1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 13:49:56 +00:00
openmw-tes3mp/components/nif/data.cpp
scrawl 115e563a7a Fix race conditions caused by Array <-> GLBufferObject interactions (Bug #3580)
The first part of the fix is to assign VBO/EBO's upon loading the array in the Nif reader. This avoids triggering the 'addVertexBufferObjectIfRequired' code path in osg::Geometry which has the race condition when two threads add the same Array at the same time. Essentially, we want the Arrays to be 'const' when they come out of the Nif reader.

The second part of the fix is to make sure not to create empty arrays in the Nif reader (importantly, not assigning a VBO to the empty array). This empty array would be deleted when the NIFFile is cleaned up, and the detachment of the VBO assigned to it (which is still in use by other arrays) would cause threading issues.

This rare crash bug was first introduced with commit a7c5beb7c5. When using OSG dev version 3.5 the crashes were a little more prevalent, because 'addVertexBufferObjectIfRequired' in osg::Geometry is now used even when VBO's are disabled (as part of the VAO support changes).
2017-01-19 22:23:41 +01:00

294 lines
7.4 KiB
C++

#include "data.hpp"
#include "node.hpp"
#include <osg/Array>
#include <osg/PrimitiveSet>
namespace Nif
{
void NiSkinInstance::read(NIFStream *nif)
{
data.read(nif);
root.read(nif);
bones.read(nif);
}
void NiSkinInstance::post(NIFFile *nif)
{
data.post(nif);
root.post(nif);
bones.post(nif);
if(data.empty() || root.empty())
nif->fail("NiSkinInstance missing root or data");
size_t bnum = bones.length();
if(bnum != data->bones.size())
nif->fail("Mismatch in NiSkinData bone count");
root->makeRootBone(&data->trafo);
for(size_t i=0; i<bnum; i++)
{
if(bones[i].empty())
nif->fail("Oops: Missing bone! Don't know how to handle this.");
bones[i]->makeBone(i, data->bones[i]);
}
}
void ShapeData::read(NIFStream *nif)
{
int verts = nif->getUShort();
// Assign a VBO right off the bat to avoid race conditions later, in case two threads load this data into a Geometry at the same time
osg::ref_ptr<osg::VertexBufferObject> vbo = new osg::VertexBufferObject;
if(nif->getInt() && verts)
{
vertices = new osg::Vec3Array;
nif->getVector3s(vertices, verts);
vertices->setVertexBufferObject(vbo);
}
if(nif->getInt() && verts)
{
normals = new osg::Vec3Array(osg::Array::BIND_PER_VERTEX);
nif->getVector3s(normals, verts);
normals->setVertexBufferObject(vbo);
}
center = nif->getVector3();
radius = nif->getFloat();
if(nif->getInt() && verts)
{
colors = new osg::Vec4Array(osg::Array::BIND_PER_VERTEX);
nif->getVector4s(colors, verts);
colors->setVertexBufferObject(vbo);
}
// Only the first 6 bits are used as a count. I think the rest are
// flags of some sort.
int uvs = nif->getUShort();
uvs &= 0x3f;
if(nif->getInt() && verts)
{
uvlist.resize(uvs);
for(int i = 0;i < uvs;i++)
{
osg::Vec2Array* list = uvlist[i] = new osg::Vec2Array(osg::Array::BIND_PER_VERTEX);
list->setVertexBufferObject(vbo);
nif->getVector2s(list, verts);
// flip the texture coordinates to convert them to the OpenGL convention of bottom-left image origin
for (unsigned int uv=0; uv<list->size(); ++uv)
{
(*list)[uv] = osg::Vec2((*list)[uv].x(), 1.f - (*list)[uv].y());
}
}
}
}
void NiTriShapeData::read(NIFStream *nif)
{
ShapeData::read(nif);
/*int tris =*/ nif->getUShort();
// We have three times as many vertices as triangles, so this
// is always equal to tris*3.
int cnt = nif->getInt();
if (cnt)
{
triangles = new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES);
nif->getUShorts(triangles, cnt);
// Assign an EBO right off the bat to avoid race conditions later, in case two threads load this data into a Geometry at the same time
triangles->setElementBufferObject(new osg::ElementBufferObject);
}
// Read the match list, which lists the vertices that are equal to
// vertices. We don't actually need need this for anything, so
// just skip it.
int verts = nif->getUShort();
for(int i=0;i < verts;i++)
{
// Number of vertices matching vertex 'i'
int num = nif->getUShort();
nif->skip(num * sizeof(short));
}
}
void NiAutoNormalParticlesData::read(NIFStream *nif)
{
ShapeData::read(nif);
// Should always match the number of vertices
numParticles = nif->getUShort();
particleRadius = nif->getFloat();
activeCount = nif->getUShort();
if(nif->getInt())
{
int numVerts = vertices->size();
// Particle sizes
nif->getFloats(sizes, numVerts);
}
}
void NiRotatingParticlesData::read(NIFStream *nif)
{
NiAutoNormalParticlesData::read(nif);
if(nif->getInt())
{
int numVerts = vertices->size();
// Rotation quaternions.
nif->getQuaternions(rotations, numVerts);
}
}
void NiPosData::read(NIFStream *nif)
{
mKeyList.reset(new Vector3KeyMap);
mKeyList->read(nif);
}
void NiUVData::read(NIFStream *nif)
{
for(int i = 0;i < 4;i++)
{
mKeyList[i].reset(new FloatKeyMap);
mKeyList[i]->read(nif);
}
}
void NiFloatData::read(NIFStream *nif)
{
mKeyList.reset(new FloatKeyMap);
mKeyList->read(nif);
}
void NiPixelData::read(NIFStream *nif)
{
fmt = (Format)nif->getUInt();
rmask = nif->getInt(); // usually 0xff
gmask = nif->getInt(); // usually 0xff00
bmask = nif->getInt(); // usually 0xff0000
amask = nif->getInt(); // usually 0xff000000 or zero
bpp = nif->getInt();
// Unknown
nif->skip(12);
mips = nif->getInt();
// Bytes per pixel, should be bpp * 8
/* int bytes = */ nif->getInt();
for(int i=0; i<mips; i++)
{
// Image size and offset in the following data field
Mipmap m;
m.width = nif->getUInt();
m.height = nif->getUInt();
m.dataOffset = nif->getUInt();
mipmaps.push_back(m);
}
// Read the data
unsigned int dataSize = nif->getInt();
data.reserve(dataSize);
for (unsigned i=0; i<dataSize; ++i)
data.push_back((unsigned char)nif->getChar());
}
void NiColorData::read(NIFStream *nif)
{
mKeyMap.reset(new Vector4KeyMap);
mKeyMap->read(nif);
}
void NiVisData::read(NIFStream *nif)
{
int count = nif->getInt();
mVis.resize(count);
for(size_t i = 0;i < mVis.size();i++)
{
mVis[i].time = nif->getFloat();
mVis[i].isSet = (nif->getChar() != 0);
}
}
void NiSkinData::read(NIFStream *nif)
{
trafo.rotation = nif->getMatrix3();
trafo.pos = nif->getVector3();
trafo.scale = nif->getFloat();
int boneNum = nif->getInt();
nif->getInt(); // -1
bones.resize(boneNum);
for(int i=0;i<boneNum;i++)
{
BoneInfo &bi = bones[i];
bi.trafo.rotation = nif->getMatrix3();
bi.trafo.pos = nif->getVector3();
bi.trafo.scale = nif->getFloat();
bi.boundSphereCenter = nif->getVector3();
bi.boundSphereRadius = nif->getFloat();
// Number of vertex weights
bi.weights.resize(nif->getUShort());
for(size_t j = 0;j < bi.weights.size();j++)
{
bi.weights[j].vertex = nif->getUShort();
bi.weights[j].weight = nif->getFloat();
}
}
}
void NiMorphData::read(NIFStream *nif)
{
int morphCount = nif->getInt();
int vertCount = nif->getInt();
/*relative targets?*/nif->getChar();
mMorphs.resize(morphCount);
for(int i = 0;i < morphCount;i++)
{
mMorphs[i].mKeyFrames.reset(new FloatKeyMap);
mMorphs[i].mKeyFrames->read(nif, true);
mMorphs[i].mVertices = new osg::Vec3Array;
nif->getVector3s(mMorphs[i].mVertices, vertCount);
}
}
void NiKeyframeData::read(NIFStream *nif)
{
mRotations.reset(new QuaternionKeyMap);
mRotations->read(nif);
if(mRotations->mInterpolationType == Vector3KeyMap::sXYZInterpolation)
{
//Chomp unused float
nif->getFloat();
mXRotations.reset(new FloatKeyMap);
mYRotations.reset(new FloatKeyMap);
mZRotations.reset(new FloatKeyMap);
mXRotations->read(nif, true);
mYRotations->read(nif, true);
mZRotations->read(nif, true);
}
mTranslations.reset(new Vector3KeyMap);
mTranslations->read(nif);
mScales.reset(new FloatKeyMap);
mScales->read(nif);
}
} // Namespace