You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
292 lines
10 KiB
GLSL
292 lines
10 KiB
GLSL
#version 120
|
|
|
|
#define REFRACTION @refraction_enabled
|
|
|
|
// Inspired by Blender GLSL Water by martinsh ( https://devlog-martinsh.blogspot.de/2012/07/waterundewater-shader-wip.html )
|
|
|
|
// tweakables -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
|
|
|
|
const float VISIBILITY = 2.5;
|
|
|
|
const float BIG_WAVES_X = 0.1; // strength of big waves
|
|
const float BIG_WAVES_Y = 0.1;
|
|
|
|
const float MID_WAVES_X = 0.1; // strength of middle sized waves
|
|
const float MID_WAVES_Y = 0.1;
|
|
const float MID_WAVES_RAIN_X = 0.2;
|
|
const float MID_WAVES_RAIN_Y = 0.2;
|
|
|
|
const float SMALL_WAVES_X = 0.1; // strength of small waves
|
|
const float SMALL_WAVES_Y = 0.1;
|
|
const float SMALL_WAVES_RAIN_X = 0.3;
|
|
const float SMALL_WAVES_RAIN_Y = 0.3;
|
|
|
|
const float WAVE_CHOPPYNESS = 0.05; // wave choppyness
|
|
const float WAVE_SCALE = 75.0; // overall wave scale
|
|
|
|
const float BUMP = 0.5; // overall water surface bumpiness
|
|
const float BUMP_RAIN = 2.5;
|
|
const float REFL_BUMP = 0.10; // reflection distortion amount
|
|
const float REFR_BUMP = 0.07; // refraction distortion amount
|
|
|
|
const float SCATTER_AMOUNT = 0.3; // amount of sunlight scattering
|
|
const vec3 SCATTER_COLOUR = vec3(0.0,1.0,0.95); // colour of sunlight scattering
|
|
|
|
const vec3 SUN_EXT = vec3(0.45, 0.55, 0.68); //sunlight extinction
|
|
|
|
const float SPEC_HARDNESS = 256.0; // specular highlights hardness
|
|
|
|
const float BUMP_SUPPRESS_DEPTH = 0.3; // at what water depth bumpmap will be supressed for reflections and refractions (prevents artifacts at shores)
|
|
|
|
const vec2 WIND_DIR = vec2(0.5f, -0.8f);
|
|
const float WIND_SPEED = 0.2f;
|
|
|
|
const vec3 WATER_COLOR = vec3(0.090195, 0.115685, 0.12745);
|
|
|
|
// ---------------- rain ripples related stuff ---------------------
|
|
|
|
const float RAIN_RIPPLE_GAPS = 5.0;
|
|
const float RAIN_RIPPLE_RADIUS = 0.1;
|
|
|
|
int modulo(int v1, int v2)
|
|
{
|
|
return v1 - v2 * int(floor(float(v1) / float(v2)));
|
|
}
|
|
|
|
vec2 randOffset(vec2 c)
|
|
{
|
|
return fract(vec2(
|
|
c.x * c.y / 8.0 + c.y * 0.3 + c.x * 0.2,
|
|
c.x * c.y / 14.0 + c.y * 0.5 + c.x * 0.7));
|
|
}
|
|
|
|
float randPhase(vec2 c)
|
|
{
|
|
return fract((c.x * c.y) / (c.x + c.y + 0.1));
|
|
}
|
|
|
|
vec4 circle(vec2 coords, vec2 i_part, float phase)
|
|
{
|
|
vec2 center = vec2(0.5,0.5) + (0.5 - RAIN_RIPPLE_RADIUS) * (2.0 * randOffset(i_part) - 1.0);
|
|
vec2 toCenter = coords - center;
|
|
float d = length(toCenter);
|
|
|
|
float r = RAIN_RIPPLE_RADIUS * phase;
|
|
|
|
if (d > r)
|
|
return vec4(0.0,0.0,1.0,0.0);
|
|
|
|
float sinValue = (sin(d / r * 1.2) + 0.7) / 2.0;
|
|
|
|
float height = (1.0 - abs(phase)) * pow(sinValue,3.0);
|
|
|
|
vec3 normal = normalize(mix(vec3(0.0,0.0,1.0),vec3(normalize(toCenter),0.0),height));
|
|
|
|
return vec4(normal,height);
|
|
}
|
|
|
|
vec4 rain(vec2 uv, float time)
|
|
{
|
|
vec2 i_part = floor(uv * RAIN_RIPPLE_GAPS);
|
|
vec2 f_part = fract(uv * RAIN_RIPPLE_GAPS);
|
|
return circle(f_part,i_part,fract(time * 1.2 + randPhase(i_part)));
|
|
}
|
|
|
|
vec4 rainCombined(vec2 uv, float time) // returns ripple normal in xyz and ripple height in w
|
|
{
|
|
return
|
|
rain(uv,time) +
|
|
rain(uv + vec2(10.5,5.7),time) +
|
|
rain(uv * 0.75 + vec2(3.7,18.9),time) +
|
|
rain(uv * 0.9 + vec2(5.7,30.1),time) +
|
|
rain(uv * 0.8 + vec2(1.2,3.0),time);
|
|
}
|
|
|
|
// -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -
|
|
|
|
float fresnel_dielectric(vec3 Incoming, vec3 Normal, float eta)
|
|
{
|
|
float c = abs(dot(Incoming, Normal));
|
|
float g = eta * eta - 1.0 + c * c;
|
|
float result;
|
|
|
|
if(g > 0.0) {
|
|
g = sqrt(g);
|
|
float A =(g - c)/(g + c);
|
|
float B =(c *(g + c)- 1.0)/(c *(g - c)+ 1.0);
|
|
result = 0.5 * A * A *(1.0 + B * B);
|
|
}
|
|
else
|
|
result = 1.0; /* TIR (no refracted component) */
|
|
|
|
return result;
|
|
}
|
|
|
|
vec2 normalCoords(vec2 uv, float scale, float speed, float time, float timer1, float timer2, vec3 previousNormal)
|
|
{
|
|
return uv * (WAVE_SCALE * scale) + WIND_DIR * time * (WIND_SPEED * speed) -(previousNormal.xy/previousNormal.zz) * WAVE_CHOPPYNESS + vec2(time * timer1,time * timer2);
|
|
}
|
|
|
|
varying vec3 screenCoordsPassthrough;
|
|
varying vec4 position;
|
|
varying float depthPassthrough;
|
|
|
|
uniform sampler2D normalMap;
|
|
|
|
uniform sampler2D reflectionMap;
|
|
#if REFRACTION
|
|
uniform sampler2D refractionMap;
|
|
uniform sampler2D refractionDepthMap;
|
|
#endif
|
|
|
|
uniform float osg_SimulationTime;
|
|
|
|
uniform float near;
|
|
uniform float far;
|
|
uniform vec3 nodePosition;
|
|
|
|
uniform float rainIntensity;
|
|
|
|
float frustumDepth;
|
|
|
|
float linearizeDepth(float depth) // takes <0,1> non-linear depth value and returns <0,1> linearized value
|
|
{
|
|
float z_n = 2.0 * depth - 1.0;
|
|
depth = 2.0 * near * far / (far + near - z_n * frustumDepth);
|
|
return depth / frustumDepth;
|
|
}
|
|
|
|
void main(void)
|
|
{
|
|
frustumDepth = abs(far - near);
|
|
vec3 worldPos = position.xyz + nodePosition.xyz;
|
|
vec2 UV = worldPos.xy / (8192.0*5.0) * 3.0;
|
|
UV.y *= -1.0;
|
|
|
|
float shadow = 1.0;
|
|
|
|
vec2 screenCoords = screenCoordsPassthrough.xy / screenCoordsPassthrough.z;
|
|
screenCoords.y = (1.0-screenCoords.y);
|
|
|
|
vec2 nCoord = vec2(0.0,0.0);
|
|
|
|
#define waterTimer osg_SimulationTime
|
|
|
|
vec3 normal0 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.05, 0.04, waterTimer, -0.015, -0.005, vec3(0.0,0.0,0.0))).rgb - 1.0;
|
|
vec3 normal1 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.1, 0.08, waterTimer, 0.02, 0.015, normal0)).rgb - 1.0;
|
|
vec3 normal2 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.25, 0.07, waterTimer, -0.04, -0.03, normal1)).rgb - 1.0;
|
|
vec3 normal3 = 2.0 * texture2D(normalMap,normalCoords(UV, 0.5, 0.09, waterTimer, 0.03, 0.04, normal2)).rgb - 1.0;
|
|
vec3 normal4 = 2.0 * texture2D(normalMap,normalCoords(UV, 1.0, 0.4, waterTimer, -0.02, 0.1, normal3)).rgb - 1.0;
|
|
vec3 normal5 = 2.0 * texture2D(normalMap,normalCoords(UV, 2.0, 0.7, waterTimer, 0.1, -0.06, normal4)).rgb - 1.0;
|
|
|
|
vec4 rainRipple;
|
|
|
|
if (rainIntensity > 0.01)
|
|
rainRipple = rainCombined(position.xy / 1000.0,waterTimer) * clamp(rainIntensity,0.0,1.0);
|
|
else
|
|
rainRipple = vec4(0.0,0.0,0.0,0.0);
|
|
|
|
vec3 rippleAdd = rainRipple.xyz * rainRipple.w * 10.0;
|
|
|
|
vec2 bigWaves = vec2(BIG_WAVES_X,BIG_WAVES_Y);
|
|
vec2 midWaves = mix(vec2(MID_WAVES_X,MID_WAVES_Y),vec2(MID_WAVES_RAIN_X,MID_WAVES_RAIN_Y),rainIntensity);
|
|
vec2 smallWaves = mix(vec2(SMALL_WAVES_X,SMALL_WAVES_Y),vec2(SMALL_WAVES_RAIN_X,SMALL_WAVES_RAIN_Y),rainIntensity);
|
|
float bump = mix(BUMP,BUMP_RAIN,rainIntensity);
|
|
|
|
vec3 normal = (normal0 * bigWaves.x + normal1 * bigWaves.y +
|
|
normal2 * midWaves.x + normal3 * midWaves.y +
|
|
normal4 * smallWaves.x + normal5 * smallWaves.y +
|
|
rippleAdd);
|
|
|
|
normal = normalize(vec3(normal.x * bump, normal.y * bump, normal.z));
|
|
|
|
normal = vec3(-normal.x, -normal.y, normal.z);
|
|
|
|
// normal for sunlight scattering
|
|
vec3 lNormal = (normal0 * bigWaves.x * 0.5 + normal1 * bigWaves.y * 0.5 +
|
|
normal2 * midWaves.x * 0.2 + normal3 * midWaves.y * 0.2 +
|
|
normal4 * smallWaves.x * 0.1 + normal5 * smallWaves.y * 0.1 +
|
|
rippleAdd).xyz;
|
|
|
|
lNormal = normalize(vec3(lNormal.x * bump, lNormal.y * bump, lNormal.z));
|
|
lNormal = vec3(-lNormal.x, -lNormal.y, lNormal.z);
|
|
|
|
vec3 lVec = normalize((gl_ModelViewMatrixInverse * vec4(gl_LightSource[0].position.xyz, 0.0)).xyz);
|
|
|
|
vec3 cameraPos = (gl_ModelViewMatrixInverse * vec4(0,0,0,1)).xyz;
|
|
vec3 vVec = normalize(position.xyz - cameraPos.xyz);
|
|
|
|
float isUnderwater = (cameraPos.z > 0.0) ? 0.0 : 1.0;
|
|
|
|
// sunlight scattering
|
|
vec3 pNormal = vec3(0,0,1);
|
|
vec3 lR = reflect(lVec, lNormal);
|
|
vec3 llR = reflect(lVec, pNormal);
|
|
|
|
float sunHeight = lVec.z;
|
|
float sunFade = length(gl_LightModel.ambient.xyz);
|
|
|
|
float s = clamp(dot(lR, vVec)*2.0-1.2, 0.0, 1.0);
|
|
float lightScatter = shadow * clamp(dot(lVec,lNormal)*0.7+0.3, 0.0, 1.0) * s * SCATTER_AMOUNT * sunFade * clamp(1.0-exp(-sunHeight), 0.0, 1.0);
|
|
vec3 scatterColour = mix(vec3(SCATTER_COLOUR)*vec3(1.0,0.4,0.0), SCATTER_COLOUR, clamp(1.0-exp(-sunHeight*SUN_EXT), 0.0, 1.0));
|
|
|
|
// fresnel
|
|
float ior = (cameraPos.z>0.0)?(1.333/1.0):(1.0/1.333); // air to water; water to air
|
|
float fresnel = fresnel_dielectric(vVec, normal, ior);
|
|
|
|
fresnel = clamp(fresnel, 0.0, 1.0);
|
|
|
|
#if REFRACTION
|
|
float normalization = frustumDepth / 1000;
|
|
float depthSample = linearizeDepth(texture2D(refractionDepthMap,screenCoords).x) * normalization;
|
|
float depthSampleDistorted = linearizeDepth(texture2D(refractionDepthMap,screenCoords-(normal.xy*REFR_BUMP)).x) * normalization;
|
|
float surfaceDepth = linearizeDepth(gl_FragCoord.z) * normalization;
|
|
float realWaterDepth = depthSample - surfaceDepth; // undistorted water depth in view direction, independent of frustum
|
|
float shore = clamp(realWaterDepth / BUMP_SUPPRESS_DEPTH,0,1);
|
|
#else
|
|
float shore = 1.0;
|
|
#endif
|
|
vec2 screenCoordsOffset = normal.xy * REFL_BUMP * shore;
|
|
|
|
// reflection
|
|
vec3 reflection = texture2D(reflectionMap, screenCoords + screenCoordsOffset).rgb;
|
|
|
|
// refraction
|
|
#if REFRACTION
|
|
vec3 refraction = texture2D(refractionMap, screenCoords - screenCoordsOffset).rgb;
|
|
|
|
// brighten up the refraction underwater
|
|
refraction = (cameraPos.z < 0.0) ? clamp(refraction * 1.5, 0.0, 1.0) : refraction;
|
|
#endif
|
|
// specular
|
|
vec3 R = reflect(vVec, normal);
|
|
float specular = pow(max(dot(R, lVec), 0.0),SPEC_HARDNESS) * shadow;
|
|
|
|
vec3 waterColor = WATER_COLOR;
|
|
waterColor = waterColor * length(gl_LightModel.ambient.xyz);
|
|
|
|
#if REFRACTION
|
|
if (cameraPos.z > 0.0)
|
|
refraction = mix(refraction, waterColor, clamp(depthSampleDistorted/VISIBILITY, 0.0, 1.0));
|
|
|
|
gl_FragData[0].xyz = mix( mix(refraction, scatterColour, lightScatter), reflection, fresnel) + specular * gl_LightSource[0].specular.xyz;
|
|
#else
|
|
gl_FragData[0].xyz = mix(reflection, waterColor, (1.0-fresnel)*0.5) + specular * gl_LightSource[0].specular.xyz;
|
|
#endif
|
|
// fog
|
|
float fogValue = clamp((depthPassthrough - gl_Fog.start) * gl_Fog.scale, 0.0, 1.0);
|
|
gl_FragData[0].xyz = mix(gl_FragData[0].xyz, gl_Fog.color.xyz, fogValue);
|
|
|
|
#if REFRACTION
|
|
gl_FragData[0].xyz += vec3(rainRipple.w) * 0.2;
|
|
#else
|
|
gl_FragData[0].xyz += vec3(rainRipple.w) * 0.7;
|
|
#endif
|
|
|
|
#if REFRACTION
|
|
gl_FragData[0].w = 1.0;
|
|
#else
|
|
gl_FragData[0].w = clamp(fresnel*6.0 + specular, 0.0, 1.0); //clamp(fresnel*2.0 + specular, 0.0, 1.0);
|
|
#endif
|
|
}
|