#include "particle.hpp" #include #include #include #include #include #include "userdata.hpp" namespace NifOsg { ParticleSystem::ParticleSystem() : osgParticle::ParticleSystem() , mQuota(std::numeric_limits::max()) { } ParticleSystem::ParticleSystem(const ParticleSystem ©, const osg::CopyOp ©op) : osgParticle::ParticleSystem(copy, copyop) , mQuota(copy.mQuota) { // For some reason the osgParticle constructor doesn't copy the particles for (int i=0;igetVisitorType() == osg::NodeVisitor::UPDATE_VISITOR) { osg::NodePath path = nv->getNodePath(); path.pop_back(); osg::MatrixTransform* trans = static_cast(node); osg::Matrix mat = osg::computeLocalToWorld( path ); mat.orthoNormalize(mat); // don't undo the scale mat.invert(mat); trans->setMatrix(mat); } traverse(node,nv); } ParticleShooter::ParticleShooter(float minSpeed, float maxSpeed, float horizontalDir, float horizontalAngle, float verticalDir, float verticalAngle, float lifetime, float lifetimeRandom) : mMinSpeed(minSpeed), mMaxSpeed(maxSpeed), mHorizontalDir(horizontalDir) , mHorizontalAngle(horizontalAngle), mVerticalDir(verticalDir), mVerticalAngle(verticalAngle) , mLifetime(lifetime), mLifetimeRandom(lifetimeRandom) { } ParticleShooter::ParticleShooter() : mMinSpeed(0.f), mMaxSpeed(0.f), mHorizontalDir(0.f) , mHorizontalAngle(0.f), mVerticalDir(0.f), mVerticalAngle(0.f) , mLifetime(0.f), mLifetimeRandom(0.f) { } ParticleShooter::ParticleShooter(const ParticleShooter ©, const osg::CopyOp ©op) : osgParticle::Shooter(copy, copyop) { *this = copy; } void ParticleShooter::shoot(osgParticle::Particle *particle) const { float hdir = mHorizontalDir + mHorizontalAngle * (2.f * (std::rand() / static_cast(RAND_MAX)) - 1.f); float vdir = mVerticalDir + mVerticalAngle * (2.f * (std::rand() / static_cast(RAND_MAX)) - 1.f); osg::Vec3f dir = (osg::Quat(vdir, osg::Vec3f(0,1,0)) * osg::Quat(hdir, osg::Vec3f(0,0,1))) * osg::Vec3f(0,0,1); float vel = mMinSpeed + (mMaxSpeed - mMinSpeed) * std::rand() / static_cast(RAND_MAX); particle->setVelocity(dir * vel); // Not supposed to set this here, but there doesn't seem to be a better way of doing it particle->setLifeTime(mLifetime + mLifetimeRandom * std::rand() / static_cast(RAND_MAX)); } GrowFadeAffector::GrowFadeAffector(float growTime, float fadeTime) : mGrowTime(growTime) , mFadeTime(fadeTime) , mCachedDefaultSize(0.f) { } GrowFadeAffector::GrowFadeAffector() : mGrowTime(0.f) , mFadeTime(0.f) , mCachedDefaultSize(0.f) { } GrowFadeAffector::GrowFadeAffector(const GrowFadeAffector& copy, const osg::CopyOp& copyop) : osgParticle::Operator(copy, copyop) { *this = copy; } void GrowFadeAffector::beginOperate(osgParticle::Program *program) { mCachedDefaultSize = program->getParticleSystem()->getDefaultParticleTemplate().getSizeRange().minimum; } void GrowFadeAffector::operate(osgParticle::Particle* particle, double /* dt */) { float size = mCachedDefaultSize; if (particle->getAge() < mGrowTime && mGrowTime != 0.f) size *= particle->getAge() / mGrowTime; if (particle->getLifeTime() - particle->getAge() < mFadeTime && mFadeTime != 0.f) size *= (particle->getLifeTime() - particle->getAge()) / mFadeTime; particle->setSizeRange(osgParticle::rangef(size, size)); } ParticleColorAffector::ParticleColorAffector(const Nif::NiColorData *clrdata) : mData(clrdata->mKeyMap, osg::Vec4f(1,1,1,1)) { } ParticleColorAffector::ParticleColorAffector() { } ParticleColorAffector::ParticleColorAffector(const ParticleColorAffector ©, const osg::CopyOp ©op) : osgParticle::Operator(copy, copyop) { *this = copy; } void ParticleColorAffector::operate(osgParticle::Particle* particle, double /* dt */) { float time = static_cast(particle->getAge()/particle->getLifeTime()); osg::Vec4f color = mData.interpKey(time); particle->setColorRange(osgParticle::rangev4(color, color)); } GravityAffector::GravityAffector(const Nif::NiGravity *gravity) : mForce(gravity->mForce) , mType(static_cast(gravity->mType)) , mPosition(gravity->mPosition) , mDirection(gravity->mDirection) , mDecay(gravity->mDecay) { } GravityAffector::GravityAffector() : mForce(0), mType(Type_Wind), mDecay(0.f) { } GravityAffector::GravityAffector(const GravityAffector ©, const osg::CopyOp ©op) : osgParticle::Operator(copy, copyop) { *this = copy; } void GravityAffector::beginOperate(osgParticle::Program* program) { bool absolute = (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF); if (mType == Type_Point || mDecay != 0.f) // we don't need the position for Wind gravity, except if decay is being applied mCachedWorldPosition = absolute ? program->transformLocalToWorld(mPosition) : mPosition; mCachedWorldDirection = absolute ? program->rotateLocalToWorld(mDirection) : mDirection; mCachedWorldDirection.normalize(); } void GravityAffector::operate(osgParticle::Particle *particle, double dt) { const float magic = 1.6f; switch (mType) { case Type_Wind: { float decayFactor = 1.f; if (mDecay != 0.f) { osg::Plane gravityPlane(mCachedWorldDirection, mCachedWorldPosition); float distance = std::abs(gravityPlane.distance(particle->getPosition())); decayFactor = std::exp(-1.f * mDecay * distance); } particle->addVelocity(mCachedWorldDirection * mForce * dt * decayFactor * magic); break; } case Type_Point: { osg::Vec3f diff = mCachedWorldPosition - particle->getPosition(); float decayFactor = 1.f; if (mDecay != 0.f) decayFactor = std::exp(-1.f * mDecay * diff.length()); diff.normalize(); particle->addVelocity(diff * mForce * dt * decayFactor * magic); break; } } } Emitter::Emitter() : osgParticle::Emitter() { } Emitter::Emitter(const Emitter ©, const osg::CopyOp ©op) : osgParticle::Emitter(copy, copyop) , mTargets(copy.mTargets) , mPlacer(copy.mPlacer) , mShooter(copy.mShooter) // need a deep copy because the remainder is stored in the object , mCounter(osg::clone(copy.mCounter.get(), osg::CopyOp::DEEP_COPY_ALL)) { } Emitter::Emitter(const std::vector &targets) : mTargets(targets) { } void Emitter::setShooter(osgParticle::Shooter *shooter) { mShooter = shooter; } void Emitter::setPlacer(osgParticle::Placer *placer) { mPlacer = placer; } void Emitter::setCounter(osgParticle::Counter *counter) { mCounter = counter; } void Emitter::emitParticles(double dt) { int n = mCounter->numParticlesToCreate(dt); if (n == 0) return; osg::Matrix worldToPs; // maybe this could be optimized by halting at the lowest common ancestor of the particle and emitter nodes osg::NodePathList partsysNodePaths = getParticleSystem()->getParentalNodePaths(); if (!partsysNodePaths.empty()) { osg::Matrix psToWorld = osg::computeLocalToWorld(partsysNodePaths[0]); worldToPs = osg::Matrix::inverse(psToWorld); } const osg::Matrix& ltw = getLocalToWorldMatrix(); osg::Matrix emitterToPs = ltw * worldToPs; if (!mTargets.empty()) { int randomRecIndex = mTargets[(std::rand() / (static_cast(RAND_MAX)+1.0)) * mTargets.size()]; // we could use a map here for faster lookup FindGroupByRecIndex visitor(randomRecIndex); getParent(0)->accept(visitor); if (!visitor.mFound) { std::cerr << "Emitter: Can't find emitter node" << randomRecIndex << std::endl; return; } osg::NodePath path = visitor.mFoundPath; path.erase(path.begin()); emitterToPs = osg::computeLocalToWorld(path) * emitterToPs; } emitterToPs.orthoNormalize(emitterToPs); for (int i=0; icreateParticle(0); if (P) { mPlacer->place(P); mShooter->shoot(P); P->transformPositionVelocity(emitterToPs); } } } FindGroupByRecIndex::FindGroupByRecIndex(int recIndex) : osg::NodeVisitor(TRAVERSE_ALL_CHILDREN) , mFound(NULL) , mRecIndex(recIndex) { } void FindGroupByRecIndex::apply(osg::Node &searchNode) { if (searchNode.getUserDataContainer() && searchNode.getUserDataContainer()->getNumUserObjects()) { NodeUserData* holder = dynamic_cast(searchNode.getUserDataContainer()->getUserObject(0)); if (holder && holder->mIndex == mRecIndex) { osg::Group* group = searchNode.asGroup(); if (!group) group = searchNode.getParent(0); mFound = group; mFoundPath = getNodePath(); return; } } traverse(searchNode); } PlanarCollider::PlanarCollider(const Nif::NiPlanarCollider *collider) : mBounceFactor(collider->mBounceFactor) , mPlane(-collider->mPlaneNormal, collider->mPlaneDistance) { } PlanarCollider::PlanarCollider() : mBounceFactor(0.f) { } PlanarCollider::PlanarCollider(const PlanarCollider ©, const osg::CopyOp ©op) : osgParticle::Operator(copy, copyop) , mBounceFactor(copy.mBounceFactor) , mPlane(copy.mPlane) , mPlaneInParticleSpace(copy.mPlaneInParticleSpace) { } void PlanarCollider::beginOperate(osgParticle::Program *program) { mPlaneInParticleSpace = mPlane; if (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF) mPlaneInParticleSpace.transform(program->getLocalToWorldMatrix()); } void PlanarCollider::operate(osgParticle::Particle *particle, double dt) { float dotproduct = particle->getVelocity() * mPlaneInParticleSpace.getNormal(); if (dotproduct > 0) { osg::BoundingSphere bs(particle->getPosition(), 0.f); if (mPlaneInParticleSpace.intersect(bs) == 1) { osg::Vec3 reflectedVelocity = particle->getVelocity() - mPlaneInParticleSpace.getNormal() * (2 * dotproduct); reflectedVelocity *= mBounceFactor; particle->setVelocity(reflectedVelocity); } } } SphericalCollider::SphericalCollider(const Nif::NiSphericalCollider* collider) : mBounceFactor(collider->mBounceFactor), mSphere(collider->mCenter, collider->mRadius) { } SphericalCollider::SphericalCollider() : mBounceFactor(1.0f) { } SphericalCollider::SphericalCollider(const SphericalCollider& copy, const osg::CopyOp& copyop) : osgParticle::Operator(copy, copyop) , mBounceFactor(copy.mBounceFactor) , mSphere(copy.mSphere) , mSphereInParticleSpace(copy.mSphereInParticleSpace) { } void SphericalCollider::beginOperate(osgParticle::Program* program) { mSphereInParticleSpace = mSphere; if (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF) mSphereInParticleSpace.center() = program->transformLocalToWorld(mSphereInParticleSpace.center()); } void SphericalCollider::operate(osgParticle::Particle* particle, double dt) { osg::Vec3f cent = (particle->getPosition() - mSphereInParticleSpace.center()); // vector from sphere center to particle bool insideSphere = cent.length2() <= mSphereInParticleSpace.radius2(); if (insideSphere || (cent * particle->getVelocity() < 0.0f)) // if outside, make sure the particle is flying towards the sphere { // Collision test (finding point of contact) is performed by solving a quadratic equation: // ||vec(cent) + vec(vel)*k|| = R /^2 // k^2 + 2*k*(vec(cent)*vec(vel))/||vec(vel)||^2 + (||vec(cent)||^2 - R^2)/||vec(vel)||^2 = 0 float b = -(cent * particle->getVelocity()) / particle->getVelocity().length2(); osg::Vec3f u = cent + particle->getVelocity() * b; if (insideSphere || (u.length2() < mSphereInParticleSpace.radius2())) { float d = (mSphereInParticleSpace.radius2() - u.length2()) / particle->getVelocity().length2(); float k = insideSphere ? (std::sqrt(d) + b) : (b - std::sqrt(d)); if (k < dt) { // collision detected; reflect off the tangent plane osg::Vec3f contact = particle->getPosition() + particle->getVelocity() * k; osg::Vec3 normal = (contact - mSphereInParticleSpace.center()); normal.normalize(); float dotproduct = particle->getVelocity() * normal; osg::Vec3 reflectedVelocity = particle->getVelocity() - normal * (2 * dotproduct); reflectedVelocity *= mBounceFactor; particle->setVelocity(reflectedVelocity); } } } } }