mat.setTrans(uTrans, vTrans, 0); mat = flipMat * mat * flipMat; // setting once is enough because all other texture units share the same TexMat (see setDefaults). if (!mTextureUnits.empty()) { osg::TexMat* texMat = static_cast(stateset->getTextureAttribute(*mTextureUnits.begin(), osg::StateAttribute::TEXMAT)); texMat->setMatrix(mat); } } } VisController::VisController(const Nif::NiVisData *data, unsigned int mask) : mData(data->mVis) , mMask(mask) { } VisController::VisController() : mMask(0) { } VisController::VisController(const VisController ©, const osg::CopyOp ©op) : osg::NodeCallback(copy, copyop) , Controller(copy) , mData(copy.mData) , mMask(copy.mMask) { } bool VisController::calculate(float time) const { if(mData.size() == 0) return true; for(size_t i = 1;i < mData.size();i++) { if(mData[i].time > time) return mData[i-1].isSet; } return mData.back().isSet; } void VisController::operator() (osg::Node* node, osg::NodeVisitor* nv) { if (hasInput()) { bool vis = calculate(getInputValue(nv)); node->setNodeMask(vis ? ~0 : mMask); } traverse(node, nv); } RollController::RollController(const Nif::NiFloatData *data) : mData(data->mKeyList, 1.f) { } RollController::RollController(const Nif::NiFloatInterpolator* interpolator) : mData(interpolator) { } RollController::RollController(const RollController ©, const osg::CopyOp ©op) : osg::NodeCallback(copy, copyop) , Controller(copy) , mData(copy.mData) , mStartingTime(copy.mStartingTime) { } void RollController::operator() (osg::Node* node, osg::NodeVisitor* nv) { traverse(node, nv); if (hasInput()) { double newTime = nv->getFrameStamp()->getSimulationTime(); double duration = newTime - mStartingTime; mStartingTime = newTime; float value = mData.interpKey(getInputValue(nv)); osg::MatrixTransform* transform = static_cast(node); osg::Matrix matrix = transform->getMatrix(); // Rotate around "roll" axis. // Note: in original game rotation speed is the framerate-dependent in a very tricky way. // Do not replicate this behaviour until we will really need it. // For now consider controller's current value as an angular speed in radians per 1/60 seconds. matrix = osg::Matrix::rotate(value * duration * 60.f, 0, 0, 1) * matrix; transform->setMatrix(matrix); } } AlphaController::AlphaController() { } AlphaController::AlphaController(const Nif::NiFloatData *data, const osg::Material* baseMaterial) : mData(data->mKeyList, 1.f) , mBaseMaterial(baseMaterial) { } AlphaController::AlphaController(const Nif::NiFloatInterpolator* interpolator, const osg::Material* baseMaterial) : mData(interpolator) , mBaseMaterial(baseMaterial) { } AlphaController::AlphaController(const AlphaController ©, const osg::CopyOp ©op) : StateSetUpdater(copy, copyop), Controller(copy) , mData(copy.mData) , mBaseMaterial(copy.mBaseMaterial) { } void AlphaController::setDefaults(osg::StateSet *stateset) { stateset->setAttribute(static_cast(mBaseMaterial->clone(osg::CopyOp::DEEP_COPY_ALL)), osg::StateAttribute::ON); } void AlphaController::apply(osg::StateSet *stateset, osg::NodeVisitor *nv) { if (hasInput()) { float value = mData.interpKey(getInputValue(nv)); osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK); diffuse.a() = value; mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse); } } MaterialColorController::MaterialColorController() { } MaterialColorController::MaterialColorController(const Nif::NiPosData *data, TargetColor color, const osg::Material* baseMaterial) : mData(data->mKeyList, osg::Vec3f(1,1,1)) , mTargetColor(color) , mBaseMaterial(baseMaterial) { } MaterialColorController::MaterialColorController(const Nif::NiPoint3Interpolator* interpolator, TargetColor color, const osg::Material* baseMaterial) : mData(interpolator) , mTargetColor(color) , mBaseMaterial(baseMaterial) { } MaterialColorController::MaterialColorController(const MaterialColorController ©, const osg::CopyOp ©op) : StateSetUpdater(copy, copyop), Controller(copy) , mData(copy.mData) , mTargetColor(copy.mTargetColor) , mBaseMaterial(copy.mBaseMaterial) { } void MaterialColorController::setDefaults(osg::StateSet *stateset) { stateset->setAttribute(static_cast(mBaseMaterial->clone(osg::CopyOp::DEEP_COPY_ALL)), osg::StateAttribute::ON); } void MaterialColorController::apply(osg::StateSet *stateset, osg::NodeVisitor *nv) { if (hasInput()) { osg::Vec3f value = mData.interpKey(getInputValue(nv)); osg::Material* mat = static_cast(stateset->getAttribute(osg::StateAttribute::MATERIAL)); switch (mTargetColor) { case Diffuse: { osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK); diffuse.set(value.x(), value.y(), value.z(), diffuse.a()); mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse); break; } case Specular: { osg::Vec4f specular = mat->getSpecular(osg::Material::FRONT_AND_BACK); specular.set(value.x(), value.y(), value.z(), specular.a()); mat->setSpecular(osg::Material::FRONT_AND_BACK, specular); break; } case Emissive: { osg::Vec4f emissive = mat->getEmission(osg::Material::FRONT_AND_BACK); emissive.set(value.x(), value.y(), value.z(), emissive.a()); mat->setEmission(osg::Material::FRONT_AND_BACK, emissive); break; } case Ambient: default: { osg::Vec4f ambient = mat->getAmbient(osg::Material::FRONT_AND_BACK); ambient.set(value.x(), value.y(), value.z(), ambient.a()); mat->setAmbient(osg::Material::FRONT_AND_BACK, ambient); } } } } FlipController::FlipController(const Nif::NiFlipController *ctrl, const std::vector >& textures) : mTexSlot(0) // always affects diffuse , mDelta(ctrl->mDelta) , mTextures(textures) { if (!ctrl->mInterpolator.empty()) mData = ctrl->mInterpolator.getPtr(); } FlipController::FlipController(int texSlot, float delta, const std::vector >& textures) : mTexSlot(texSlot) , mDelta(delta) , mTextures(textures) { } FlipController::FlipController(const FlipController ©, const osg::CopyOp ©op) : StateSetUpdater(copy, copyop) , Controller(copy) , mTexSlot(copy.mTexSlot) , mDelta(copy.mDelta) , mTextures(copy.mTextures) , mData(copy.mData) { } void FlipController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv) { if (hasInput() && !mTextures.empty()) { int curTexture = 0; if (mDelta != 0) curTexture = int(getInputValue(nv) / mDelta) % mTextures.size(); else curTexture = int(mData.interpKey(getInputValue(nv))) % mTextures.size(); stateset->setTextureAttribute(mTexSlot, mTextures[curTexture]); } } ParticleSystemController::ParticleSystemController(const Nif::NiParticleSystemController *ctrl) : mEmitStart(ctrl->startTime), mEmitStop(ctrl->stopTime) { } ParticleSystemController::ParticleSystemController() : mEmitStart(0.f), mEmitStop(0.f) { } ParticleSystemController::ParticleSystemController(const ParticleSystemController ©, const osg::CopyOp ©op) : osg::NodeCallback(copy, copyop) , Controller(copy) , mEmitStart(copy.mEmitStart) , mEmitStop(copy.mEmitStop) { } void ParticleSystemController::operator() (osg::Node* node, osg::NodeVisitor* nv) { osgParticle::ParticleProcessor* emitter = static_cast(node); if (hasInput()) { float time = getInputValue(nv); emitter->getParticleSystem()->setFrozen(false); emitter->setEnabled(time >= mEmitStart && time < mEmitStop); } else emitter->getParticleSystem()->setFrozen(true); traverse(node, nv); } PathController::PathController(const PathController ©, const osg::CopyOp ©op) : osg::NodeCallback(copy, copyop) , Controller(copy) , mPath(copy.mPath) , mPercent(copy.mPercent) , mFlags(copy.mFlags) { } PathController::PathController(const Nif::NiPathController* ctrl) : mPath(ctrl->posData->mKeyList, osg::Vec3f()) , mPercent(ctrl->floatData->mKeyList, 1.f) , mFlags(ctrl->flags) { } float PathController::getPercent(float time) const { float percent = mPercent.interpKey(time); if (percent < 0.f) percent = std::fmod(percent, 1.f) + 1.f; else if (percent > 1.f) percent = std::fmod(percent, 1.f); return percent; } void PathController::operator() (osg::Node* node, osg::NodeVisitor* nv) { if (mPath.empty() || mPercent.empty() || !hasInput()) { traverse(node, nv); return; } osg::MatrixTransform* trans = static_cast(node); osg::Matrix mat = trans->getMatrix(); float time = getInputValue(nv); float percent = getPercent(time); osg::Vec3f pos(mPath.interpKey(percent)); mat.setTrans(pos); trans->setMatrix(mat); traverse(node, nv); } }