1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-28 18:45:33 +00:00
openmw-tes3mp/apps/openmw-mp/amx/amxfloat.c
2016-07-07 23:50:48 +08:00

379 lines
10 KiB
C

/* Float arithmetic for the Pawn Abstract Machine
*
* Copyright (c) Artran, Inc. 1999
* Written by Greg Garner (gmg@artran.com)
* This file may be freely used. No warranties of any kind.
*
* CHANGES -
* 2002-08-27: Basic conversion of source from C++ to C by Adam D. Moss
* <adam@gimp.org> <aspirin@icculus.org>
* 2003-08-29: Removal of the dynamic memory allocation and replacing two
* type conversion functions by macros, by Thiadmer Riemersma
* 2003-09-22: Moved the type conversion macros to AMX.H, and simplifications
* of some routines, by Thiadmer Riemersma
* 2003-11-24: A few more native functions (geometry), plus minor modifications,
* mostly to be compatible with dynamically loadable extension
* modules, by Thiadmer Riemersma
* 2004-01-09: Adaptions for 64-bit cells (using "double precision"), by
* Thiadmer Riemersma
*/
#include <stdlib.h> /* for atof() */
#include <stdio.h> /* for NULL */
#include <assert.h>
#include <math.h>
#include "amx.h"
/*
#if defined __BORLANDC__
#pragma resource "amxFloat.res"
#endif
*/
#if PAWN_CELL_SIZE==32
#define REAL float
#elif PAWN_CELL_SIZE==64
#define REAL double
#else
#error Unsupported cell size
#endif
#define PI 3.1415926535897932384626433832795
/******************************************************************/
static cell AMX_NATIVE_CALL n_float(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = integer value to convert to a float
*/
REAL fValue;
(void)amx;
/* Convert to a float. Calls the compilers long to float conversion. */
fValue = (REAL) params[1];
/* Return the cell. */
return amx_ftoc(fValue);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_strfloat(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = virtual string address to convert to a float
*/
char szSource[60];
cell *pString;
REAL fNum;
int nLen;
(void)amx;
/* They should have sent us 1 cell. */
assert(params[0]/sizeof(cell)==1);
/* Get the real address of the string. */
pString=amx_Address(amx,params[1]);
/* Find out how long the string is in characters. */
amx_StrLen(pString, &nLen);
if (nLen == 0 || nLen >= sizeof szSource)
return 0;
/* Now convert the Pawn string into a C type null terminated string */
amx_GetString(szSource, pString, 0, sizeof szSource);
/* Now convert this to a float. */
fNum = (REAL)atof(szSource);
return amx_ftoc(fNum);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatmul(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
REAL fRes = amx_ctof(params[1]) * amx_ctof(params[2]);
(void)amx;
return amx_ftoc(fRes);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatdiv(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float dividend (top)
* params[2] = float divisor (bottom)
*/
REAL fRes = amx_ctof(params[1]) / amx_ctof(params[2]);
(void)amx;
return amx_ftoc(fRes);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatadd(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
REAL fRes = amx_ctof(params[1]) + amx_ctof(params[2]);
(void)amx;
return amx_ftoc(fRes);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatsub(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
REAL fRes = amx_ctof(params[1]) - amx_ctof(params[2]);
(void)amx;
return amx_ftoc(fRes);
}
/******************************************************************/
/* Return fractional part of float */
static cell AMX_NATIVE_CALL n_floatfract(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand
*/
REAL fA = amx_ctof(params[1]);
fA = fA - (REAL)(floor((double)fA));
(void)amx;
return amx_ftoc(fA);
}
/******************************************************************/
/* Return integer part of float, rounded */
static cell AMX_NATIVE_CALL n_floatround(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand
* params[2] = Type of rounding (integer)
*/
REAL fA = amx_ctof(params[1]);
(void)amx;
switch (params[2])
{
case 1: /* round downwards */
fA = (REAL)(floor((double)fA));
break;
case 2: /* round upwards */
fA = (REAL)(ceil((double)fA));
break;
case 3: /* round towards zero (truncate) */
if ( fA>=0.0 )
fA = (REAL)(floor((double)fA));
else
fA = (REAL)(ceil((double)fA));
break;
default: /* standard, round to nearest */
fA = (REAL)(floor((double)fA+.5));
break;
}
return (cell)fA;
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatcmp(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1
* params[2] = float operand 2
*/
REAL fA, fB;
(void)amx;
fA = amx_ctof(params[1]);
fB = amx_ctof(params[2]);
if (fA == fB)
return 0;
else if (fA>fB)
return 1;
else
return -1;
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatsqroot(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand
*/
REAL fA = amx_ctof(params[1]);
fA = (REAL)sqrt(fA);
if (fA < 0)
return amx_RaiseError(amx, AMX_ERR_DOMAIN);
return amx_ftoc(fA);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatpower(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (base)
* params[2] = float operand 2 (exponent)
*/
REAL fA = amx_ctof(params[1]);
REAL fB = amx_ctof(params[2]);
fA = (REAL)pow(fA, fB);
(void)amx;
return amx_ftoc(fA);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatlog(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (value)
* params[2] = float operand 2 (base)
*/
REAL fValue = amx_ctof(params[1]);
REAL fBase = amx_ctof(params[2]);
(void)amx;
if (fValue <= 0.0 || fBase <= 0)
return amx_RaiseError(amx, AMX_ERR_DOMAIN);
if (fBase == 10.0) // ??? epsilon
fValue = (REAL)log10(fValue);
else
fValue = (REAL)(log(fValue) / log(fBase));
return amx_ftoc(fValue);
}
static REAL ToRadians(REAL angle, int radix)
{
switch (radix)
{
case 1: /* degrees, sexagesimal system (technically: degrees/minutes/seconds) */
return (REAL)(angle * PI / 180.0);
case 2: /* grades, centesimal system */
return (REAL)(angle * PI / 200.0);
default: /* assume already radian */
return angle;
} /* switch */
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatsin(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
REAL fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = (float)sin(fA);
(void)amx;
return amx_ftoc(fA);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatcos(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
REAL fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = (float)cos(fA);
(void)amx;
return amx_ftoc(fA);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floattan(AMX *amx,const cell *params)
{
/*
* params[0] = number of bytes
* params[1] = float operand 1 (angle)
* params[2] = float operand 2 (radix)
*/
REAL fA = amx_ctof(params[1]);
fA = ToRadians(fA, params[2]);
fA = (float)tan(fA);
(void)amx;
return amx_ftoc(fA);
}
/******************************************************************/
static cell AMX_NATIVE_CALL n_floatabs(AMX *amx,const cell *params)
{
REAL fA = amx_ctof(params[1]);
fA = (fA >= 0) ? fA : -fA;
(void)amx;
return amx_ftoc(fA);
}
/******************************************************************/
/* return the integer part of a real value, truncated
/* Return integer part of float, truncated (same as floatround
* with mode 3)
*/
static cell AMX_NATIVE_CALL n_floatint(AMX *amx,const cell *params)
{
REAL fA = amx_ctof(params[1]);
if ( fA>=0.0 )
fA = (REAL)(floor((double)fA));
else
fA = (REAL)(ceil((double)fA));
(void)amx;
return (cell)fA;
}
#if defined __cplusplus
extern "C"
#endif
const AMX_NATIVE_INFO float_Natives[] = {
{ "float", n_float },
{ "strfloat", n_strfloat },
{ "floatmul", n_floatmul },
{ "floatdiv", n_floatdiv },
{ "floatadd", n_floatadd },
{ "floatsub", n_floatsub },
{ "floatfract", n_floatfract },
{ "floatround", n_floatround },
{ "floatcmp", n_floatcmp },
{ "floatsqroot", n_floatsqroot},
{ "floatpower", n_floatpower },
{ "floatlog", n_floatlog },
{ "floatsin", n_floatsin },
{ "floatcos", n_floatcos },
{ "floattan", n_floattan },
{ "floatabs", n_floatabs },
{ "floatint", n_floatint }, // also add user-defined operator "="
{ NULL, NULL } /* terminator */
};
int AMXEXPORT AMXAPI amx_FloatInit(AMX *amx)
{
return amx_Register(amx,float_Natives,-1);
}
int AMXEXPORT AMXAPI amx_FloatCleanup(AMX *amx)
{
(void)amx;
return AMX_ERR_NONE;
}