You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw-tes3mp/components/nifosg/particle.cpp

465 lines
14 KiB
C++

#include "particle.hpp"
#include <limits>
#include <osg/MatrixTransform>
#include <osg/Geometry>
#include <components/nif/controlled.hpp>
#include <components/nif/nifkey.hpp>
#include <components/nif/data.hpp>
#include "userdata.hpp"
namespace NifOsg
{
ParticleSystem::ParticleSystem()
: osgParticle::ParticleSystem()
, mQuota(std::numeric_limits<int>::max())
{
}
ParticleSystem::ParticleSystem(const ParticleSystem &copy, const osg::CopyOp &copyop)
: osgParticle::ParticleSystem(copy, copyop)
, mQuota(copy.mQuota)
{
// For some reason the osgParticle constructor doesn't copy the particles
for (int i=0;i<copy.numParticles()-copy.numDeadParticles();++i)
createParticle(copy.getParticle(i));
}
void ParticleSystem::setQuota(int quota)
{
mQuota = quota;
}
osgParticle::Particle* ParticleSystem::createParticle(const osgParticle::Particle *ptemplate)
{
if (numParticles()-numDeadParticles() < mQuota)
return osgParticle::ParticleSystem::createParticle(ptemplate);
return NULL;
}
void InverseWorldMatrix::operator()(osg::Node *node, osg::NodeVisitor *nv)
{
if (nv && nv->getVisitorType() == osg::NodeVisitor::UPDATE_VISITOR)
{
osg::NodePath path = nv->getNodePath();
path.pop_back();
osg::MatrixTransform* trans = static_cast<osg::MatrixTransform*>(node);
osg::Matrix mat = osg::computeLocalToWorld( path );
mat.orthoNormalize(mat); // don't undo the scale
mat.invert(mat);
trans->setMatrix(mat);
}
traverse(node,nv);
}
ParticleShooter::ParticleShooter(float minSpeed, float maxSpeed, float horizontalDir, float horizontalAngle, float verticalDir, float verticalAngle, float lifetime, float lifetimeRandom)
: mMinSpeed(minSpeed), mMaxSpeed(maxSpeed), mHorizontalDir(horizontalDir)
, mHorizontalAngle(horizontalAngle), mVerticalDir(verticalDir), mVerticalAngle(verticalAngle)
, mLifetime(lifetime), mLifetimeRandom(lifetimeRandom)
{
}
ParticleShooter::ParticleShooter()
: mMinSpeed(0.f), mMaxSpeed(0.f), mHorizontalDir(0.f)
, mHorizontalAngle(0.f), mVerticalDir(0.f), mVerticalAngle(0.f)
, mLifetime(0.f), mLifetimeRandom(0.f)
{
}
ParticleShooter::ParticleShooter(const ParticleShooter &copy, const osg::CopyOp &copyop)
: osgParticle::Shooter(copy, copyop)
{
*this = copy;
}
void ParticleShooter::shoot(osgParticle::Particle *particle) const
{
float hdir = mHorizontalDir + mHorizontalAngle * (2.f * (std::rand() / static_cast<double>(RAND_MAX)) - 1.f);
float vdir = mVerticalDir + mVerticalAngle * (2.f * (std::rand() / static_cast<double>(RAND_MAX)) - 1.f);
osg::Vec3f dir = (osg::Quat(vdir, osg::Vec3f(0,1,0)) * osg::Quat(hdir, osg::Vec3f(0,0,1)))
* osg::Vec3f(0,0,1);
float vel = mMinSpeed + (mMaxSpeed - mMinSpeed) * std::rand() / static_cast<float>(RAND_MAX);
particle->setVelocity(dir * vel);
// Not supposed to set this here, but there doesn't seem to be a better way of doing it
particle->setLifeTime(mLifetime + mLifetimeRandom * std::rand() / static_cast<float>(RAND_MAX));
}
GrowFadeAffector::GrowFadeAffector(float growTime, float fadeTime)
: mGrowTime(growTime)
, mFadeTime(fadeTime)
, mCachedDefaultSize(0.f)
{
}
GrowFadeAffector::GrowFadeAffector()
: mGrowTime(0.f)
, mFadeTime(0.f)
, mCachedDefaultSize(0.f)
{
}
GrowFadeAffector::GrowFadeAffector(const GrowFadeAffector& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
{
*this = copy;
}
void GrowFadeAffector::beginOperate(osgParticle::Program *program)
{
mCachedDefaultSize = program->getParticleSystem()->getDefaultParticleTemplate().getSizeRange().minimum;
}
void GrowFadeAffector::operate(osgParticle::Particle* particle, double /* dt */)
{
float size = mCachedDefaultSize;
if (particle->getAge() < mGrowTime && mGrowTime != 0.f)
size *= particle->getAge() / mGrowTime;
if (particle->getLifeTime() - particle->getAge() < mFadeTime && mFadeTime != 0.f)
size *= (particle->getLifeTime() - particle->getAge()) / mFadeTime;
particle->setSizeRange(osgParticle::rangef(size, size));
}
ParticleColorAffector::ParticleColorAffector(const Nif::NiColorData *clrdata)
: mData(clrdata->mKeyMap, osg::Vec4f(1,1,1,1))
{
}
ParticleColorAffector::ParticleColorAffector()
{
}
ParticleColorAffector::ParticleColorAffector(const ParticleColorAffector &copy, const osg::CopyOp &copyop)
: osgParticle::Operator(copy, copyop)
{
*this = copy;
}
void ParticleColorAffector::operate(osgParticle::Particle* particle, double /* dt */)
{
float time = static_cast<float>(particle->getAge()/particle->getLifeTime());
osg::Vec4f color = mData.interpKey(time);
particle->setColorRange(osgParticle::rangev4(color, color));
}
GravityAffector::GravityAffector(const Nif::NiGravity *gravity)
: mForce(gravity->mForce)
, mType(static_cast<ForceType>(gravity->mType))
, mPosition(gravity->mPosition)
, mDirection(gravity->mDirection)
, mDecay(gravity->mDecay)
{
}
GravityAffector::GravityAffector()
: mForce(0), mType(Type_Wind), mDecay(0.f)
{
}
GravityAffector::GravityAffector(const GravityAffector &copy, const osg::CopyOp &copyop)
: osgParticle::Operator(copy, copyop)
{
*this = copy;
}
void GravityAffector::beginOperate(osgParticle::Program* program)
{
bool absolute = (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF);
if (mType == Type_Point || mDecay != 0.f) // we don't need the position for Wind gravity, except if decay is being applied
mCachedWorldPosition = absolute ? program->transformLocalToWorld(mPosition) : mPosition;
mCachedWorldDirection = absolute ? program->rotateLocalToWorld(mDirection) : mDirection;
mCachedWorldDirection.normalize();
}
void GravityAffector::operate(osgParticle::Particle *particle, double dt)
{
const float magic = 1.6f;
switch (mType)
{
case Type_Wind:
{
float decayFactor = 1.f;
if (mDecay != 0.f)
{
osg::Plane gravityPlane(mCachedWorldDirection, mCachedWorldPosition);
float distance = std::abs(gravityPlane.distance(particle->getPosition()));
decayFactor = std::exp(-1.f * mDecay * distance);
}
particle->addVelocity(mCachedWorldDirection * mForce * dt * decayFactor * magic);
break;
}
case Type_Point:
{
osg::Vec3f diff = mCachedWorldPosition - particle->getPosition();
float decayFactor = 1.f;
if (mDecay != 0.f)
decayFactor = std::exp(-1.f * mDecay * diff.length());
diff.normalize();
particle->addVelocity(diff * mForce * dt * decayFactor * magic);
break;
}
}
}
Emitter::Emitter()
: osgParticle::Emitter()
{
}
Emitter::Emitter(const Emitter &copy, const osg::CopyOp &copyop)
: osgParticle::Emitter(copy, copyop)
, mTargets(copy.mTargets)
, mPlacer(copy.mPlacer)
, mShooter(copy.mShooter)
// need a deep copy because the remainder is stored in the object
, mCounter(osg::clone(copy.mCounter.get(), osg::CopyOp::DEEP_COPY_ALL))
{
}
Emitter::Emitter(const std::vector<int> &targets)
: mTargets(targets)
{
}
void Emitter::setShooter(osgParticle::Shooter *shooter)
{
mShooter = shooter;
}
void Emitter::setPlacer(osgParticle::Placer *placer)
{
mPlacer = placer;
}
void Emitter::setCounter(osgParticle::Counter *counter)
{
mCounter = counter;
}
void Emitter::emitParticles(double dt)
{
int n = mCounter->numParticlesToCreate(dt);
if (n == 0)
return;
osg::Matrix worldToPs;
// maybe this could be optimized by halting at the lowest common ancestor of the particle and emitter nodes
osg::NodePathList partsysNodePaths = getParticleSystem()->getParentalNodePaths();
if (!partsysNodePaths.empty())
{
osg::Matrix psToWorld = osg::computeLocalToWorld(partsysNodePaths[0]);
worldToPs = osg::Matrix::inverse(psToWorld);
}
const osg::Matrix& ltw = getLocalToWorldMatrix();
osg::Matrix emitterToPs = ltw * worldToPs;
if (!mTargets.empty())
{
int randomRecIndex = mTargets[(std::rand() / (static_cast<double>(RAND_MAX)+1.0)) * mTargets.size()];
// we could use a map here for faster lookup
FindGroupByRecIndex visitor(randomRecIndex);
getParent(0)->accept(visitor);
if (!visitor.mFound)
{
std::cerr << "Emitter: Can't find emitter node" << randomRecIndex << std::endl;
return;
}
osg::NodePath path = visitor.mFoundPath;
path.erase(path.begin());
emitterToPs = osg::computeLocalToWorld(path) * emitterToPs;
}
emitterToPs.orthoNormalize(emitterToPs);
for (int i=0; i<n; ++i)
{
osgParticle::Particle* P = getParticleSystem()->createParticle(0);
if (P)
{
mPlacer->place(P);
mShooter->shoot(P);
P->transformPositionVelocity(emitterToPs);
}
}
}
FindGroupByRecIndex::FindGroupByRecIndex(int recIndex)
: osg::NodeVisitor(TRAVERSE_ALL_CHILDREN)
, mFound(NULL)
, mRecIndex(recIndex)
{
}
void FindGroupByRecIndex::apply(osg::Node &node)
{
applyNode(node);
}
void FindGroupByRecIndex::apply(osg::MatrixTransform &node)
{
applyNode(node);
}
void FindGroupByRecIndex::apply(osg::Geometry &node)
{
applyNode(node);
}
void FindGroupByRecIndex::applyNode(osg::Node &searchNode)
{
if (searchNode.getUserDataContainer() && searchNode.getUserDataContainer()->getNumUserObjects())
{
NodeUserData* holder = dynamic_cast<NodeUserData*>(searchNode.getUserDataContainer()->getUserObject(0));
if (holder && holder->mIndex == mRecIndex)
{
osg::Group* group = searchNode.asGroup();
if (!group)
group = searchNode.getParent(0);
mFound = group;
mFoundPath = getNodePath();
return;
}
}
traverse(searchNode);
}
PlanarCollider::PlanarCollider(const Nif::NiPlanarCollider *collider)
: mBounceFactor(collider->mBounceFactor)
, mPlane(-collider->mPlaneNormal, collider->mPlaneDistance)
{
}
PlanarCollider::PlanarCollider()
: mBounceFactor(0.f)
{
}
PlanarCollider::PlanarCollider(const PlanarCollider &copy, const osg::CopyOp &copyop)
: osgParticle::Operator(copy, copyop)
, mBounceFactor(copy.mBounceFactor)
, mPlane(copy.mPlane)
, mPlaneInParticleSpace(copy.mPlaneInParticleSpace)
{
}
void PlanarCollider::beginOperate(osgParticle::Program *program)
{
mPlaneInParticleSpace = mPlane;
if (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF)
mPlaneInParticleSpace.transform(program->getLocalToWorldMatrix());
}
void PlanarCollider::operate(osgParticle::Particle *particle, double dt)
{
float dotproduct = particle->getVelocity() * mPlaneInParticleSpace.getNormal();
if (dotproduct > 0)
{
osg::BoundingSphere bs(particle->getPosition(), 0.f);
if (mPlaneInParticleSpace.intersect(bs) == 1)
{
osg::Vec3 reflectedVelocity = particle->getVelocity() - mPlaneInParticleSpace.getNormal() * (2 * dotproduct);
reflectedVelocity *= mBounceFactor;
particle->setVelocity(reflectedVelocity);
}
}
}
SphericalCollider::SphericalCollider(const Nif::NiSphericalCollider* collider)
: mBounceFactor(collider->mBounceFactor),
mSphere(collider->mCenter, collider->mRadius)
{
}
SphericalCollider::SphericalCollider()
: mBounceFactor(1.0f)
{
}
SphericalCollider::SphericalCollider(const SphericalCollider& copy, const osg::CopyOp& copyop)
: osgParticle::Operator(copy, copyop)
, mBounceFactor(copy.mBounceFactor)
, mSphere(copy.mSphere)
, mSphereInParticleSpace(copy.mSphereInParticleSpace)
{
}
void SphericalCollider::beginOperate(osgParticle::Program* program)
{
mSphereInParticleSpace = mSphere;
if (program->getReferenceFrame() == osgParticle::ParticleProcessor::ABSOLUTE_RF)
mSphereInParticleSpace.center() = program->transformLocalToWorld(mSphereInParticleSpace.center());
}
void SphericalCollider::operate(osgParticle::Particle* particle, double dt)
{
osg::Vec3f cent = (particle->getPosition() - mSphereInParticleSpace.center()); // vector from sphere center to particle
bool insideSphere = cent.length2() <= mSphereInParticleSpace.radius2();
if (insideSphere
|| (cent * particle->getVelocity() < 0.0f)) // if outside, make sure the particle is flying towards the sphere
{
// Collision test (finding point of contact) is performed by solving a quadratic equation:
// ||vec(cent) + vec(vel)*k|| = R /^2
// k^2 + 2*k*(vec(cent)*vec(vel))/||vec(vel)||^2 + (||vec(cent)||^2 - R^2)/||vec(vel)||^2 = 0
float b = -(cent * particle->getVelocity()) / particle->getVelocity().length2();
osg::Vec3f u = cent + particle->getVelocity() * b;
if (insideSphere
|| (u.length2() < mSphereInParticleSpace.radius2()))
{
float d = (mSphereInParticleSpace.radius2() - u.length2()) / particle->getVelocity().length2();
float k = insideSphere ? (std::sqrt(d) + b) : (b - std::sqrt(d));
if (k < dt)
{
// collision detected; reflect off the tangent plane
osg::Vec3f contact = particle->getPosition() + particle->getVelocity() * k;
osg::Vec3 normal = (contact - mSphereInParticleSpace.center());
normal.normalize();
float dotproduct = particle->getVelocity() * normal;
osg::Vec3 reflectedVelocity = particle->getVelocity() - normal * (2 * dotproduct);
reflectedVelocity *= mBounceFactor;
particle->setVelocity(reflectedVelocity);
}
}
}
}
}