#include "lightmanager.hpp" #include #include #include #include #include #include #include namespace { /* similar to the boost::hash_combine */ template inline void hash_combine(std::size_t& seed, const T& v) { std::hash hasher; seed ^= hasher(v) + 0x9e3779b9 + (seed<<6) + (seed>>2); } bool sortLights(const SceneUtil::LightManager::LightSourceViewBound* left, const SceneUtil::LightManager::LightSourceViewBound* right) { static auto constexpr illuminationBias = 81.f; return left->mViewBound.center().length2() - left->mViewBound.radius2()*illuminationBias < right->mViewBound.center().length2() - right->mViewBound.radius2()*illuminationBias; } float getLightRadius(const osg::Light* light) { float value = 0.0; light->getUserValue("radius", value); return value; } void setLightRadius(osg::Light* light, float value) { light->setUserValue("radius", value); } void configurePosition(osg::Matrixf& mat, const osg::Vec4& pos) { mat(0, 0) = pos.x(); mat(0, 1) = pos.y(); mat(0, 2) = pos.z(); } void configureAmbient(osg::Matrixf& mat, const osg::Vec4& color) { mat(1, 0) = color.r(); mat(1, 1) = color.g(); mat(1, 2) = color.b(); } void configureDiffuse(osg::Matrixf& mat, const osg::Vec4& color) { mat(2, 0) = color.r(); mat(2, 1) = color.g(); mat(2, 2) = color.b(); } void configureSpecular(osg::Matrixf& mat, const osg::Vec4& color) { mat(3, 0) = color.r(); mat(3, 1) = color.g(); mat(3, 2) = color.b(); mat(3, 3) = color.a(); } void configureAttenuation(osg::Matrixf& mat, float c, float l, float q, float r) { mat(0, 3) = c; mat(1, 3) = l; mat(2, 3) = q; mat(3, 3) = r; } } namespace SceneUtil { static int sLightId = 0; // Handles a GLSL shared layout by using configured offsets and strides to fill a continuous buffer, making the data upload to GPU simpler. class LightBuffer : public osg::Referenced { public: enum LayoutOffset { Diffuse, DiffuseSign, Ambient, Specular, Position, AttenuationRadius }; LightBuffer(int count) : mData(new osg::FloatArray(3*4*count)) , mEndian(osg::getCpuByteOrder()) , mCount(count) , mStride(12) { mOffsets[Diffuse] = 0; mOffsets[Ambient] = 1; mOffsets[Specular] = 2; mOffsets[DiffuseSign] = 3; mOffsets[Position] = 4; mOffsets[AttenuationRadius] = 8; } LightBuffer(const LightBuffer& copy) : osg::Referenced() , mData(copy.mData) , mEndian(copy.mEndian) , mCount(copy.mCount) , mStride(copy.mStride) , mOffsets(copy.mOffsets) {} void setDiffuse(int index, const osg::Vec4& value) { // Deal with negative lights (negative diffuse) by passing a sign bit in the unused alpha component auto positiveColor = value; float signBit = 1.0; if (value[0] < 0) { positiveColor *= -1.0; signBit = -1.0; } *(unsigned int*)(&(*mData)[getOffset(index, Diffuse)]) = asRGBA(positiveColor); *(int*)(&(*mData)[getOffset(index, DiffuseSign)]) = signBit; } void setAmbient(int index, const osg::Vec4& value) { *(unsigned int*)(&(*mData)[getOffset(index, Ambient)]) = asRGBA(value); } void setSpecular(int index, const osg::Vec4& value) { *(unsigned int*)(&(*mData)[getOffset(index, Specular)]) = asRGBA(value); } void setPosition(int index, const osg::Vec4& value) { *(osg::Vec4*)(&(*mData)[getOffset(index, Position)]) = value; } void setAttenuationRadius(int index, const osg::Vec4& value) { *(osg::Vec4*)(&(*mData)[getOffset(index, AttenuationRadius)]) = value; } auto getPosition(int index) { return *(osg::Vec4*)(&(*mData)[getOffset(index, Position)]); } auto& getData() { return mData; } void dirty() { mData->dirty(); } static constexpr int queryBlockSize(int sz) { return 3 * osg::Vec4::num_components * sizeof(GL_FLOAT) * sz; } unsigned int asRGBA(const osg::Vec4& value) const { return mEndian == osg::BigEndian ? value.asABGR() : value.asRGBA(); } int getOffset(int index, LayoutOffset slot) { return mStride * index + mOffsets[slot]; } void configureLayout(int offsetColors, int offsetPosition, int offsetAttenuationRadius, int size, int stride) { static constexpr auto sizeofVec4 = sizeof(GL_FLOAT) * osg::Vec4::num_components; static constexpr auto sizeofFloat = sizeof(GL_FLOAT); mOffsets[Diffuse] = offsetColors / sizeofFloat; mOffsets[Ambient] = mOffsets[Diffuse] + 1; mOffsets[Specular] = mOffsets[Diffuse] + 2; mOffsets[DiffuseSign] = mOffsets[Diffuse] + 3; mOffsets[Position] = offsetPosition / sizeofFloat; mOffsets[AttenuationRadius] = offsetAttenuationRadius / sizeofFloat; mStride = (offsetAttenuationRadius + sizeofVec4 + stride) / 4; // Copy over previous buffers light data. Buffers populate before we know the layout. LightBuffer oldBuffer = LightBuffer(*this); for (int i = 0; i < oldBuffer.mCount; ++i) { *(osg::Vec4*)(&(*mData)[getOffset(i, Diffuse)]) = *(osg::Vec4*)(&(*mData)[oldBuffer.getOffset(i, Diffuse)]); *(osg::Vec4*)(&(*mData)[getOffset(i, Position)]) = *(osg::Vec4*)(&(*mData)[oldBuffer.getOffset(i, Position)]); *(osg::Vec4*)(&(*mData)[getOffset(i, AttenuationRadius)]) = *(osg::Vec4*)(&(*mData)[oldBuffer.getOffset(i, AttenuationRadius)]); } } private: osg::ref_ptr mData; osg::Endian mEndian; int mCount; int mStride; std::unordered_map mOffsets; }; class LightStateCache { public: std::vector lastAppliedLight; }; LightStateCache* getLightStateCache(size_t contextid, size_t size = 8) { static std::vector cacheVector; if (cacheVector.size() < contextid+1) cacheVector.resize(contextid+1); cacheVector[contextid].lastAppliedLight.resize(size); return &cacheVector[contextid]; } void configureStateSetSunOverride(LightingMethod method, const osg::Light* light, osg::StateSet* stateset, int mode) { switch (method) { case LightingMethod::Undefined: case LightingMethod::FFP: { break; } case LightingMethod::PerObjectUniform: { osg::Matrixf lightMat; configurePosition(lightMat, light->getPosition()); configureAmbient(lightMat, light->getAmbient()); configureDiffuse(lightMat, light->getDiffuse()); configureSpecular(lightMat, light->getSpecular()); stateset->addUniform(new osg::Uniform("LightBuffer", lightMat), mode); break; } case LightingMethod::SingleUBO: { osg::ref_ptr buffer = new LightBuffer(1); buffer->setDiffuse(0, light->getDiffuse()); buffer->setAmbient(0, light->getAmbient()); buffer->setSpecular(0, light->getSpecular()); buffer->setPosition(0, light->getPosition()); osg::ref_ptr ubo = new osg::UniformBufferObject; buffer->getData()->setBufferObject(ubo); osg::ref_ptr ubb = new osg::UniformBufferBinding(static_cast(Shader::UBOBinding::LightBuffer), buffer->getData().get(), 0, buffer->getData()->getTotalDataSize()); stateset->setAttributeAndModes(ubb, mode); break; } } } class DisableLight : public osg::StateAttribute { public: DisableLight() : mIndex(0) {} DisableLight(int index) : mIndex(index) {} DisableLight(const DisableLight& copy,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY) : osg::StateAttribute(copy,copyop), mIndex(copy.mIndex) {} osg::Object* cloneType() const override { return new DisableLight(mIndex); } osg::Object* clone(const osg::CopyOp& copyop) const override { return new DisableLight(*this,copyop); } bool isSameKindAs(const osg::Object* obj) const override { return dynamic_cast(obj)!=nullptr; } const char* libraryName() const override { return "SceneUtil"; } const char* className() const override { return "DisableLight"; } Type getType() const override { return LIGHT; } unsigned int getMember() const override { return mIndex; } bool getModeUsage(ModeUsage & usage) const override { usage.usesMode(GL_LIGHT0 + mIndex); return true; } int compare(const StateAttribute &sa) const override { throw std::runtime_error("DisableLight::compare: unimplemented"); } void apply(osg::State& state) const override { int lightNum = GL_LIGHT0 + mIndex; glLightfv(lightNum, GL_AMBIENT, mnullptr.ptr()); glLightfv(lightNum, GL_DIFFUSE, mnullptr.ptr()); glLightfv(lightNum, GL_SPECULAR, mnullptr.ptr()); LightStateCache* cache = getLightStateCache(state.getContextID()); cache->lastAppliedLight[mIndex] = nullptr; } private: size_t mIndex; osg::Vec4f mnullptr; }; class FFPLightStateAttribute : public osg::StateAttribute { public: FFPLightStateAttribute() : mIndex(0) {} FFPLightStateAttribute(size_t index, const std::vector >& lights) : mIndex(index), mLights(lights) {} FFPLightStateAttribute(const FFPLightStateAttribute& copy,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY) : osg::StateAttribute(copy,copyop), mIndex(copy.mIndex), mLights(copy.mLights) {} unsigned int getMember() const override { return mIndex; } bool getModeUsage(ModeUsage & usage) const override { for (size_t i = 0; i < mLights.size(); ++i) usage.usesMode(GL_LIGHT0 + mIndex + i); return true; } int compare(const StateAttribute &sa) const override { throw std::runtime_error("FFPLightStateAttribute::compare: unimplemented"); } META_StateAttribute(NifOsg, FFPLightStateAttribute, osg::StateAttribute::LIGHT) void apply(osg::State& state) const override { if (mLights.empty()) return; osg::Matrix modelViewMatrix = state.getModelViewMatrix(); state.applyModelViewMatrix(state.getInitialViewMatrix()); LightStateCache* cache = getLightStateCache(state.getContextID()); for (size_t i = 0; i < mLights.size(); ++i) { osg::Light* current = cache->lastAppliedLight[i+mIndex]; if (current != mLights[i].get()) { applyLight((GLenum)((int)GL_LIGHT0 + i + mIndex), mLights[i].get()); cache->lastAppliedLight[i+mIndex] = mLights[i].get(); } } state.applyModelViewMatrix(modelViewMatrix); } void applyLight(GLenum lightNum, const osg::Light* light) const { glLightfv(lightNum, GL_AMBIENT, light->getAmbient().ptr()); glLightfv(lightNum, GL_DIFFUSE, light->getDiffuse().ptr()); glLightfv(lightNum, GL_SPECULAR, light->getSpecular().ptr()); glLightfv(lightNum, GL_POSITION, light->getPosition().ptr()); // TODO: enable this once spot lights are supported // need to transform SPOT_DIRECTION by the world matrix? //glLightfv(lightNum, GL_SPOT_DIRECTION, light->getDirection().ptr()); //glLightf(lightNum, GL_SPOT_EXPONENT, light->getSpotExponent()); //glLightf(lightNum, GL_SPOT_CUTOFF, light->getSpotCutoff()); glLightf(lightNum, GL_CONSTANT_ATTENUATION, light->getConstantAttenuation()); glLightf(lightNum, GL_LINEAR_ATTENUATION, light->getLinearAttenuation()); glLightf(lightNum, GL_QUADRATIC_ATTENUATION, light->getQuadraticAttenuation()); } private: size_t mIndex; std::vector> mLights; }; LightManager* findLightManager(const osg::NodePath& path) { for (size_t i = 0; i < path.size(); ++i) { if (LightManager* lightManager = dynamic_cast(path[i])) return lightManager; } return nullptr; } class LightStateAttributePerObjectUniform : public osg::StateAttribute { public: LightStateAttributePerObjectUniform() {} LightStateAttributePerObjectUniform(const std::vector>& lights, LightManager* lightManager) : mLights(lights), mLightManager(lightManager) {} LightStateAttributePerObjectUniform(const LightStateAttributePerObjectUniform& copy,const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY) : osg::StateAttribute(copy,copyop), mLights(copy.mLights), mLightManager(copy.mLightManager) {} int compare(const StateAttribute &sa) const override { throw std::runtime_error("LightStateAttributePerObjectUniform::compare: unimplemented"); } META_StateAttribute(NifOsg, LightStateAttributePerObjectUniform, osg::StateAttribute::LIGHT) void resize(int numLights) { mLights.resize(std::min(static_cast(numLights), mLights.size())); } void apply(osg::State &state) const override { auto* lightUniform = mLightManager->getStateSet()->getUniform("LightBuffer"); for (size_t i = 0; i < mLights.size(); ++i) { auto light = mLights[i]; osg::Matrixf lightMat; configurePosition(lightMat, light->getPosition() * state.getInitialViewMatrix()); configureAmbient(lightMat, light->getAmbient()); configureDiffuse(lightMat, light->getDiffuse()); configureAttenuation(lightMat, light->getConstantAttenuation(), light->getLinearAttenuation(), light->getQuadraticAttenuation(), getLightRadius(light)); lightUniform->setElement(i+1, lightMat); } lightUniform->dirty(); } private: std::vector> mLights; LightManager* mLightManager; }; struct StateSetGenerator { LightManager* mLightManager; virtual ~StateSetGenerator() {} virtual osg::ref_ptr generate(const LightManager::LightList& lightList, size_t frameNum) = 0; virtual void update(osg::StateSet* stateset, const LightManager::LightList& lightList, size_t frameNum) {} }; struct StateSetGeneratorFFP : StateSetGenerator { osg::ref_ptr generate(const LightManager::LightList& lightList, size_t frameNum) override { osg::ref_ptr stateset = new osg::StateSet; std::vector> lights; lights.reserve(lightList.size()); for (size_t i = 0; i < lightList.size(); ++i) lights.emplace_back(lightList[i]->mLightSource->getLight(frameNum)); // the first light state attribute handles the actual state setting for all lights // it's best to batch these up so that we don't need to touch the modelView matrix more than necessary // don't use setAttributeAndModes, that does not support light indices! stateset->setAttribute(new FFPLightStateAttribute(mLightManager->getStartLight(), std::move(lights)), osg::StateAttribute::ON); for (size_t i = 0; i < lightList.size(); ++i) stateset->setMode(GL_LIGHT0 + mLightManager->getStartLight() + i, osg::StateAttribute::ON); // need to push some dummy attributes to ensure proper state tracking // lights need to reset to their default when the StateSet is popped for (size_t i = 1; i < lightList.size(); ++i) stateset->setAttribute(mLightManager->getDummies()[i + mLightManager->getStartLight()].get(), osg::StateAttribute::ON); return stateset; } }; struct StateSetGeneratorSingleUBO : StateSetGenerator { osg::ref_ptr generate(const LightManager::LightList& lightList, size_t frameNum) override { osg::ref_ptr stateset = new osg::StateSet; osg::ref_ptr indices = new osg::IntArray(mLightManager->getMaxLights()); osg::ref_ptr indicesUni = new osg::Uniform(osg::Uniform::Type::INT, "PointLightIndex", indices->size()); int pointCount = 0; for (size_t i = 0; i < lightList.size(); ++i) { int bufIndex = mLightManager->getLightIndexMap(frameNum)[lightList[i]->mLightSource->getId()]; indices->at(pointCount++) = bufIndex; } indicesUni->setArray(indices); stateset->addUniform(indicesUni); stateset->addUniform(new osg::Uniform("PointLightCount", pointCount)); return stateset; } // Cached statesets must be revalidated in case the light indices change. There is no actual link between // a light's ID and the buffer index it will eventually be assigned (or reassigned) to. void update(osg::StateSet* stateset, const LightManager::LightList& lightList, size_t frameNum) override { int newCount = 0; int oldCount; auto uOldArray = stateset->getUniform("PointLightIndex"); auto uOldCount = stateset->getUniform("PointLightCount"); uOldCount->get(oldCount); // max lights count can change during runtime oldCount = std::min(mLightManager->getMaxLights(), oldCount); auto& lightData = mLightManager->getLightIndexMap(frameNum); for (int i = 0; i < oldCount; ++i) { auto* lightSource = lightList[i]->mLightSource; auto it = lightData.find(lightSource->getId()); if (it != lightData.end()) uOldArray->setElement(newCount++, it->second); } uOldArray->dirty(); uOldCount->set(newCount); } }; struct StateSetGeneratorPerObjectUniform : StateSetGenerator { osg::ref_ptr generate(const LightManager::LightList& lightList, size_t frameNum) override { osg::ref_ptr stateset = new osg::StateSet; std::vector> lights(lightList.size()); for (size_t i = 0; i < lightList.size(); ++i) { auto* light = lightList[i]->mLightSource->getLight(frameNum); lights[i] = light; setLightRadius(light, lightList[i]->mLightSource->getRadius()); } stateset->setAttributeAndModes(new LightStateAttributePerObjectUniform(std::move(lights), mLightManager), osg::StateAttribute::ON); stateset->addUniform(new osg::Uniform("PointLightCount", static_cast(lightList.size() + 1))); return stateset; } }; // Set on a LightSource. Adds the light source to its light manager for the current frame. // This allows us to keep track of the current lights in the scene graph without tying creation & destruction to the manager. class CollectLightCallback : public osg::NodeCallback { public: CollectLightCallback() : mLightManager(nullptr) { } CollectLightCallback(const CollectLightCallback& copy, const osg::CopyOp& copyop) : osg::NodeCallback(copy, copyop) , mLightManager(nullptr) { } META_Object(SceneUtil, SceneUtil::CollectLightCallback) void operator()(osg::Node* node, osg::NodeVisitor* nv) override { if (!mLightManager) { mLightManager = findLightManager(nv->getNodePath()); if (!mLightManager) throw std::runtime_error("can't find parent LightManager"); } mLightManager->addLight(static_cast(node), osg::computeLocalToWorld(nv->getNodePath()), nv->getTraversalNumber()); traverse(node, nv); } private: LightManager* mLightManager; }; // Set on a LightManager. Clears the data from the previous frame. class LightManagerUpdateCallback : public osg::NodeCallback { public: LightManagerUpdateCallback() { } LightManagerUpdateCallback(const LightManagerUpdateCallback& copy, const osg::CopyOp& copyop) : osg::NodeCallback(copy, copyop) { } META_Object(SceneUtil, LightManagerUpdateCallback) void operator()(osg::Node* node, osg::NodeVisitor* nv) override { LightManager* lightManager = static_cast(node); lightManager->update(nv->getTraversalNumber()); traverse(node, nv); } }; class LightManagerCullCallback : public osg::NodeCallback { public: LightManagerCullCallback(LightManager* lightManager) : mLightManager(lightManager) {} void operator()(osg::Node* node, osg::NodeVisitor* nv) override { osgUtil::CullVisitor* cv = static_cast(nv); if (mLastFrameNumber != cv->getTraversalNumber()) { mLastFrameNumber = cv->getTraversalNumber(); if (mLightManager->getLightingMethod() == LightingMethod::SingleUBO) { auto stateset = mLightManager->getStateSet(); auto bo = mLightManager->getLightBuffer(mLastFrameNumber); osg::ref_ptr ubb = new osg::UniformBufferBinding(static_cast(Shader::UBOBinding::LightBuffer), bo->getData().get(), 0, bo->getData()->getTotalDataSize()); stateset->setAttributeAndModes(ubb.get(), osg::StateAttribute::ON); } auto sun = mLightManager->getSunlight(); if (sun) { if (mLightManager->getLightingMethod() == LightingMethod::PerObjectUniform) { osg::Matrixf lightMat; configurePosition(lightMat, sun->getPosition() * (*cv->getCurrentRenderStage()->getInitialViewMatrix())); configureAmbient(lightMat, sun->getAmbient()); configureDiffuse(lightMat, sun->getDiffuse()); configureSpecular(lightMat, sun->getSpecular()); mLightManager->getStateSet()->getUniform("LightBuffer")->setElement(0, lightMat); } else { auto buf = mLightManager->getLightBuffer(mLastFrameNumber); buf->setDiffuse(0, sun->getDiffuse()); buf->setAmbient(0, sun->getAmbient()); buf->setSpecular(0, sun->getSpecular()); buf->setPosition(0, sun->getPosition() * (*cv->getCurrentRenderStage()->getInitialViewMatrix())); } } } traverse(node, nv); } private: LightManager* mLightManager; size_t mLastFrameNumber; }; class LightManagerStateAttribute : public osg::StateAttribute { public: LightManagerStateAttribute() : mLightManager(nullptr) {} LightManagerStateAttribute(LightManager* lightManager) : mLightManager(lightManager) , mDummyProgram(new osg::Program) { static const std::string dummyVertSource = generateDummyShader(mLightManager->getMaxLightsInScene()); mDummyProgram->addShader(new osg::Shader(osg::Shader::VERTEX, dummyVertSource)); mDummyProgram->addBindUniformBlock("LightBufferBinding", static_cast(Shader::UBOBinding::LightBuffer)); // Needed to query the layout of the buffer object. The layout specifier needed to use the std140 layout is not reliably // available, regardless of extensions, until GLSL 140. mLightManager->getOrCreateStateSet()->setAttributeAndModes(mDummyProgram, osg::StateAttribute::ON); } LightManagerStateAttribute(const LightManagerStateAttribute& copy, const osg::CopyOp& copyop=osg::CopyOp::SHALLOW_COPY) : osg::StateAttribute(copy,copyop), mLightManager(copy.mLightManager) {} int compare(const StateAttribute &sa) const override { throw std::runtime_error("LightManagerStateAttribute::compare: unimplemented"); } META_StateAttribute(NifOsg, LightManagerStateAttribute, osg::StateAttribute::LIGHT) void initSharedLayout(osg::GLExtensions* ext, int handle) const { std::vector index = { static_cast(Shader::UBOBinding::LightBuffer) }; int totalBlockSize = -1; int stride = -1; ext->glGetActiveUniformBlockiv(handle, 0, GL_UNIFORM_BLOCK_DATA_SIZE, &totalBlockSize); ext->glGetActiveUniformsiv(handle, index.size(), index.data(), GL_UNIFORM_ARRAY_STRIDE, &stride); std::vector names = { "LightBuffer[0].packedColors" ,"LightBuffer[0].position" ,"LightBuffer[0].attenuation" }; std::vector indices(names.size()); std::vector offsets(names.size()); ext->glGetUniformIndices(handle, names.size(), names.data(), indices.data()); ext->glGetActiveUniformsiv(handle, indices.size(), indices.data(), GL_UNIFORM_OFFSET, offsets.data()); for (int i = 0; i < 2; ++i) { auto& buf = mLightManager->getLightBuffer(i); buf->configureLayout(offsets[0], offsets[1], offsets[2], totalBlockSize, stride); } } void apply(osg::State& state) const override { static bool init = false; if (!init) { auto handle = mDummyProgram->getPCP(state)->getHandle(); auto* ext = state.get(); int activeUniformBlocks = 0; ext->glGetProgramiv(handle, GL_ACTIVE_UNIFORM_BLOCKS, &activeUniformBlocks); // wait until the UBO binding is created if (activeUniformBlocks > 0) { initSharedLayout(ext, handle); init = true; } } else { mLightManager->getLightBuffer(state.getFrameStamp()->getFrameNumber())->dirty(); } } private: std::string generateDummyShader(int maxLightsInScene) { return "#version 120\n" "#extension GL_ARB_uniform_buffer_object : require \n" "struct LightData { \n" " ivec4 packedColors; \n" " vec4 position; \n" " vec4 attenuation; \n" "}; \n" "uniform LightBufferBinding { \n" " LightData LightBuffer[" + std::to_string(mLightManager->getMaxLightsInScene()) + "];\n" "}; \n" "void main() { gl_Position = vec4(0.0); } \n"; } LightManager* mLightManager; osg::ref_ptr mDummyProgram; }; const std::unordered_map LightManager::mLightingMethodSettingMap = { {"legacy", LightingMethod::FFP} ,{"shaders compatibility", LightingMethod::PerObjectUniform} ,{"shaders", LightingMethod::SingleUBO} }; bool LightManager::isValidLightingModelString(const std::string& value) { return LightManager::mLightingMethodSettingMap.find(value) != LightManager::mLightingMethodSettingMap.end(); } LightingMethod LightManager::getLightingMethodFromString(const std::string& value) { auto it = LightManager::mLightingMethodSettingMap.find(value); if (it != LightManager::mLightingMethodSettingMap.end()) return it->second; else return LightingMethod::Undefined; } std::string LightManager::getLightingMethodString(LightingMethod method) { for (const auto& p : LightManager::mLightingMethodSettingMap) if (p.second == method) return p.first; return ""; } LightManager::LightManager(bool ffp) : mStartLight(0) , mLightingMask(~0u) , mSun(nullptr) , mPointLightRadiusMultiplier(1.f) , mPointLightFadeEnd(0.f) , mPointLightFadeStart(0.f) { setUpdateCallback(new LightManagerUpdateCallback); if (ffp) { initFFP(LightManager::mFFPMaxLights); return; } std::string lightingMethodString = Settings::Manager::getString("lighting method", "Shaders"); auto lightingMethod = LightManager::getLightingMethodFromString(lightingMethodString); if (lightingMethod == LightingMethod::Undefined) { Log(Debug::Error) << "Invalid option for 'lighting method': got '" << lightingMethodString << "', expected legacy, shaders compatible, or shaders. Falling back to 'shaders compatible'."; lightingMethod = LightingMethod::PerObjectUniform; } updateSettings(); osg::GLExtensions* exts = osg::GLExtensions::Get(0, false); bool supportsUBO = exts && exts->isUniformBufferObjectSupported; bool supportsGPU4 = exts && exts->isGpuShader4Supported; static bool hasLoggedWarnings = false; if (lightingMethod == LightingMethod::SingleUBO && !hasLoggedWarnings) { if (!supportsUBO) Log(Debug::Warning) << "GL_ARB_uniform_buffer_object not supported: switching to shader compatibility lighting mode"; if (!supportsGPU4) Log(Debug::Warning) << "GL_EXT_gpu_shader4 not supported: switching to shader compatibility lighting mode"; hasLoggedWarnings = true; } int targetLights = Settings::Manager::getInt("max lights", "Shaders"); if (!supportsUBO || !supportsGPU4 || lightingMethod == LightingMethod::PerObjectUniform) initPerObjectUniform(targetLights); else initSingleUBO(targetLights); getOrCreateStateSet()->addUniform(new osg::Uniform("PointLightCount", 0)); addCullCallback(new LightManagerCullCallback(this)); } LightManager::LightManager(const LightManager ©, const osg::CopyOp ©op) : osg::Group(copy, copyop) , mStartLight(copy.mStartLight) , mLightingMask(copy.mLightingMask) , mSun(copy.mSun) , mLightingMethod(copy.mLightingMethod) { } LightingMethod LightManager::getLightingMethod() const { return mLightingMethod; } LightManager::~LightManager() { } bool LightManager::usingFFP() const { return mLightingMethod == LightingMethod::FFP; } int LightManager::getMaxLights() const { return mMaxLights; } void LightManager::setMaxLights(int value) { mMaxLights = value; } int LightManager::getMaxLightsInScene() const { static constexpr int max = 16384 / LightBuffer::queryBlockSize(1); return max; } Shader::ShaderManager::DefineMap LightManager::getLightDefines() const { Shader::ShaderManager::DefineMap defines; defines["maxLights"] = std::to_string(getMaxLights()); defines["maxLightsInScene"] = std::to_string(getMaxLightsInScene()); defines["lightingMethodFFP"] = getLightingMethod() == LightingMethod::FFP ? "1" : "0"; defines["lightingMethodPerObjectUniform"] = getLightingMethod() == LightingMethod::PerObjectUniform ? "1" : "0"; defines["lightingMethodUBO"] = getLightingMethod() == LightingMethod::SingleUBO ? "1" : "0"; defines["useUBO"] = std::to_string(getLightingMethod() == LightingMethod::SingleUBO); // exposes bitwise operators defines["useGPUShader4"] = std::to_string(getLightingMethod() == LightingMethod::SingleUBO); defines["getLight"] = getLightingMethod() == LightingMethod::FFP ? "gl_LightSource" : "LightBuffer"; defines["startLight"] = getLightingMethod() == LightingMethod::SingleUBO ? "0" : "1"; defines["endLight"] = getLightingMethod() == LightingMethod::FFP ? defines["maxLights"] : "PointLightCount"; return defines; } void LightManager::processChangedSettings(const Settings::CategorySettingVector& changed) { updateSettings(); } void LightManager::updateMaxLights() { if (usingFFP()) return; setMaxLights(std::clamp(Settings::Manager::getInt("max lights", "Shaders"), mMaxLightsLowerLimit, mMaxLightsUpperLimit)); if (getLightingMethod() == LightingMethod::PerObjectUniform) { auto* prevUniform = getStateSet()->getUniform("LightBuffer"); osg::ref_ptr newUniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, "LightBuffer", getMaxLights()); for (int i = 0; i < getMaxLights(); ++i) { osg::Matrixf prevLightData; prevUniform->getElement(i, prevLightData); newUniform->setElement(i, prevLightData); } getStateSet()->removeUniform(prevUniform); getStateSet()->addUniform(newUniform); for (int i = 0; i < 2; ++i) { for (auto& pair : mStateSetCache[i]) static_cast(pair.second->getAttribute(osg::StateAttribute::LIGHT))->resize(getMaxLights()); mStateSetCache[i].clear(); } } else { for (int i = 0; i < 2; ++i) { for (auto& pair : mStateSetCache[i]) { auto& stateset = pair.second; osg::Uniform* uOldArray = stateset->getUniform("PointLightIndex"); osg::Uniform* uOldCount = stateset->getUniform("PointLightCount"); int prevCount; uOldCount->get(prevCount); int newCount = std::min(getMaxLights(), prevCount); uOldCount->set(newCount); osg::ref_ptr newArray = uOldArray->getIntArray(); newArray->resize(newCount); stateset->removeUniform(uOldArray); stateset->addUniform(new osg::Uniform("PointLightIndex", newArray)); } mStateSetCache[i].clear(); } } } void LightManager::updateSettings() { if (getLightingMethod() == LightingMethod::FFP) return; mPointLightRadiusMultiplier = std::clamp(Settings::Manager::getFloat("light bounds multiplier", "Shaders"), 0.f, 5.f); mPointLightFadeEnd = std::max(0.f, Settings::Manager::getFloat("maximum light distance", "Shaders")); if (mPointLightFadeEnd > 0) { mPointLightFadeStart = std::clamp(Settings::Manager::getFloat("light fade start", "Shaders"), 0.f, 1.f); mPointLightFadeStart = mPointLightFadeEnd * mPointLightFadeStart; } } void LightManager::initFFP(int targetLights) { setLightingMethod(LightingMethod::FFP); setMaxLights(targetLights); for (int i = 0; i < getMaxLights(); ++i) mDummies.push_back(new FFPLightStateAttribute(i, std::vector>())); } void LightManager::initPerObjectUniform(int targetLights) { auto* stateset = getOrCreateStateSet(); setLightingMethod(LightingMethod::PerObjectUniform); setMaxLights(std::clamp(targetLights, mMaxLightsLowerLimit, LightManager::mMaxLightsUpperLimit)); stateset->addUniform(new osg::Uniform(osg::Uniform::FLOAT_MAT4, "LightBuffer", getMaxLights())); } void LightManager::initSingleUBO(int targetLights) { setLightingMethod(LightingMethod::SingleUBO); setMaxLights(std::clamp(targetLights, mMaxLightsLowerLimit, LightManager::mMaxLightsUpperLimit)); for (int i = 0; i < 2; ++i) { mLightBuffers[i] = new LightBuffer(getMaxLightsInScene()); osg::ref_ptr ubo = new osg::UniformBufferObject; ubo->setUsage(GL_STREAM_DRAW); mLightBuffers[i]->getData()->setBufferObject(ubo); } getOrCreateStateSet()->setAttribute(new LightManagerStateAttribute(this), osg::StateAttribute::ON); } void LightManager::setLightingMethod(LightingMethod method) { mLightingMethod = method; switch (method) { case LightingMethod::FFP: mStateSetGenerator = std::make_unique(); break; case LightingMethod::SingleUBO: mStateSetGenerator = std::make_unique(); break; case LightingMethod::PerObjectUniform: mStateSetGenerator = std::make_unique(); break; case LightingMethod::Undefined: mStateSetGenerator = nullptr; break; } mStateSetGenerator->mLightManager = this; } void LightManager::setLightingMask(size_t mask) { mLightingMask = mask; } size_t LightManager::getLightingMask() const { return mLightingMask; } void LightManager::setStartLight(int start) { mStartLight = start; if (!usingFFP()) return; // Set default light state to zero // This is necessary because shaders don't respect glDisable(GL_LIGHTX) so in addition to disabling // we'll have to set a light state that has no visible effect for (int i = start; i < getMaxLights(); ++i) { osg::ref_ptr defaultLight (new DisableLight(i)); getOrCreateStateSet()->setAttributeAndModes(defaultLight, osg::StateAttribute::OFF); } } int LightManager::getStartLight() const { return mStartLight; } void LightManager::update(size_t frameNum) { getLightIndexMap(frameNum).clear(); mLights.clear(); mLightsInViewSpace.clear(); return; // Do an occasional cleanup for orphaned lights. for (int i = 0; i < 2; ++i) { if (mStateSetCache[i].size() > 5000) mStateSetCache[i].clear(); } } void LightManager::addLight(LightSource* lightSource, const osg::Matrixf& worldMat, size_t frameNum) { LightSourceTransform l; l.mLightSource = lightSource; l.mWorldMatrix = worldMat; osg::Vec3f pos = osg::Vec3f(worldMat.getTrans().x(), worldMat.getTrans().y(), worldMat.getTrans().z()); lightSource->getLight(frameNum)->setPosition(osg::Vec4f(pos, 1.f)); mLights.push_back(l); } void LightManager::setSunlight(osg::ref_ptr sun) { if (usingFFP()) return; mSun = sun; } osg::ref_ptr LightManager::getSunlight() { return mSun; } osg::ref_ptr LightManager::getLightListStateSet(const LightList& lightList, size_t frameNum, const osg::RefMatrix* viewMatrix) { // possible optimization: return a StateSet containing all requested lights plus some extra lights (if a suitable one exists) size_t hash = 0; for (size_t i = 0; i < lightList.size(); ++i) { auto id = lightList[i]->mLightSource->getId(); hash_combine(hash, id); if (getLightingMethod() != LightingMethod::SingleUBO) continue; if (getLightIndexMap(frameNum).find(id) != getLightIndexMap(frameNum).end()) continue; int index = getLightIndexMap(frameNum).size() + 1; updateGPUPointLight(index, lightList[i]->mLightSource, frameNum, viewMatrix); getLightIndexMap(frameNum).emplace(lightList[i]->mLightSource->getId(), index); } auto& stateSetCache = mStateSetCache[frameNum%2]; auto found = stateSetCache.find(hash); if (found != stateSetCache.end()) { mStateSetGenerator->update(found->second, lightList, frameNum); return found->second; } auto stateset = mStateSetGenerator->generate(lightList, frameNum); stateSetCache.emplace(hash, stateset); return stateset; } const std::vector& LightManager::getLightsInViewSpace(osg::Camera *camera, const osg::RefMatrix* viewMatrix, size_t frameNum) { bool isReflectionCamera = camera->getName() == "ReflectionCamera"; osg::observer_ptr camPtr (camera); auto it = mLightsInViewSpace.find(camPtr); if (it == mLightsInViewSpace.end()) { it = mLightsInViewSpace.insert(std::make_pair(camPtr, LightSourceViewBoundCollection())).first; for (const auto& transform : mLights) { osg::Matrixf worldViewMat = transform.mWorldMatrix * (*viewMatrix); float radius = transform.mLightSource->getRadius(); osg::BoundingSphere viewBound = osg::BoundingSphere(osg::Vec3f(0,0,0), radius * mPointLightRadiusMultiplier); transformBoundingSphere(worldViewMat, viewBound); if (!isReflectionCamera && mPointLightFadeEnd != 0.f) { const float fadeDelta = mPointLightFadeEnd - mPointLightFadeStart; float fade = 1 - std::clamp((viewBound.center().length() - mPointLightFadeStart) / fadeDelta, 0.f, 1.f); if (fade == 0.f) continue; auto* light = transform.mLightSource->getLight(frameNum); light->setDiffuse(light->getDiffuse() * fade); } LightSourceViewBound l; l.mLightSource = transform.mLightSource; l.mViewBound = viewBound; it->second.push_back(l); } } if (getLightingMethod() == LightingMethod::SingleUBO) { if (it->second.size() > static_cast(getMaxLightsInScene() - 1)) { auto sorter = [] (const LightSourceViewBound& left, const LightSourceViewBound& right) { return left.mViewBound.center().length2() - left.mViewBound.radius2() < right.mViewBound.center().length2() - right.mViewBound.radius2(); }; std::sort(it->second.begin() + 1, it->second.end(), sorter); it->second.erase((it->second.begin() + 1) + (getMaxLightsInScene() - 2), it->second.end()); } } return it->second; } void LightManager::updateGPUPointLight(int index, LightSource* lightSource, size_t frameNum,const osg::RefMatrix* viewMatrix) { auto* light = lightSource->getLight(frameNum); auto& buf = getLightBuffer(frameNum); buf->setDiffuse(index, light->getDiffuse()); buf->setAmbient(index, light->getAmbient()); buf->setAttenuationRadius(index, osg::Vec4(light->getConstantAttenuation(), light->getLinearAttenuation(), light->getQuadraticAttenuation(), lightSource->getRadius())); buf->setPosition(index, light->getPosition() * (*viewMatrix)); } LightSource::LightSource() : mRadius(0.f) , mActorFade(1.f) { setUpdateCallback(new CollectLightCallback); mId = sLightId++; } LightSource::LightSource(const LightSource ©, const osg::CopyOp ©op) : osg::Node(copy, copyop) , mRadius(copy.mRadius) , mActorFade(copy.mActorFade) { mId = sLightId++; for (int i = 0; i < 2; ++i) mLight[i] = new osg::Light(*copy.mLight[i].get(), copyop); } void LightListCallback::operator()(osg::Node *node, osg::NodeVisitor *nv) { osgUtil::CullVisitor* cv = static_cast(nv); bool pushedState = pushLightState(node, cv); traverse(node, nv); if (pushedState) cv->popStateSet(); } bool LightListCallback::pushLightState(osg::Node *node, osgUtil::CullVisitor *cv) { if (!mLightManager) { mLightManager = findLightManager(cv->getNodePath()); if (!mLightManager) return false; } if (!(cv->getTraversalMask() & mLightManager->getLightingMask())) return false; // Possible optimizations: // - cull list of lights by the camera frustum // - organize lights in a quad tree // update light list if necessary // makes sure we don't update it more than once per frame when rendering with multiple cameras if (mLastFrameNumber != cv->getTraversalNumber()) { mLastFrameNumber = cv->getTraversalNumber(); // Don't use Camera::getViewMatrix, that one might be relative to another camera! const osg::RefMatrix* viewMatrix = cv->getCurrentRenderStage()->getInitialViewMatrix(); const std::vector& lights = mLightManager->getLightsInViewSpace(cv->getCurrentCamera(), viewMatrix, mLastFrameNumber); // get the node bounds in view space // NB do not node->getBound() * modelView, that would apply the node's transformation twice osg::BoundingSphere nodeBound; osg::Transform* transform = node->asTransform(); if (transform) { for (size_t i = 0; i < transform->getNumChildren(); ++i) nodeBound.expandBy(transform->getChild(i)->getBound()); } else nodeBound = node->getBound(); osg::Matrixf mat = *cv->getModelViewMatrix(); transformBoundingSphere(mat, nodeBound); mLightList.clear(); for (size_t i = 0; i < lights.size(); ++i) { const LightManager::LightSourceViewBound& l = lights[i]; if (mIgnoredLightSources.count(l.mLightSource)) continue; if (l.mViewBound.intersects(nodeBound)) mLightList.push_back(&l); } } if (!mLightList.empty()) { size_t maxLights = mLightManager->getMaxLights() - mLightManager->getStartLight(); osg::StateSet* stateset = nullptr; if (mLightList.size() > maxLights) { // remove lights culled by this camera LightManager::LightList lightList = mLightList; for (auto it = lightList.begin(); it != lightList.end() && lightList.size() > maxLights;) { osg::CullStack::CullingStack& stack = cv->getModelViewCullingStack(); osg::BoundingSphere bs = (*it)->mViewBound; bs._radius = bs._radius * 2.0; osg::CullingSet& cullingSet = stack.front(); if (cullingSet.isCulled(bs)) { it = lightList.erase(it); continue; } else ++it; } if (lightList.size() > maxLights) { // sort by proximity to camera, then get rid of furthest away lights std::sort(lightList.begin(), lightList.end(), sortLights); while (lightList.size() > maxLights) lightList.pop_back(); } stateset = mLightManager->getLightListStateSet(lightList, cv->getTraversalNumber(), cv->getCurrentRenderStage()->getInitialViewMatrix()); } else stateset = mLightManager->getLightListStateSet(mLightList, cv->getTraversalNumber(), cv->getCurrentRenderStage()->getInitialViewMatrix()); cv->pushStateSet(stateset); return true; } return false; } }