#include "aiwander.hpp" #include #include #include #include #include #include #include "../mwbase/world.hpp" #include "../mwbase/environment.hpp" #include "../mwbase/mechanicsmanager.hpp" #include "../mwbase/dialoguemanager.hpp" #include "../mwworld/class.hpp" #include "../mwworld/esmstore.hpp" #include "../mwworld/cellstore.hpp" #include "../mwphysics/collisiontype.hpp" #include "pathgrid.hpp" #include "creaturestats.hpp" #include "movement.hpp" #include "actorutil.hpp" namespace MWMechanics { static const int COUNT_BEFORE_RESET = 10; static const float IDLE_POSITION_CHECK_INTERVAL = 1.5f; // to prevent overcrowding static const int DESTINATION_TOLERANCE = 64; // distance must be long enough that NPC will need to move to get there. static const int MINIMUM_WANDER_DISTANCE = DESTINATION_TOLERANCE * 2; static const std::size_t MAX_IDLE_SIZE = 8; const std::string AiWander::sIdleSelectToGroupName[GroupIndex_MaxIdle - GroupIndex_MinIdle + 1] = { std::string("idle2"), std::string("idle3"), std::string("idle4"), std::string("idle5"), std::string("idle6"), std::string("idle7"), std::string("idle8"), std::string("idle9"), }; namespace { inline int getCountBeforeReset(const MWWorld::ConstPtr& actor) { if (actor.getClass().isPureWaterCreature(actor) || actor.getClass().isPureFlyingCreature(actor)) return 1; return COUNT_BEFORE_RESET; } osg::Vec3f getRandomPointAround(const osg::Vec3f& position, const float distance) { const float randomDirection = Misc::Rng::rollClosedProbability() * 2.0f * osg::PI; osg::Matrixf rotation; rotation.makeRotate(randomDirection, osg::Vec3f(0.0, 0.0, 1.0)); return position + osg::Vec3f(distance, 0.0, 0.0) * rotation; } bool isDestinationHidden(const MWWorld::ConstPtr &actor, const osg::Vec3f& destination) { const auto position = actor.getRefData().getPosition().asVec3(); const bool isWaterCreature = actor.getClass().isPureWaterCreature(actor); const bool isFlyingCreature = actor.getClass().isPureFlyingCreature(actor); const osg::Vec3f halfExtents = MWBase::Environment::get().getWorld()->getPathfindingHalfExtents(actor); osg::Vec3f direction = destination - position; direction.normalize(); const auto visibleDestination = ( isWaterCreature || isFlyingCreature ? destination : destination + osg::Vec3f(0, 0, halfExtents.z()) ) + direction * std::max(halfExtents.x(), std::max(halfExtents.y(), halfExtents.z())); const int mask = MWPhysics::CollisionType_World | MWPhysics::CollisionType_HeightMap | MWPhysics::CollisionType_Door | MWPhysics::CollisionType_Actor; return MWBase::Environment::get().getWorld()->castRay(position, visibleDestination, mask, actor); } bool isAreaOccupiedByOtherActor(const MWWorld::ConstPtr &actor, const osg::Vec3f& destination) { const auto world = MWBase::Environment::get().getWorld(); const osg::Vec3f halfExtents = world->getPathfindingHalfExtents(actor); const auto maxHalfExtent = std::max(halfExtents.x(), std::max(halfExtents.y(), halfExtents.z())); return world->isAreaOccupiedByOtherActor(destination, 2 * maxHalfExtent, actor); } void stopMovement(const MWWorld::Ptr& actor) { actor.getClass().getMovementSettings(actor).mPosition[0] = 0; actor.getClass().getMovementSettings(actor).mPosition[1] = 0; } std::vector getInitialIdle(const std::vector& idle) { std::vector result(MAX_IDLE_SIZE, 0); std::copy_n(idle.begin(), std::min(MAX_IDLE_SIZE, idle.size()), result.begin()); return result; } std::vector getInitialIdle(const unsigned char (&idle)[MAX_IDLE_SIZE]) { return std::vector(std::begin(idle), std::end(idle)); } } AiWander::AiWander(int distance, int duration, int timeOfDay, const std::vector& idle, bool repeat): TypedAiPackage(makeDefaultOptions().withRepeat(repeat)), mDistance(std::max(0, distance)), mDuration(std::max(0, duration)), mRemainingDuration(duration), mTimeOfDay(timeOfDay), mIdle(getInitialIdle(idle)), mStoredInitialActorPosition(false), mInitialActorPosition(osg::Vec3f(0, 0, 0)), mHasDestination(false), mDestination(osg::Vec3f(0, 0, 0)), mUsePathgrid(false) { } /* * AiWander high level states (0.29.0). Not entirely accurate in some cases * e.g. non-NPC actors do not greet and some creatures may be moving even in * the IdleNow state. * * [select node, * build path] * +---------->MoveNow----------->Walking * | | * [allowed | | * nodes] | [hello if near] | * start--->ChooseAction----->IdleNow | * ^ ^ | | * | | | | * | +-----------+ | * | | * +----------------------------------+ * * * New high level states. Not exactly as per vanilla (e.g. door stuff) * but the differences are required because our physics does not work like * vanilla and therefore have to compensate/work around. * * [select node, [if stuck evade * build path] or remove nodes if near door] * +---------->MoveNow<---------->Walking * | ^ | | * | |(near door) | | * [allowed | | | | * nodes] | [hello if near] | | * start--->ChooseAction----->IdleNow | | * ^ ^ | ^ | | * | | | | (stuck near | | * | +-----------+ +---------------+ | * | player) | * +----------------------------------+ * * NOTE: non-time critical operations are run once every 250ms or so. * * TODO: It would be great if door opening/closing can be detected and pathgrid * links dynamically updated. Currently (0.29.0) AiWander allows choosing a * destination beyond closed doors which sometimes makes the actors stuck at the * door and impossible for the player to open the door. * * For now detect being stuck at the door and simply delete the nodes from the * allowed set. The issue is when the door opens the allowed set is not * re-calculated. However this would not be an issue in most cases since hostile * actors will enter combat (i.e. no longer wandering) and different pathfinding * will kick in. */ bool AiWander::execute (const MWWorld::Ptr& actor, CharacterController& /*characterController*/, AiState& state, float duration) { MWMechanics::CreatureStats& cStats = actor.getClass().getCreatureStats(actor); if (cStats.isDead() || cStats.getHealth().getCurrent() <= 0) return true; // Don't bother with dead actors // get or create temporary storage AiWanderStorage& storage = state.get(); mRemainingDuration -= ((duration*MWBase::Environment::get().getWorld()->getTimeScaleFactor()) / 3600); cStats.setDrawState(DrawState_Nothing); cStats.setMovementFlag(CreatureStats::Flag_Run, false); ESM::Position pos = actor.getRefData().getPosition(); // If there is already a destination due to the package having been interrupted by a combat or pursue package, // rebuild a path to it if (!mPathFinder.isPathConstructed() && mHasDestination) { if (mUsePathgrid) { mPathFinder.buildPathByPathgrid(pos.asVec3(), mDestination, actor.getCell(), getPathGridGraph(actor.getCell())); } else { const osg::Vec3f halfExtents = MWBase::Environment::get().getWorld()->getPathfindingHalfExtents(actor); mPathFinder.buildPath(actor, pos.asVec3(), mDestination, actor.getCell(), getPathGridGraph(actor.getCell()), halfExtents, getNavigatorFlags(actor), getAreaCosts(actor)); } if (mPathFinder.isPathConstructed()) storage.setState(AiWanderStorage::Wander_Walking); } GreetingState greetingState = MWBase::Environment::get().getMechanicsManager()->getGreetingState(actor); if (greetingState == Greet_InProgress) { if (storage.mState == AiWanderStorage::Wander_Walking) { stopMovement(actor); mObstacleCheck.clear(); storage.setState(AiWanderStorage::Wander_IdleNow); } } doPerFrameActionsForState(actor, duration, storage); float& lastReaction = storage.mReaction; lastReaction += duration; if (AI_REACTION_TIME <= lastReaction) { lastReaction = 0; return reactionTimeActions(actor, storage, pos); } else return false; } bool AiWander::reactionTimeActions(const MWWorld::Ptr& actor, AiWanderStorage& storage, ESM::Position& pos) { if (mDistance <= 0) storage.mCanWanderAlongPathGrid = false; if (isPackageCompleted()) { stopWalking(actor); // Reset package so it can be used again mRemainingDuration=mDuration; return true; } if (!mStoredInitialActorPosition) { mInitialActorPosition = actor.getRefData().getPosition().asVec3(); mStoredInitialActorPosition = true; } // Initialization to discover & store allowed node points for this actor. if (storage.mPopulateAvailableNodes) { getAllowedNodes(actor, actor.getCell()->getCell(), storage); } if (canActorMoveByZAxis(actor) && mDistance > 0) { // Typically want to idle for a short time before the next wander if (Misc::Rng::rollDice(100) >= 92 && storage.mState != AiWanderStorage::Wander_Walking) { wanderNearStart(actor, storage, mDistance); } storage.mCanWanderAlongPathGrid = false; } // If the package has a wander distance but no pathgrid is available, // randomly idle or wander near spawn point else if(storage.mAllowedNodes.empty() && mDistance > 0 && !storage.mIsWanderingManually) { // Typically want to idle for a short time before the next wander if (Misc::Rng::rollDice(100) >= 96) { wanderNearStart(actor, storage, mDistance); } else { storage.setState(AiWanderStorage::Wander_IdleNow); } } else if (storage.mAllowedNodes.empty() && !storage.mIsWanderingManually) { storage.mCanWanderAlongPathGrid = false; } // If Wandering manually and hit an obstacle, stop if (storage.mIsWanderingManually && mObstacleCheck.isEvading()) { completeManualWalking(actor, storage); } if (storage.mState == AiWanderStorage::Wander_MoveNow && storage.mCanWanderAlongPathGrid) { // Construct a new path if there isn't one if(!mPathFinder.isPathConstructed()) { if (!storage.mAllowedNodes.empty()) { setPathToAnAllowedNode(actor, storage, pos); } } } else if (storage.mIsWanderingManually && mPathFinder.checkPathCompleted()) { completeManualWalking(actor, storage); } if (storage.mIsWanderingManually && storage.mState == AiWanderStorage::Wander_Walking && (mPathFinder.getPathSize() == 0 || isDestinationHidden(actor, mPathFinder.getPath().back()) || isAreaOccupiedByOtherActor(actor, mPathFinder.getPath().back()))) completeManualWalking(actor, storage); return false; // AiWander package not yet completed } osg::Vec3f AiWander::getDestination(const MWWorld::Ptr& actor) const { if (mHasDestination) return mDestination; return actor.getRefData().getPosition().asVec3(); } bool AiWander::isPackageCompleted() const { // End package if duration is complete return mDuration && mRemainingDuration <= 0; } /* * Commands actor to walk to a random location near original spawn location. */ void AiWander::wanderNearStart(const MWWorld::Ptr &actor, AiWanderStorage &storage, int wanderDistance) { const auto currentPosition = actor.getRefData().getPosition().asVec3(); std::size_t attempts = 10; // If a unit can't wander out of water, don't want to hang here const bool isWaterCreature = actor.getClass().isPureWaterCreature(actor); const bool isFlyingCreature = actor.getClass().isPureFlyingCreature(actor); const auto world = MWBase::Environment::get().getWorld(); const auto halfExtents = world->getPathfindingHalfExtents(actor); const auto navigator = world->getNavigator(); const auto navigatorFlags = getNavigatorFlags(actor); const auto areaCosts = getAreaCosts(actor); do { // Determine a random location within radius of original position const float wanderRadius = (0.2f + Misc::Rng::rollClosedProbability() * 0.8f) * wanderDistance; if (!isWaterCreature && !isFlyingCreature) { // findRandomPointAroundCircle uses wanderDistance as limit for random and not as exact distance if (const auto destination = navigator->findRandomPointAroundCircle(halfExtents, mInitialActorPosition, wanderDistance, navigatorFlags)) mDestination = *destination; else mDestination = getRandomPointAround(mInitialActorPosition, wanderRadius); } else mDestination = getRandomPointAround(mInitialActorPosition, wanderRadius); // Check if land creature will walk onto water or if water creature will swim onto land if (!isWaterCreature && destinationIsAtWater(actor, mDestination)) continue; if (isDestinationHidden(actor, mDestination)) continue; if (isAreaOccupiedByOtherActor(actor, mDestination)) continue; if (isWaterCreature || isFlyingCreature) mPathFinder.buildStraightPath(mDestination); else mPathFinder.buildPathByNavMesh(actor, currentPosition, mDestination, halfExtents, navigatorFlags, areaCosts); if (mPathFinder.isPathConstructed()) { storage.setState(AiWanderStorage::Wander_Walking, true); mHasDestination = true; mUsePathgrid = false; } break; } while (--attempts); } /* * Returns true if the position provided is above water. */ bool AiWander::destinationIsAtWater(const MWWorld::Ptr &actor, const osg::Vec3f& destination) { float heightToGroundOrWater = MWBase::Environment::get().getWorld()->getDistToNearestRayHit(destination, osg::Vec3f(0,0,-1), 1000.0, true); osg::Vec3f positionBelowSurface = destination; positionBelowSurface[2] = positionBelowSurface[2] - heightToGroundOrWater - 1.0f; return MWBase::Environment::get().getWorld()->isUnderwater(actor.getCell(), positionBelowSurface); } void AiWander::completeManualWalking(const MWWorld::Ptr &actor, AiWanderStorage &storage) { stopWalking(actor); mObstacleCheck.clear(); storage.setState(AiWanderStorage::Wander_IdleNow); } void AiWander::doPerFrameActionsForState(const MWWorld::Ptr& actor, float duration, AiWanderStorage& storage) { switch (storage.mState) { case AiWanderStorage::Wander_IdleNow: onIdleStatePerFrameActions(actor, duration, storage); break; case AiWanderStorage::Wander_Walking: onWalkingStatePerFrameActions(actor, duration, storage); break; case AiWanderStorage::Wander_ChooseAction: onChooseActionStatePerFrameActions(actor, storage); break; case AiWanderStorage::Wander_MoveNow: break; // nothing to do default: // should never get here assert(false); break; } } void AiWander::onIdleStatePerFrameActions(const MWWorld::Ptr& actor, float duration, AiWanderStorage& storage) { // Check if an idle actor is too far from all allowed nodes or too close to a door - if so start walking. storage.mCheckIdlePositionTimer += duration; if (storage.mCheckIdlePositionTimer >= IDLE_POSITION_CHECK_INTERVAL && !isStationary()) { storage.mCheckIdlePositionTimer = 0; // restart timer static float distance = MWBase::Environment::get().getWorld()->getMaxActivationDistance() * 1.6f; if (proximityToDoor(actor, distance) || !isNearAllowedNode(actor, storage, distance)) { storage.setState(AiWanderStorage::Wander_MoveNow); storage.mTrimCurrentNode = false; // just in case return; } } // Check if idle animation finished GreetingState greetingState = MWBase::Environment::get().getMechanicsManager()->getGreetingState(actor); if (!checkIdle(actor, storage.mIdleAnimation) && (greetingState == Greet_Done || greetingState == Greet_None)) { if (mPathFinder.isPathConstructed()) storage.setState(AiWanderStorage::Wander_Walking); else storage.setState(AiWanderStorage::Wander_ChooseAction); } } bool AiWander::isNearAllowedNode(const MWWorld::Ptr& actor, const AiWanderStorage& storage, float distance) const { const osg::Vec3f actorPos = actor.getRefData().getPosition().asVec3(); auto cell = actor.getCell()->getCell(); for (const ESM::Pathgrid::Point& node : storage.mAllowedNodes) { osg::Vec3f point(node.mX, node.mY, node.mZ); Misc::CoordinateConverter(cell).toWorld(point); if ((actorPos - point).length2() < distance * distance) return true; } return false; } void AiWander::onWalkingStatePerFrameActions(const MWWorld::Ptr& actor, float duration, AiWanderStorage& storage) { // Is there no destination or are we there yet? if ((!mPathFinder.isPathConstructed()) || pathTo(actor, osg::Vec3f(mPathFinder.getPath().back()), duration, DESTINATION_TOLERANCE)) { stopWalking(actor); storage.setState(AiWanderStorage::Wander_ChooseAction); } else { // have not yet reached the destination evadeObstacles(actor, storage); } } void AiWander::onChooseActionStatePerFrameActions(const MWWorld::Ptr& actor, AiWanderStorage& storage) { // Wait while fully stop before starting idle animation (important if "smooth movement" is enabled). if (actor.getClass().getCurrentSpeed(actor) > 0) return; unsigned short idleAnimation = getRandomIdle(); storage.mIdleAnimation = idleAnimation; if (!idleAnimation && mDistance) { storage.setState(AiWanderStorage::Wander_MoveNow); return; } if(idleAnimation) { if(std::find(storage.mBadIdles.begin(), storage.mBadIdles.end(), idleAnimation)==storage.mBadIdles.end()) { if(!playIdle(actor, idleAnimation)) { storage.mBadIdles.push_back(idleAnimation); storage.setState(AiWanderStorage::Wander_ChooseAction); return; } } } storage.setState(AiWanderStorage::Wander_IdleNow); } void AiWander::evadeObstacles(const MWWorld::Ptr& actor, AiWanderStorage& storage) { if (mUsePathgrid) { const auto halfExtents = MWBase::Environment::get().getWorld()->getHalfExtents(actor); mPathFinder.buildPathByNavMeshToNextPoint(actor, halfExtents, getNavigatorFlags(actor), getAreaCosts(actor)); } if (mObstacleCheck.isEvading()) { // first check if we're walking into a door static float distance = MWBase::Environment::get().getWorld()->getMaxActivationDistance(); if (proximityToDoor(actor, distance)) { // remove allowed points then select another random destination storage.mTrimCurrentNode = true; trimAllowedNodes(storage.mAllowedNodes, mPathFinder); mObstacleCheck.clear(); stopWalking(actor); storage.setState(AiWanderStorage::Wander_MoveNow); } storage.mStuckCount++; // TODO: maybe no longer needed } // if stuck for sufficiently long, act like current location was the destination if (storage.mStuckCount >= getCountBeforeReset(actor)) // something has gone wrong, reset { mObstacleCheck.clear(); stopWalking(actor); storage.setState(AiWanderStorage::Wander_ChooseAction); storage.mStuckCount = 0; } } void AiWander::setPathToAnAllowedNode(const MWWorld::Ptr& actor, AiWanderStorage& storage, const ESM::Position& actorPos) { unsigned int randNode = Misc::Rng::rollDice(storage.mAllowedNodes.size()); ESM::Pathgrid::Point dest(storage.mAllowedNodes[randNode]); ToWorldCoordinates(dest, actor.getCell()->getCell()); // actor position is already in world coordinates const osg::Vec3f start = actorPos.asVec3(); // don't take shortcuts for wandering const osg::Vec3f destVec3f = PathFinder::makeOsgVec3(dest); mPathFinder.buildPathByPathgrid(start, destVec3f, actor.getCell(), getPathGridGraph(actor.getCell())); if (mPathFinder.isPathConstructed()) { mDestination = destVec3f; mHasDestination = true; mUsePathgrid = true; // Remove this node as an option and add back the previously used node (stops NPC from picking the same node): ESM::Pathgrid::Point temp = storage.mAllowedNodes[randNode]; storage.mAllowedNodes.erase(storage.mAllowedNodes.begin() + randNode); // check if mCurrentNode was taken out of mAllowedNodes if (storage.mTrimCurrentNode && storage.mAllowedNodes.size() > 1) storage.mTrimCurrentNode = false; else storage.mAllowedNodes.push_back(storage.mCurrentNode); storage.mCurrentNode = temp; storage.setState(AiWanderStorage::Wander_Walking); } // Choose a different node and delete this one from possible nodes because it is uncreachable: else storage.mAllowedNodes.erase(storage.mAllowedNodes.begin() + randNode); } void AiWander::ToWorldCoordinates(ESM::Pathgrid::Point& point, const ESM::Cell * cell) { Misc::CoordinateConverter(cell).toWorld(point); } void AiWander::trimAllowedNodes(std::vector& nodes, const PathFinder& pathfinder) { // TODO: how to add these back in once the door opens? // Idea: keep a list of detected closed doors (see aicombat.cpp) // Every now and then check whether one of the doors is opened. (maybe // at the end of playing idle?) If the door is opened then re-calculate // allowed nodes starting from the spawn point. auto paths = pathfinder.getPath(); while(paths.size() >= 2) { const auto pt = paths.back(); for(unsigned int j = 0; j < nodes.size(); j++) { // FIXME: doesn't handle a door with the same X/Y // coordinates but with a different Z if (std::abs(nodes[j].mX - pt.x()) <= 0.5 && std::abs(nodes[j].mY - pt.y()) <= 0.5) { nodes.erase(nodes.begin() + j); break; } } paths.pop_back(); } } void AiWander::stopWalking(const MWWorld::Ptr& actor) { mPathFinder.clearPath(); mHasDestination = false; stopMovement(actor); } bool AiWander::playIdle(const MWWorld::Ptr& actor, unsigned short idleSelect) { if ((GroupIndex_MinIdle <= idleSelect) && (idleSelect <= GroupIndex_MaxIdle)) { const std::string& groupName = sIdleSelectToGroupName[idleSelect - GroupIndex_MinIdle]; return MWBase::Environment::get().getMechanicsManager()->playAnimationGroup(actor, groupName, 0, 1); } else { Log(Debug::Verbose) << "Attempted to play out of range idle animation \"" << idleSelect << "\" for " << actor.getCellRef().getRefId(); return false; } } bool AiWander::checkIdle(const MWWorld::Ptr& actor, unsigned short idleSelect) { if ((GroupIndex_MinIdle <= idleSelect) && (idleSelect <= GroupIndex_MaxIdle)) { const std::string& groupName = sIdleSelectToGroupName[idleSelect - GroupIndex_MinIdle]; return MWBase::Environment::get().getMechanicsManager()->checkAnimationPlaying(actor, groupName); } else { return false; } } short unsigned AiWander::getRandomIdle() { unsigned short idleRoll = 0; short unsigned selectedAnimation = 0; for(unsigned int counter = 0; counter < mIdle.size(); counter++) { static float fIdleChanceMultiplier = MWBase::Environment::get().getWorld()->getStore() .get().find("fIdleChanceMultiplier")->mValue.getFloat(); unsigned short idleChance = static_cast(fIdleChanceMultiplier * mIdle[counter]); unsigned short randSelect = (int)(Misc::Rng::rollProbability() * int(100 / fIdleChanceMultiplier)); if(randSelect < idleChance && randSelect > idleRoll) { selectedAnimation = counter + GroupIndex_MinIdle; idleRoll = randSelect; } } return selectedAnimation; } void AiWander::fastForward(const MWWorld::Ptr& actor, AiState &state) { // Update duration counter mRemainingDuration--; if (mDistance == 0) return; AiWanderStorage& storage = state.get(); if (storage.mPopulateAvailableNodes) getAllowedNodes(actor, actor.getCell()->getCell(), storage); if (storage.mAllowedNodes.empty()) return; int index = Misc::Rng::rollDice(storage.mAllowedNodes.size()); ESM::Pathgrid::Point dest = storage.mAllowedNodes[index]; ESM::Pathgrid::Point worldDest = dest; ToWorldCoordinates(worldDest, actor.getCell()->getCell()); bool isPathGridOccupied = MWBase::Environment::get().getMechanicsManager()->isAnyActorInRange(PathFinder::makeOsgVec3(worldDest), 60); // add offset only if the selected pathgrid is occupied by another actor if (isPathGridOccupied) { ESM::Pathgrid::PointList points; getNeighbouringNodes(dest, actor.getCell(), points); // there are no neighbouring nodes, nowhere to move if (points.empty()) return; int initialSize = points.size(); bool isOccupied = false; // AI will try to move the NPC towards every neighboring node until suitable place will be found for (int i = 0; i < initialSize; i++) { int randomIndex = Misc::Rng::rollDice(points.size()); ESM::Pathgrid::Point connDest = points[randomIndex]; // add an offset towards random neighboring node osg::Vec3f dir = PathFinder::makeOsgVec3(connDest) - PathFinder::makeOsgVec3(dest); float length = dir.length(); dir.normalize(); for (int j = 1; j <= 3; j++) { // move for 5-15% towards random neighboring node dest = PathFinder::makePathgridPoint(PathFinder::makeOsgVec3(dest) + dir * (j * 5 * length / 100.f)); worldDest = dest; ToWorldCoordinates(worldDest, actor.getCell()->getCell()); isOccupied = MWBase::Environment::get().getMechanicsManager()->isAnyActorInRange(PathFinder::makeOsgVec3(worldDest), 60); if (!isOccupied) break; } if (!isOccupied) break; // Will try an another neighboring node points.erase(points.begin()+randomIndex); } // there is no free space, nowhere to move if (isOccupied) return; } // place above to prevent moving inside objects, e.g. stairs, because a vector between pathgrids can be underground. // Adding 20 in adjustPosition() is not enough. dest.mZ += 60; ToWorldCoordinates(dest, actor.getCell()->getCell()); state.moveIn(new AiWanderStorage()); MWBase::Environment::get().getWorld()->moveObject(actor, static_cast(dest.mX), static_cast(dest.mY), static_cast(dest.mZ)); actor.getClass().adjustPosition(actor, false); } void AiWander::getNeighbouringNodes(ESM::Pathgrid::Point dest, const MWWorld::CellStore* currentCell, ESM::Pathgrid::PointList& points) { const ESM::Pathgrid *pathgrid = MWBase::Environment::get().getWorld()->getStore().get().search(*currentCell->getCell()); int index = PathFinder::getClosestPoint(pathgrid, PathFinder::makeOsgVec3(dest)); getPathGridGraph(currentCell).getNeighbouringPoints(index, points); } void AiWander::getAllowedNodes(const MWWorld::Ptr& actor, const ESM::Cell* cell, AiWanderStorage& storage) { // infrequently used, therefore no benefit in caching it as a member const ESM::Pathgrid * pathgrid = MWBase::Environment::get().getWorld()->getStore().get().search(*cell); const MWWorld::CellStore* cellStore = actor.getCell(); storage.mAllowedNodes.clear(); // If there is no path this actor doesn't go anywhere. See: // https://forum.openmw.org/viewtopic.php?t=1556 // http://www.fliggerty.com/phpBB3/viewtopic.php?f=30&t=5833 // Note: In order to wander, need at least two points. if(!pathgrid || (pathgrid->mPoints.size() < 2)) storage.mCanWanderAlongPathGrid = false; // A distance value passed into the constructor indicates how far the // actor can wander from the spawn position. AiWander assumes that // pathgrid points are available, and uses them to randomly select wander // destinations within the allowed set of pathgrid points (nodes). // ... pathgrids don't usually include water, so swimmers ignore them if (mDistance && storage.mCanWanderAlongPathGrid && !actor.getClass().isPureWaterCreature(actor)) { // get NPC's position in local (i.e. cell) coordinates osg::Vec3f npcPos(mInitialActorPosition); Misc::CoordinateConverter(cell).toLocal(npcPos); // Find closest pathgrid point int closestPointIndex = PathFinder::getClosestPoint(pathgrid, npcPos); // mAllowedNodes for this actor with pathgrid point indexes based on mDistance // and if the point is connected to the closest current point // NOTE: mPoints and mAllowedNodes are in local coordinates int pointIndex = 0; for(unsigned int counter = 0; counter < pathgrid->mPoints.size(); counter++) { osg::Vec3f nodePos(PathFinder::makeOsgVec3(pathgrid->mPoints[counter])); if((npcPos - nodePos).length2() <= mDistance * mDistance && getPathGridGraph(cellStore).isPointConnected(closestPointIndex, counter)) { storage.mAllowedNodes.push_back(pathgrid->mPoints[counter]); pointIndex = counter; } } if (storage.mAllowedNodes.size() == 1) { AddNonPathGridAllowedPoints(npcPos, pathgrid, pointIndex, storage); } if(!storage.mAllowedNodes.empty()) { SetCurrentNodeToClosestAllowedNode(npcPos, storage); } } storage.mPopulateAvailableNodes = false; } // When only one path grid point in wander distance, // additional points for NPC to wander to are: // 1. NPC's initial location // 2. Partway along the path between the point and its connected points. void AiWander::AddNonPathGridAllowedPoints(osg::Vec3f npcPos, const ESM::Pathgrid * pathGrid, int pointIndex, AiWanderStorage& storage) { storage.mAllowedNodes.push_back(PathFinder::makePathgridPoint(npcPos)); for (auto& edge : pathGrid->mEdges) { if (edge.mV0 == pointIndex) { AddPointBetweenPathGridPoints(pathGrid->mPoints[edge.mV0], pathGrid->mPoints[edge.mV1], storage); } } } void AiWander::AddPointBetweenPathGridPoints(const ESM::Pathgrid::Point& start, const ESM::Pathgrid::Point& end, AiWanderStorage& storage) { osg::Vec3f vectorStart = PathFinder::makeOsgVec3(start); osg::Vec3f delta = PathFinder::makeOsgVec3(end) - vectorStart; float length = delta.length(); delta.normalize(); int distance = std::max(mDistance / 2, MINIMUM_WANDER_DISTANCE); // must not travel longer than distance between waypoints or NPC goes past waypoint distance = std::min(distance, static_cast(length)); delta *= distance; storage.mAllowedNodes.push_back(PathFinder::makePathgridPoint(vectorStart + delta)); } void AiWander::SetCurrentNodeToClosestAllowedNode(const osg::Vec3f& npcPos, AiWanderStorage& storage) { float distanceToClosestNode = std::numeric_limits::max(); unsigned int index = 0; for (unsigned int counterThree = 0; counterThree < storage.mAllowedNodes.size(); counterThree++) { osg::Vec3f nodePos(PathFinder::makeOsgVec3(storage.mAllowedNodes[counterThree])); float tempDist = (npcPos - nodePos).length2(); if (tempDist < distanceToClosestNode) { index = counterThree; distanceToClosestNode = tempDist; } } storage.mCurrentNode = storage.mAllowedNodes[index]; storage.mAllowedNodes.erase(storage.mAllowedNodes.begin() + index); } void AiWander::writeState(ESM::AiSequence::AiSequence &sequence) const { float remainingDuration; if (mRemainingDuration > 0 && mRemainingDuration < 24) remainingDuration = mRemainingDuration; else remainingDuration = mDuration; std::unique_ptr wander(new ESM::AiSequence::AiWander()); wander->mData.mDistance = mDistance; wander->mData.mDuration = mDuration; wander->mData.mTimeOfDay = mTimeOfDay; wander->mDurationData.mRemainingDuration = remainingDuration; assert (mIdle.size() == 8); for (int i=0; i<8; ++i) wander->mData.mIdle[i] = mIdle[i]; wander->mData.mShouldRepeat = mOptions.mRepeat; wander->mStoredInitialActorPosition = mStoredInitialActorPosition; if (mStoredInitialActorPosition) wander->mInitialActorPosition = mInitialActorPosition; ESM::AiSequence::AiPackageContainer package; package.mType = ESM::AiSequence::Ai_Wander; package.mPackage = wander.release(); sequence.mPackages.push_back(package); } AiWander::AiWander (const ESM::AiSequence::AiWander* wander) : TypedAiPackage(makeDefaultOptions().withRepeat(wander->mData.mShouldRepeat != 0)) , mDistance(std::max(static_cast(0), wander->mData.mDistance)) , mDuration(std::max(static_cast(0), wander->mData.mDuration)) , mRemainingDuration(wander->mDurationData.mRemainingDuration) , mTimeOfDay(wander->mData.mTimeOfDay) , mIdle(getInitialIdle(wander->mData.mIdle)) , mStoredInitialActorPosition(wander->mStoredInitialActorPosition) , mHasDestination(false) , mDestination(osg::Vec3f(0, 0, 0)) , mUsePathgrid(false) { if (mStoredInitialActorPosition) mInitialActorPosition = wander->mInitialActorPosition; if (mRemainingDuration <= 0 || mRemainingDuration >= 24) mRemainingDuration = mDuration; } }