You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
openmw-tes3mp/apps/openmw/mwrender/water.cpp

705 lines
24 KiB
C++

#include "water.hpp"
#include <iomanip>
#include <osg/Fog>
#include <osg/Depth>
#include <osg/Group>
#include <osg/Geometry>
#include <osg/Material>
#include <osg/PositionAttitudeTransform>
#include <osg/ClipNode>
#include <osg/FrontFace>
#include <osgDB/ReadFile>
#include <boost/filesystem/path.hpp>
#include <boost/filesystem/fstream.hpp>
#include <osgUtil/IncrementalCompileOperation>
#include <osgUtil/CullVisitor>
#include <components/resource/resourcesystem.hpp>
#include <components/resource/imagemanager.hpp>
#include <components/resource/scenemanager.hpp>
#include <components/sceneutil/waterutil.hpp>
#include <components/nifosg/controller.hpp>
#include <components/shader/shadermanager.hpp>
#include <components/esm/loadcell.hpp>
#include <components/fallback/fallback.hpp>
#include "../mwworld/cellstore.hpp"
#include "vismask.hpp"
#include "ripplesimulation.hpp"
#include "renderbin.hpp"
#include "util.hpp"
namespace MWRender
{
// --------------------------------------------------------------------------------------------------------------------------------
/// @brief Allows to cull and clip meshes that are below a plane. Useful for reflection & refraction camera effects.
/// Also handles flipping of the plane when the eye point goes below it.
/// To use, simply create the scene as subgraph of this node, then do setPlane(const osg::Plane& plane);
class ClipCullNode : public osg::Group
{
class PlaneCullCallback : public osg::NodeCallback
{
public:
/// @param cullPlane The culling plane (in world space).
PlaneCullCallback(const osg::Plane* cullPlane)
: osg::NodeCallback()
, mCullPlane(cullPlane)
{
}
virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>(nv);
osg::Polytope::PlaneList origPlaneList = cv->getProjectionCullingStack().back().getFrustum().getPlaneList();
osg::Plane plane = *mCullPlane;
plane.transform(*cv->getCurrentRenderStage()->getInitialViewMatrix());
osg::Vec3d eyePoint = cv->getEyePoint();
if (mCullPlane->intersect(osg::BoundingSphere(osg::Vec3d(0,0,eyePoint.z()), 0)) > 0)
plane.flip();
cv->getProjectionCullingStack().back().getFrustum().add(plane);
traverse(node, nv);
// undo
cv->getProjectionCullingStack().back().getFrustum().set(origPlaneList);
}
private:
const osg::Plane* mCullPlane;
};
class FlipCallback : public osg::NodeCallback
{
public:
FlipCallback(const osg::Plane* cullPlane)
: mCullPlane(cullPlane)
{
}
virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>(nv);
osg::Vec3d eyePoint = cv->getEyePoint();
osg::RefMatrix* modelViewMatrix = new osg::RefMatrix(*cv->getModelViewMatrix());
// apply the height of the plane
// we can't apply this height in the addClipPlane() since the "flip the below graph" function would otherwise flip the height as well
modelViewMatrix->preMultTranslate(mCullPlane->getNormal() * ((*mCullPlane)[3] * -1));
// flip the below graph if the eye point is above the plane
if (mCullPlane->intersect(osg::BoundingSphere(osg::Vec3d(0,0,eyePoint.z()), 0)) > 0)
{
modelViewMatrix->preMultScale(osg::Vec3(1,1,-1));
}
// move the plane back along its normal a little bit to prevent bleeding at the water shore
const float clipFudge = -5;
modelViewMatrix->preMultTranslate(mCullPlane->getNormal() * clipFudge);
cv->pushModelViewMatrix(modelViewMatrix, osg::Transform::RELATIVE_RF);
traverse(node, nv);
cv->popModelViewMatrix();
}
private:
const osg::Plane* mCullPlane;
};
public:
ClipCullNode()
{
addCullCallback (new PlaneCullCallback(&mPlane));
mClipNodeTransform = new osg::Group;
mClipNodeTransform->addCullCallback(new FlipCallback(&mPlane));
addChild(mClipNodeTransform);
mClipNode = new osg::ClipNode;
mClipNodeTransform->addChild(mClipNode);
}
void setPlane (const osg::Plane& plane)
{
if (plane == mPlane)
return;
mPlane = plane;
mClipNode->getClipPlaneList().clear();
mClipNode->addClipPlane(new osg::ClipPlane(0, osg::Plane(mPlane.getNormal(), 0))); // mPlane.d() applied in FlipCallback
mClipNode->setStateSetModes(*getOrCreateStateSet(), osg::StateAttribute::ON);
mClipNode->setCullingActive(false);
}
private:
osg::ref_ptr<osg::Group> mClipNodeTransform;
osg::ref_ptr<osg::ClipNode> mClipNode;
osg::Plane mPlane;
};
/// Moves water mesh away from the camera slightly if the camera gets too close on the Z axis.
/// The offset works around graphics artifacts that occurred with the GL_DEPTH_CLAMP when the camera gets extremely close to the mesh (seen on NVIDIA at least).
/// Must be added as a Cull callback.
class FudgeCallback : public osg::NodeCallback
{
public:
virtual void operator()(osg::Node* node, osg::NodeVisitor* nv)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>(nv);
const float fudge = 0.2;
if (std::abs(cv->getEyeLocal().z()) < fudge)
{
float diff = fudge - cv->getEyeLocal().z();
osg::RefMatrix* modelViewMatrix = new osg::RefMatrix(*cv->getModelViewMatrix());
if (cv->getEyeLocal().z() > 0)
modelViewMatrix->preMultTranslate(osg::Vec3f(0,0,-diff));
else
modelViewMatrix->preMultTranslate(osg::Vec3f(0,0,diff));
cv->pushModelViewMatrix(modelViewMatrix, osg::Transform::RELATIVE_RF);
traverse(node, nv);
cv->popModelViewMatrix();
}
else
traverse(node, nv);
}
};
osg::ref_ptr<osg::Image> readPngImage (const std::string& file)
{
// use boost in favor of osgDB::readImage, to handle utf-8 path issues on Windows
boost::filesystem::ifstream inStream;
inStream.open(file, std::ios_base::in | std::ios_base::binary);
if (inStream.fail())
std::cerr << "Error: Failed to open " << file << std::endl;
osgDB::ReaderWriter* reader = osgDB::Registry::instance()->getReaderWriterForExtension("png");
if (!reader)
{
std::cerr << "Error: Failed to read " << file << ", no png readerwriter found" << std::endl;
return osg::ref_ptr<osg::Image>();
}
osgDB::ReaderWriter::ReadResult result = reader->readImage(inStream);
if (!result.success())
std::cerr << "Error: Failed to read " << file << ": " << result.message() << " code " << result.status() << std::endl;
return result.getImage();
}
class Refraction : public osg::Camera
{
public:
Refraction()
{
unsigned int rttSize = Settings::Manager::getInt("rtt size", "Water");
setRenderOrder(osg::Camera::PRE_RENDER);
setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);
setReferenceFrame(osg::Camera::RELATIVE_RF);
setSmallFeatureCullingPixelSize(Settings::Manager::getInt("small feature culling pixel size", "Water"));
setName("RefractionCamera");
setCullMask(Mask_Effect|Mask_Scene|Mask_Terrain|Mask_Actor|Mask_ParticleSystem|Mask_Sky|Mask_Sun|Mask_Player|Mask_Lighting);
setNodeMask(Mask_RenderToTexture);
setViewport(0, 0, rttSize, rttSize);
// No need for Update traversal since the scene is already updated as part of the main scene graph
// A double update would mess with the light collection (in addition to being plain redundant)
setUpdateCallback(new NoTraverseCallback);
// No need for fog here, we are already applying fog on the water surface itself as well as underwater fog
// assign large value to effectively turn off fog
// shaders don't respect glDisable(GL_FOG)
osg::ref_ptr<osg::Fog> fog (new osg::Fog);
fog->setStart(10000000);
fog->setEnd(10000000);
getOrCreateStateSet()->setAttributeAndModes(fog, osg::StateAttribute::OFF|osg::StateAttribute::OVERRIDE);
mClipCullNode = new ClipCullNode;
addChild(mClipCullNode);
mRefractionTexture = new osg::Texture2D;
mRefractionTexture->setTextureSize(rttSize, rttSize);
mRefractionTexture->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE);
mRefractionTexture->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE);
mRefractionTexture->setInternalFormat(GL_RGB);
mRefractionTexture->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR);
mRefractionTexture->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
attach(osg::Camera::COLOR_BUFFER, mRefractionTexture);
mRefractionDepthTexture = new osg::Texture2D;
mRefractionDepthTexture->setSourceFormat(GL_DEPTH_COMPONENT);
mRefractionDepthTexture->setInternalFormat(GL_DEPTH_COMPONENT24);
mRefractionDepthTexture->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE);
mRefractionDepthTexture->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE);
mRefractionDepthTexture->setSourceType(GL_UNSIGNED_INT);
mRefractionDepthTexture->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR);
mRefractionDepthTexture->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
attach(osg::Camera::DEPTH_BUFFER, mRefractionDepthTexture);
}
void setScene(osg::Node* scene)
{
if (mScene)
mClipCullNode->removeChild(mScene);
mScene = scene;
mClipCullNode->addChild(scene);
}
void setWaterLevel(float waterLevel)
{
const float refractionScale = std::min(1.0f,std::max(0.0f,
Settings::Manager::getFloat("refraction scale", "Water")));
setViewMatrix(osg::Matrix::scale(1,1,refractionScale) *
osg::Matrix::translate(0,0,(1.0 - refractionScale) * waterLevel));
mClipCullNode->setPlane(osg::Plane(osg::Vec3d(0,0,-1), osg::Vec3d(0,0, waterLevel)));
}
osg::Texture2D* getRefractionTexture() const
{
return mRefractionTexture.get();
}
osg::Texture2D* getRefractionDepthTexture() const
{
return mRefractionDepthTexture.get();
}
private:
osg::ref_ptr<ClipCullNode> mClipCullNode;
osg::ref_ptr<osg::Texture2D> mRefractionTexture;
osg::ref_ptr<osg::Texture2D> mRefractionDepthTexture;
osg::ref_ptr<osg::Node> mScene;
};
class Reflection : public osg::Camera
{
public:
Reflection()
{
setRenderOrder(osg::Camera::PRE_RENDER);
setClearMask(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);
setReferenceFrame(osg::Camera::RELATIVE_RF);
setSmallFeatureCullingPixelSize(Settings::Manager::getInt("small feature culling pixel size", "Water"));
setName("ReflectionCamera");
bool reflectActors = Settings::Manager::getBool("reflect actors", "Water");
setCullMask(Mask_Effect|Mask_Scene|Mask_Terrain|Mask_ParticleSystem|Mask_Sky|Mask_Player|Mask_Lighting|(reflectActors ? Mask_Actor : 0));
setNodeMask(Mask_RenderToTexture);
unsigned int rttSize = Settings::Manager::getInt("rtt size", "Water");
setViewport(0, 0, rttSize, rttSize);
// No need for Update traversal since the mSceneRoot is already updated as part of the main scene graph
// A double update would mess with the light collection (in addition to being plain redundant)
setUpdateCallback(new NoTraverseCallback);
mReflectionTexture = new osg::Texture2D;
mReflectionTexture->setInternalFormat(GL_RGB);
mReflectionTexture->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR);
mReflectionTexture->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
mReflectionTexture->setWrap(osg::Texture::WRAP_S, osg::Texture::CLAMP_TO_EDGE);
mReflectionTexture->setWrap(osg::Texture::WRAP_T, osg::Texture::CLAMP_TO_EDGE);
attach(osg::Camera::COLOR_BUFFER, mReflectionTexture);
// XXX: should really flip the FrontFace on each renderable instead of forcing clockwise.
osg::ref_ptr<osg::FrontFace> frontFace (new osg::FrontFace);
frontFace->setMode(osg::FrontFace::CLOCKWISE);
getOrCreateStateSet()->setAttributeAndModes(frontFace, osg::StateAttribute::ON);
mClipCullNode = new ClipCullNode;
addChild(mClipCullNode);
}
void setWaterLevel(float waterLevel)
{
setViewMatrix(osg::Matrix::scale(1,1,-1) * osg::Matrix::translate(0,0,2 * waterLevel));
mClipCullNode->setPlane(osg::Plane(osg::Vec3d(0,0,1), osg::Vec3d(0,0,waterLevel)));
}
void setScene(osg::Node* scene)
{
if (mScene)
mClipCullNode->removeChild(mScene);
mScene = scene;
mClipCullNode->addChild(scene);
}
osg::Texture2D* getReflectionTexture() const
{
return mReflectionTexture.get();
}
private:
osg::ref_ptr<osg::Texture2D> mReflectionTexture;
osg::ref_ptr<ClipCullNode> mClipCullNode;
osg::ref_ptr<osg::Node> mScene;
};
/// DepthClampCallback enables GL_DEPTH_CLAMP for the current draw, if supported.
class DepthClampCallback : public osg::Drawable::DrawCallback
{
public:
virtual void drawImplementation(osg::RenderInfo& renderInfo,const osg::Drawable* drawable) const
{
static bool supported = osg::isGLExtensionOrVersionSupported(renderInfo.getState()->getContextID(), "GL_ARB_depth_clamp", 3.3);
if (!supported)
{
drawable->drawImplementation(renderInfo);
return;
}
glEnable(GL_DEPTH_CLAMP);
drawable->drawImplementation(renderInfo);
// restore default
glDisable(GL_DEPTH_CLAMP);
}
};
Water::Water(osg::Group *parent, osg::Group* sceneRoot, Resource::ResourceSystem *resourceSystem, osgUtil::IncrementalCompileOperation *ico,
const Fallback::Map* fallback, const std::string& resourcePath)
: mParent(parent)
, mSceneRoot(sceneRoot)
, mResourceSystem(resourceSystem)
, mFallback(fallback)
, mResourcePath(resourcePath)
, mEnabled(true)
, mToggled(true)
, mTop(0)
{
mSimulation.reset(new RippleSimulation(parent, resourceSystem, fallback));
mWaterGeom = SceneUtil::createWaterGeometry(CELL_SIZE*150, 40, 900);
mWaterGeom->setDrawCallback(new DepthClampCallback);
mWaterGeom->setNodeMask(Mask_Water);
if (ico)
ico->add(mWaterGeom);
mWaterNode = new osg::PositionAttitudeTransform;
mWaterNode->setName("Water Root");
mWaterNode->addChild(mWaterGeom);
mWaterNode->addCullCallback(new FudgeCallback);
// simple water fallback for the local map
osg::ref_ptr<osg::Geometry> geom2 (osg::clone(mWaterGeom.get(), osg::CopyOp::DEEP_COPY_NODES));
createSimpleWaterStateSet(geom2, mFallback->getFallbackFloat("Water_Map_Alpha"));
geom2->setNodeMask(Mask_SimpleWater);
mWaterNode->addChild(geom2);
mSceneRoot->addChild(mWaterNode);
setHeight(mTop);
mRainIntensityUniform = new osg::Uniform("rainIntensity",(float) 0.0);
updateWaterMaterial();
}
osg::Uniform *Water::getRainIntensityUniform()
{
return mRainIntensityUniform.get();
}
void Water::updateWaterMaterial()
{
if (mReflection)
{
mReflection->removeChildren(0, mReflection->getNumChildren());
mParent->removeChild(mReflection);
mReflection = NULL;
}
if (mRefraction)
{
mRefraction->removeChildren(0, mRefraction->getNumChildren());
mParent->removeChild(mRefraction);
mRefraction = NULL;
}
if (Settings::Manager::getBool("shader", "Water"))
{
mReflection = new Reflection;
mReflection->setWaterLevel(mTop);
mReflection->setScene(mSceneRoot);
mParent->addChild(mReflection);
if (Settings::Manager::getBool("refraction", "Water"))
{
mRefraction = new Refraction;
mRefraction->setWaterLevel(mTop);
mRefraction->setScene(mSceneRoot);
mParent->addChild(mRefraction);
}
createShaderWaterStateSet(mWaterGeom, mReflection, mRefraction);
}
else
createSimpleWaterStateSet(mWaterGeom, mFallback->getFallbackFloat("Water_World_Alpha"));
updateVisible();
}
void Water::createSimpleWaterStateSet(osg::Node* node, float alpha)
{
osg::ref_ptr<osg::StateSet> stateset = SceneUtil::createSimpleWaterStateSet(alpha, MWRender::RenderBin_Water);
node->setStateSet(stateset);
// Add animated textures
std::vector<osg::ref_ptr<osg::Texture2D> > textures;
int frameCount = mFallback->getFallbackInt("Water_SurfaceFrameCount");
std::string texture = mFallback->getFallbackString("Water_SurfaceTexture");
for (int i=0; i<frameCount; ++i)
{
std::ostringstream texname;
texname << "textures/water/" << texture << std::setw(2) << std::setfill('0') << i << ".dds";
osg::ref_ptr<osg::Texture2D> tex (new osg::Texture2D(mResourceSystem->getImageManager()->getImage(texname.str())));
tex->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT);
tex->setWrap(osg::Texture::WRAP_T, osg::Texture::REPEAT);
textures.push_back(tex);
}
if (textures.empty())
return;
float fps = mFallback->getFallbackFloat("Water_SurfaceFPS");
osg::ref_ptr<NifOsg::FlipController> controller (new NifOsg::FlipController(0, 1.f/fps, textures));
controller->setSource(std::shared_ptr<SceneUtil::ControllerSource>(new SceneUtil::FrameTimeSource));
node->setUpdateCallback(controller);
stateset->setTextureAttributeAndModes(0, textures[0], osg::StateAttribute::ON);
// use a shader to render the simple water, ensuring that fog is applied per pixel as required.
// this could be removed if a more detailed water mesh, using some sort of paging solution, is implemented.
Resource::SceneManager* sceneManager = mResourceSystem->getSceneManager();
bool oldValue = sceneManager->getForceShaders();
sceneManager->setForceShaders(true);
sceneManager->recreateShaders(node);
sceneManager->setForceShaders(oldValue);
}
void Water::createShaderWaterStateSet(osg::Node* node, Reflection* reflection, Refraction* refraction)
{
// use a define map to conditionally compile the shader
std::map<std::string, std::string> defineMap;
defineMap.insert(std::make_pair(std::string("refraction_enabled"), std::string(refraction ? "1" : "0")));
Shader::ShaderManager& shaderMgr = mResourceSystem->getSceneManager()->getShaderManager();
osg::ref_ptr<osg::Shader> vertexShader (shaderMgr.getShader("water_vertex.glsl", defineMap, osg::Shader::VERTEX));
osg::ref_ptr<osg::Shader> fragmentShader (shaderMgr.getShader("water_fragment.glsl", defineMap, osg::Shader::FRAGMENT));
osg::ref_ptr<osg::Texture2D> normalMap (new osg::Texture2D(readPngImage(mResourcePath + "/shaders/water_nm.png")));
if (normalMap->getImage())
normalMap->getImage()->flipVertical();
normalMap->setWrap(osg::Texture::WRAP_S, osg::Texture::REPEAT);
normalMap->setWrap(osg::Texture::WRAP_T, osg::Texture::REPEAT);
normalMap->setMaxAnisotropy(16);
normalMap->setFilter(osg::Texture::MIN_FILTER, osg::Texture::LINEAR_MIPMAP_LINEAR);
normalMap->setFilter(osg::Texture::MAG_FILTER, osg::Texture::LINEAR);
osg::ref_ptr<osg::StateSet> shaderStateset = new osg::StateSet;
shaderStateset->addUniform(new osg::Uniform("normalMap", 0));
shaderStateset->addUniform(new osg::Uniform("reflectionMap", 1));
shaderStateset->setTextureAttributeAndModes(0, normalMap, osg::StateAttribute::ON);
shaderStateset->setTextureAttributeAndModes(1, reflection->getReflectionTexture(), osg::StateAttribute::ON);
if (refraction)
{
shaderStateset->setTextureAttributeAndModes(2, refraction->getRefractionTexture(), osg::StateAttribute::ON);
shaderStateset->setTextureAttributeAndModes(3, refraction->getRefractionDepthTexture(), osg::StateAttribute::ON);
shaderStateset->addUniform(new osg::Uniform("refractionMap", 2));
shaderStateset->addUniform(new osg::Uniform("refractionDepthMap", 3));
shaderStateset->setRenderBinDetails(MWRender::RenderBin_Default, "RenderBin");
}
else
{
shaderStateset->setMode(GL_BLEND, osg::StateAttribute::ON);
shaderStateset->setRenderBinDetails(MWRender::RenderBin_Water, "RenderBin");
osg::ref_ptr<osg::Depth> depth (new osg::Depth);
depth->setWriteMask(false);
shaderStateset->setAttributeAndModes(depth, osg::StateAttribute::ON);
}
shaderStateset->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
shaderStateset->addUniform(mRainIntensityUniform.get());
osg::ref_ptr<osg::Program> program (new osg::Program);
program->addShader(vertexShader);
program->addShader(fragmentShader);
shaderStateset->setAttributeAndModes(program, osg::StateAttribute::ON);
node->setStateSet(shaderStateset);
node->setUpdateCallback(NULL);
}
void Water::processChangedSettings(const Settings::CategorySettingVector& settings)
{
updateWaterMaterial();
}
Water::~Water()
{
mParent->removeChild(mWaterNode);
if (mReflection)
{
mReflection->removeChildren(0, mReflection->getNumChildren());
mParent->removeChild(mReflection);
mReflection = NULL;
}
if (mRefraction)
{
mRefraction->removeChildren(0, mRefraction->getNumChildren());
mParent->removeChild(mRefraction);
mRefraction = NULL;
}
}
void Water::listAssetsToPreload(std::vector<std::string> &textures)
{
int frameCount = mFallback->getFallbackInt("Water_SurfaceFrameCount");
std::string texture = mFallback->getFallbackString("Water_SurfaceTexture");
for (int i=0; i<frameCount; ++i)
{
std::ostringstream texname;
texname << "textures/water/" << texture << std::setw(2) << std::setfill('0') << i << ".dds";
textures.push_back(texname.str());
}
}
void Water::setEnabled(bool enabled)
{
mEnabled = enabled;
updateVisible();
}
void Water::changeCell(const MWWorld::CellStore* store)
{
if (store->getCell()->isExterior())
mWaterNode->setPosition(getSceneNodeCoordinates(store->getCell()->mData.mX, store->getCell()->mData.mY));
else
mWaterNode->setPosition(osg::Vec3f(0,0,mTop));
// create a new StateSet to prevent threading issues
osg::ref_ptr<osg::StateSet> nodeStateSet (new osg::StateSet);
nodeStateSet->addUniform(new osg::Uniform("nodePosition", osg::Vec3f(mWaterNode->getPosition())));
mWaterNode->setStateSet(nodeStateSet);
}
void Water::setHeight(const float height)
{
mTop = height;
mSimulation->setWaterHeight(height);
osg::Vec3f pos = mWaterNode->getPosition();
pos.z() = height;
mWaterNode->setPosition(pos);
if (mReflection)
mReflection->setWaterLevel(mTop);
if (mRefraction)
mRefraction->setWaterLevel(mTop);
}
void Water::update(float dt)
{
mSimulation->update(dt);
}
void Water::updateVisible()
{
bool visible = mEnabled && mToggled;
mWaterNode->setNodeMask(visible ? ~0 : 0);
if (mRefraction)
mRefraction->setNodeMask(visible ? Mask_RenderToTexture : 0);
if (mReflection)
mReflection->setNodeMask(visible ? Mask_RenderToTexture : 0);
}
bool Water::toggle()
{
mToggled = !mToggled;
updateVisible();
return mToggled;
}
bool Water::isUnderwater(const osg::Vec3f &pos) const
{
return pos.z() < mTop && mToggled && mEnabled;
}
osg::Vec3f Water::getSceneNodeCoordinates(int gridX, int gridY)
{
return osg::Vec3f(static_cast<float>(gridX * CELL_SIZE + (CELL_SIZE / 2)), static_cast<float>(gridY * CELL_SIZE + (CELL_SIZE / 2)), mTop);
}
void Water::addEmitter (const MWWorld::Ptr& ptr, float scale, float force)
{
mSimulation->addEmitter (ptr, scale, force);
}
void Water::removeEmitter (const MWWorld::Ptr& ptr)
{
mSimulation->removeEmitter (ptr);
}
void Water::updateEmitterPtr (const MWWorld::Ptr& old, const MWWorld::Ptr& ptr)
{
mSimulation->updateEmitterPtr(old, ptr);
}
void Water::emitRipple(const osg::Vec3f &pos)
{
mSimulation->emitRipple(pos);
}
void Water::removeCell(const MWWorld::CellStore *store)
{
mSimulation->removeCell(store);
}
void Water::clearRipples()
{
mSimulation->clear();
}
}