/* OpenMW - The completely unofficial reimplementation of Morrowind Copyright (C) 2008-2010 Nicolay Korslund Email: < korslund@gmail.com > WWW: http://openmw.sourceforge.net/ This file (ogre_nif_loader.cpp) is part of the OpenMW package. OpenMW is distributed as free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 3, as published by the Free Software Foundation. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License version 3 along with this program. If not, see http://www.gnu.org/licenses/ . */ #include "bulletnifloader.hpp" #include #include #include #include "../nif/niffile.hpp" #include "../nif/node.hpp" #include "../nif/data.hpp" #include "../nif/property.hpp" #include "../nif/controller.hpp" #include "../nif/extra.hpp" #include #include #include // For warning messages #include // float infinity #include typedef unsigned char ubyte; // Extract a list of keyframe-controlled nodes from a .kf file // FIXME: this is a similar copy of OgreNifLoader::loadKf void extractControlledNodes(Nif::NIFFilePtr kfFile, std::set& controlled) { if(kfFile->numRoots() < 1) { kfFile->warn("Found no root nodes in "+kfFile->getFilename()+"."); return; } const Nif::Record *r = kfFile->getRoot(0); assert(r != NULL); if(r->recType != Nif::RC_NiSequenceStreamHelper) { kfFile->warn("First root was not a NiSequenceStreamHelper, but a "+ r->recName+"."); return; } const Nif::NiSequenceStreamHelper *seq = static_cast(r); Nif::ExtraPtr extra = seq->extra; if(extra.empty() || extra->recType != Nif::RC_NiTextKeyExtraData) { kfFile->warn("First extra data was not a NiTextKeyExtraData, but a "+ (extra.empty() ? std::string("nil") : extra->recName)+"."); return; } extra = extra->extra; Nif::ControllerPtr ctrl = seq->controller; for(;!extra.empty() && !ctrl.empty();(extra=extra->extra),(ctrl=ctrl->next)) { if(extra->recType != Nif::RC_NiStringExtraData || ctrl->recType != Nif::RC_NiKeyframeController) { kfFile->warn("Unexpected extra data "+extra->recName+" with controller "+ctrl->recName); continue; } if (!(ctrl->flags & Nif::NiNode::ControllerFlag_Active)) continue; const Nif::NiStringExtraData *strdata = static_cast(extra.getPtr()); const Nif::NiKeyframeController *key = static_cast(ctrl.getPtr()); if(key->data.empty()) continue; controlled.insert(strdata->string); } } namespace NifBullet { ManualBulletShapeLoader::~ManualBulletShapeLoader() { } btVector3 ManualBulletShapeLoader::getbtVector(Ogre::Vector3 const &v) { return btVector3(v[0], v[1], v[2]); } void ManualBulletShapeLoader::loadResource(Ogre::Resource *resource) { mShape = static_cast(resource); mResourceName = mShape->getName(); mShape->mCollide = false; mBoundingBox = NULL; mShape->mBoxTranslation = Ogre::Vector3(0,0,0); mShape->mBoxRotation = Ogre::Quaternion::IDENTITY; mCompoundShape = NULL; mStaticMesh = NULL; Nif::NIFFilePtr pnif (Nif::Cache::getInstance().load(mResourceName.substr(0, mResourceName.length()-7))); Nif::NIFFile & nif = *pnif.get (); if (nif.numRoots() < 1) { warn("Found no root nodes in NIF."); return; } // Have to load controlled nodes from the .kf // FIXME: the .kf has to be loaded both for rendering and physics, ideally it should be opened once and then reused mControlledNodes.clear(); std::string kfname = mResourceName.substr(0, mResourceName.length()-7); Misc::StringUtils::toLower(kfname); if(kfname.size() > 4 && kfname.compare(kfname.size()-4, 4, ".nif") == 0) kfname.replace(kfname.size()-4, 4, ".kf"); if (Ogre::ResourceGroupManager::getSingleton().resourceExistsInAnyGroup(kfname)) { Nif::NIFFilePtr kf (Nif::Cache::getInstance().load(kfname)); extractControlledNodes(kf, mControlledNodes); } Nif::Record *r = nif.getRoot(0); assert(r != NULL); Nif::Node *node = dynamic_cast(r); if (node == NULL) { warn("First root in file was not a node, but a " + r->recName + ". Skipping file."); return; } mShape->mAutogenerated = hasAutoGeneratedCollision(node); //do a first pass handleNode(node,0,false,false); if(mBoundingBox != NULL) { mShape->mCollisionShape = mBoundingBox; delete mStaticMesh; if (mCompoundShape) { int n = mCompoundShape->getNumChildShapes(); for(int i=0; i getChildShape(i)); delete mCompoundShape; mShape->mAnimatedShapes.clear(); } } else { if (mCompoundShape) { mShape->mCollisionShape = mCompoundShape; if (mStaticMesh) { btTransform trans; trans.setIdentity(); mCompoundShape->addChildShape(trans, new TriangleMeshShape(mStaticMesh,true)); } } else if (mStaticMesh) mShape->mCollisionShape = new TriangleMeshShape(mStaticMesh,true); } //second pass which create a shape for raycasting. mResourceName = mShape->getName(); mShape->mCollide = false; mBoundingBox = NULL; mStaticMesh = NULL; mCompoundShape = NULL; handleNode(node,0,true,true,false); if (mCompoundShape) { mShape->mRaycastingShape = mCompoundShape; if (mStaticMesh) { btTransform trans; trans.setIdentity(); mCompoundShape->addChildShape(trans, new TriangleMeshShape(mStaticMesh,true)); } } else if (mStaticMesh) mShape->mRaycastingShape = new TriangleMeshShape(mStaticMesh,true); } bool ManualBulletShapeLoader::hasAutoGeneratedCollision(Nif::Node const * rootNode) { const Nif::NiNode *ninode = dynamic_cast(rootNode); if(ninode) { const Nif::NodeList &list = ninode->children; for(size_t i = 0;i < list.length();i++) { if(!list[i].empty()) { if(list[i].getPtr()->recType == Nif::RC_RootCollisionNode) return false; } } } return true; } void ManualBulletShapeLoader::handleNode(const Nif::Node *node, int flags, bool isCollisionNode, bool raycasting, bool isAnimated) { // Accumulate the flags from all the child nodes. This works for all // the flags we currently use, at least. flags |= node->flags; if (!node->controller.empty() && node->controller->recType == Nif::RC_NiKeyframeController && (node->controller->flags & Nif::NiNode::ControllerFlag_Active)) isAnimated = true; if (mControlledNodes.find(node->name) != mControlledNodes.end()) isAnimated = true; if (!raycasting) isCollisionNode = isCollisionNode || (node->recType == Nif::RC_RootCollisionNode); else isCollisionNode = isCollisionNode && (node->recType != Nif::RC_RootCollisionNode); // Don't collide with AvoidNode shapes if(node->recType == Nif::RC_AvoidNode) flags |= 0x800; // Check for extra data Nif::Extra const *e = node; while (!e->extra.empty()) { // Get the next extra data in the list e = e->extra.getPtr(); assert(e != NULL); if (e->recType == Nif::RC_NiStringExtraData) { // String markers may contain important information // affecting the entire subtree of this node Nif::NiStringExtraData *sd = (Nif::NiStringExtraData*)e; // not sure what the difference between NCO and NCC is, or if there even is one if (sd->string == "NCO" || sd->string == "NCC") { // No collision. Use an internal flag setting to mark this. flags |= 0x800; } else if (sd->string == "MRK" && !mShowMarkers) // Marker objects. These are only visible in the // editor. return; } } if (isCollisionNode || (mShape->mAutogenerated && !raycasting)) { // NOTE: a trishape with hasBounds=true, but no BBoxCollision flag should NOT go through handleNiTriShape! // It must be ignored completely. // (occurs in tr_ex_imp_wall_arch_04.nif) if(node->hasBounds) { if (flags & Nif::NiNode::Flag_BBoxCollision && !raycasting) { mShape->mBoxTranslation = node->boundPos; mShape->mBoxRotation = node->boundRot; mBoundingBox = new btBoxShape(getbtVector(node->boundXYZ)); } } else if(node->recType == Nif::RC_NiTriShape) { mShape->mCollide = !(flags&0x800); handleNiTriShape(static_cast(node), flags, node->getWorldTransform(), raycasting, isAnimated); } } // For NiNodes, loop through children const Nif::NiNode *ninode = dynamic_cast(node); if(ninode) { const Nif::NodeList &list = ninode->children; for(size_t i = 0;i < list.length();i++) { if(!list[i].empty()) handleNode(list[i].getPtr(), flags, isCollisionNode, raycasting, isAnimated); } } } void ManualBulletShapeLoader::handleNiTriShape(const Nif::NiTriShape *shape, int flags, const Ogre::Matrix4 &transform, bool raycasting, bool isAnimated) { assert(shape != NULL); // Interpret flags bool hidden = (flags&Nif::NiNode::Flag_Hidden) != 0; bool collide = (flags&Nif::NiNode::Flag_MeshCollision) != 0; bool bbcollide = (flags&Nif::NiNode::Flag_BBoxCollision) != 0; // If the object was marked "NCO" earlier, it shouldn't collide with // anything. So don't do anything. if ((flags & 0x800) && !raycasting) { return; } if (!collide && !bbcollide && hidden && !raycasting) // This mesh apparently isn't being used for anything, so don't // bother setting it up. return; if (!shape->skin.empty()) isAnimated = false; if (isAnimated) { if (!mCompoundShape) mCompoundShape = new btCompoundShape(); btTriangleMesh* childMesh = new btTriangleMesh(); const Nif::NiTriShapeData *data = shape->data.getPtr(); childMesh->preallocateVertices(data->vertices.size()); childMesh->preallocateIndices(data->triangles.size()); const std::vector &vertices = data->vertices; const std::vector &triangles = data->triangles; for(size_t i = 0;i < data->triangles.size();i+=3) { Ogre::Vector3 b1 = vertices[triangles[i+0]]; Ogre::Vector3 b2 = vertices[triangles[i+1]]; Ogre::Vector3 b3 = vertices[triangles[i+2]]; childMesh->addTriangle(btVector3(b1.x,b1.y,b1.z),btVector3(b2.x,b2.y,b2.z),btVector3(b3.x,b3.y,b3.z)); } TriangleMeshShape* childShape = new TriangleMeshShape(childMesh,true); float scale = shape->trafo.scale; const Nif::Node* parent = shape; while (parent->parent) { parent = parent->parent; scale *= parent->trafo.scale; } Ogre::Quaternion q = transform.extractQuaternion(); Ogre::Vector3 v = transform.getTrans(); childShape->setLocalScaling(btVector3(scale, scale, scale)); btTransform trans(btQuaternion(q.x, q.y, q.z, q.w), btVector3(v.x, v.y, v.z)); if (raycasting) mShape->mAnimatedRaycastingShapes.insert(std::make_pair(shape->recIndex, mCompoundShape->getNumChildShapes())); else mShape->mAnimatedShapes.insert(std::make_pair(shape->recIndex, mCompoundShape->getNumChildShapes())); mCompoundShape->addChildShape(trans, childShape); } else { if (!mStaticMesh) mStaticMesh = new btTriangleMesh(); // Static shape, just transform all vertices into position const Nif::NiTriShapeData *data = shape->data.getPtr(); const std::vector &vertices = data->vertices; const std::vector &triangles = data->triangles; for(size_t i = 0;i < data->triangles.size();i+=3) { Ogre::Vector3 b1 = transform*vertices[triangles[i+0]]; Ogre::Vector3 b2 = transform*vertices[triangles[i+1]]; Ogre::Vector3 b3 = transform*vertices[triangles[i+2]]; mStaticMesh->addTriangle(btVector3(b1.x,b1.y,b1.z),btVector3(b2.x,b2.y,b2.z),btVector3(b3.x,b3.y,b3.z)); } } } void ManualBulletShapeLoader::load(const std::string &name,const std::string &group) { // Check if the resource already exists Ogre::ResourcePtr ptr = OEngine::Physic::BulletShapeManager::getSingleton().getByName(name, group); if (!ptr.isNull()) return; OEngine::Physic::BulletShapeManager::getSingleton().create(name,group,true,this); } bool findBoundingBox (const Nif::Node* node, Ogre::Vector3& halfExtents, Ogre::Vector3& translation, Ogre::Quaternion& orientation) { if(node->hasBounds) { if (!(node->flags & Nif::NiNode::Flag_Hidden)) { translation = node->boundPos; orientation = node->boundRot; halfExtents = node->boundXYZ; return true; } } const Nif::NiNode *ninode = dynamic_cast(node); if(ninode) { const Nif::NodeList &list = ninode->children; for(size_t i = 0;i < list.length();i++) { if(!list[i].empty()) if (findBoundingBox(list[i].getPtr(), halfExtents, translation, orientation)) return true; } } return false; } bool getBoundingBox(const std::string& nifFile, Ogre::Vector3& halfExtents, Ogre::Vector3& translation, Ogre::Quaternion& orientation) { Nif::NIFFilePtr pnif (Nif::Cache::getInstance().load(nifFile)); Nif::NIFFile & nif = *pnif.get (); if (nif.numRoots() < 1) { return false; } Nif::Record *r = nif.getRoot(0); assert(r != NULL); Nif::Node *node = dynamic_cast(r); if (node == NULL) { return false; } return findBoundingBox(node, halfExtents, translation, orientation); } } // namespace NifBullet