1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 20:19:56 +00:00
openmw-tes3mp/components/nifosg/controller.cpp
2021-04-30 18:28:03 +03:00

614 lines
18 KiB
C++

#include "controller.hpp"
#include <osg/MatrixTransform>
#include <osg/TexMat>
#include <osg/Material>
#include <osg/Texture2D>
#include <osgParticle/Emitter>
#include <components/nif/data.hpp>
#include <components/sceneutil/morphgeometry.hpp>
#include "matrixtransform.hpp"
namespace NifOsg
{
ControllerFunction::ControllerFunction(const Nif::Controller *ctrl)
: mFrequency(ctrl->frequency)
, mPhase(ctrl->phase)
, mStartTime(ctrl->timeStart)
, mStopTime(ctrl->timeStop)
, mExtrapolationMode(static_cast<ExtrapolationMode>((ctrl->flags&0x6) >> 1))
{
}
float ControllerFunction::calculate(float value) const
{
float time = mFrequency * value + mPhase;
if (time >= mStartTime && time <= mStopTime)
return time;
switch (mExtrapolationMode)
{
case Cycle:
{
float delta = mStopTime - mStartTime;
if ( delta <= 0 )
return mStartTime;
float cycles = ( time - mStartTime ) / delta;
float remainder = ( cycles - std::floor( cycles ) ) * delta;
return mStartTime + remainder;
}
case Reverse:
{
float delta = mStopTime - mStartTime;
if ( delta <= 0 )
return mStartTime;
float cycles = ( time - mStartTime ) / delta;
float remainder = ( cycles - std::floor( cycles ) ) * delta;
// Even number of cycles?
if ( ( static_cast<int>(std::fabs( std::floor( cycles ) )) % 2 ) == 0 )
return mStartTime + remainder;
return mStopTime - remainder;
}
case Constant:
default:
return std::min(mStopTime, std::max(mStartTime, time));
}
}
float ControllerFunction::getMaximum() const
{
return mStopTime;
}
KeyframeController::KeyframeController()
{
}
KeyframeController::KeyframeController(const KeyframeController &copy, const osg::CopyOp &copyop)
: SceneUtil::KeyframeController(copy, copyop)
, mRotations(copy.mRotations)
, mXRotations(copy.mXRotations)
, mYRotations(copy.mYRotations)
, mZRotations(copy.mZRotations)
, mTranslations(copy.mTranslations)
, mScales(copy.mScales)
{
}
KeyframeController::KeyframeController(const Nif::NiKeyframeData *data)
: mRotations(data->mRotations)
, mXRotations(data->mXRotations, 0.f)
, mYRotations(data->mYRotations, 0.f)
, mZRotations(data->mZRotations, 0.f)
, mTranslations(data->mTranslations, osg::Vec3f())
, mScales(data->mScales, 1.f)
{
}
KeyframeController::KeyframeController(const Nif::NiTransformInterpolator* interpolator)
: mRotations(interpolator->data->mRotations, interpolator->defaultRot)
, mXRotations(interpolator->data->mXRotations, 0.f)
, mYRotations(interpolator->data->mYRotations, 0.f)
, mZRotations(interpolator->data->mZRotations, 0.f)
, mTranslations(interpolator->data->mTranslations, interpolator->defaultPos)
, mScales(interpolator->data->mScales, interpolator->defaultScale)
{
}
KeyframeController::KeyframeController(const float scale, const osg::Vec3f& pos, const osg::Quat& rot)
: mRotations(Nif::QuaternionKeyMapPtr(), rot)
, mXRotations(Nif::FloatKeyMapPtr(), 0.f)
, mYRotations(Nif::FloatKeyMapPtr(), 0.f)
, mZRotations(Nif::FloatKeyMapPtr(), 0.f)
, mTranslations(Nif::Vector3KeyMapPtr(), pos)
, mScales(Nif::FloatKeyMapPtr(), scale)
{
}
osg::Quat KeyframeController::getXYZRotation(float time) const
{
float xrot = 0, yrot = 0, zrot = 0;
if (!mXRotations.empty())
xrot = mXRotations.interpKey(time);
if (!mYRotations.empty())
yrot = mYRotations.interpKey(time);
if (!mZRotations.empty())
zrot = mZRotations.interpKey(time);
osg::Quat xr(xrot, osg::Vec3f(1,0,0));
osg::Quat yr(yrot, osg::Vec3f(0,1,0));
osg::Quat zr(zrot, osg::Vec3f(0,0,1));
return (xr*yr*zr);
}
osg::Vec3f KeyframeController::getTranslation(float time) const
{
if(!mTranslations.empty())
return mTranslations.interpKey(time);
return osg::Vec3f();
}
void KeyframeController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
NifOsg::MatrixTransform* trans = static_cast<NifOsg::MatrixTransform*>(node);
osg::Matrix mat = trans->getMatrix();
float time = getInputValue(nv);
Nif::Matrix3& rot = trans->mRotationScale;
bool setRot = false;
if(!mRotations.empty())
{
mat.setRotate(mRotations.interpKey(time));
setRot = true;
}
else if (!mXRotations.empty() || !mYRotations.empty() || !mZRotations.empty())
{
mat.setRotate(getXYZRotation(time));
setRot = true;
}
else
{
// no rotation specified, use the previous value
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
mat(j,i) = rot.mValues[i][j]; // NB column/row major difference
}
if (setRot) // copy the new values back
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
rot.mValues[i][j] = mat(j,i); // NB column/row major difference
float& scale = trans->mScale;
if(!mScales.empty())
scale = mScales.interpKey(time);
for (int i=0;i<3;++i)
for (int j=0;j<3;++j)
mat(i,j) *= scale;
if(!mTranslations.empty())
mat.setTrans(mTranslations.interpKey(time));
trans->setMatrix(mat);
}
traverse(node, nv);
}
GeomMorpherController::GeomMorpherController()
{
}
GeomMorpherController::GeomMorpherController(const GeomMorpherController &copy, const osg::CopyOp &copyop)
: osg::Drawable::UpdateCallback(copy, copyop)
, Controller(copy)
, mKeyFrames(copy.mKeyFrames)
{
}
GeomMorpherController::GeomMorpherController(const Nif::NiGeomMorpherController* ctrl)
{
if (ctrl->interpolators.length() == 0)
{
if (ctrl->data.empty())
return;
for (const auto& morph : ctrl->data->mMorphs)
mKeyFrames.emplace_back(morph.mKeyFrames);
}
else
{
for (size_t i = 0; i < ctrl->interpolators.length(); ++i)
{
if (!ctrl->interpolators[i].empty())
mKeyFrames.emplace_back(ctrl->interpolators[i].getPtr());
else
mKeyFrames.emplace_back();
}
}
}
void GeomMorpherController::update(osg::NodeVisitor *nv, osg::Drawable *drawable)
{
SceneUtil::MorphGeometry* morphGeom = static_cast<SceneUtil::MorphGeometry*>(drawable);
if (hasInput())
{
if (mKeyFrames.size() <= 1)
return;
float input = getInputValue(nv);
int i = 0;
for (std::vector<FloatInterpolator>::iterator it = mKeyFrames.begin()+1; it != mKeyFrames.end(); ++it,++i)
{
float val = 0;
if (!(*it).empty())
val = it->interpKey(input);
SceneUtil::MorphGeometry::MorphTarget& target = morphGeom->getMorphTarget(i);
if (target.getWeight() != val)
{
target.setWeight(val);
morphGeom->dirty();
}
}
}
}
UVController::UVController()
{
}
UVController::UVController(const Nif::NiUVData *data, const std::set<int>& textureUnits)
: mUTrans(data->mKeyList[0], 0.f)
, mVTrans(data->mKeyList[1], 0.f)
, mUScale(data->mKeyList[2], 1.f)
, mVScale(data->mKeyList[3], 1.f)
, mTextureUnits(textureUnits)
{
}
UVController::UVController(const UVController& copy, const osg::CopyOp& copyop)
: osg::Object(copy, copyop), StateSetUpdater(copy, copyop), Controller(copy)
, mUTrans(copy.mUTrans)
, mVTrans(copy.mVTrans)
, mUScale(copy.mUScale)
, mVScale(copy.mVScale)
, mTextureUnits(copy.mTextureUnits)
{
}
void UVController::setDefaults(osg::StateSet *stateset)
{
osg::ref_ptr<osg::TexMat> texMat (new osg::TexMat);
for (std::set<int>::const_iterator it = mTextureUnits.begin(); it != mTextureUnits.end(); ++it)
stateset->setTextureAttributeAndModes(*it, texMat, osg::StateAttribute::ON);
}
void UVController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput())
{
float value = getInputValue(nv);
// First scale the UV relative to its center, then apply the offset.
// U offset is flipped regardless of the graphics library,
// while V offset is flipped to account for OpenGL Y axis convention.
osg::Vec3f uvOrigin(0.5f, 0.5f, 0.f);
osg::Vec3f uvScale(mUScale.interpKey(value), mVScale.interpKey(value), 1.f);
osg::Vec3f uvTrans(-mUTrans.interpKey(value), -mVTrans.interpKey(value), 0.f);
osg::Matrixf mat = osg::Matrixf::translate(uvOrigin);
mat.preMultScale(uvScale);
mat.preMultTranslate(-uvOrigin);
mat.setTrans(mat.getTrans() + uvTrans);
// setting once is enough because all other texture units share the same TexMat (see setDefaults).
if (!mTextureUnits.empty())
{
osg::TexMat* texMat = static_cast<osg::TexMat*>(stateset->getTextureAttribute(*mTextureUnits.begin(), osg::StateAttribute::TEXMAT));
texMat->setMatrix(mat);
}
}
}
VisController::VisController(const Nif::NiVisData *data, unsigned int mask)
: mData(data->mVis)
, mMask(mask)
{
}
VisController::VisController()
: mMask(0)
{
}
VisController::VisController(const VisController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mData(copy.mData)
, mMask(copy.mMask)
{
}
bool VisController::calculate(float time) const
{
if(mData.size() == 0)
return true;
for(size_t i = 1;i < mData.size();i++)
{
if(mData[i].time > time)
return mData[i-1].isSet;
}
return mData.back().isSet;
}
void VisController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
if (hasInput())
{
bool vis = calculate(getInputValue(nv));
node->setNodeMask(vis ? ~0 : mMask);
}
traverse(node, nv);
}
RollController::RollController(const Nif::NiFloatData *data)
: mData(data->mKeyList, 1.f)
{
}
RollController::RollController(const Nif::NiFloatInterpolator* interpolator)
: mData(interpolator)
{
}
RollController::RollController(const RollController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mData(copy.mData)
, mStartingTime(copy.mStartingTime)
{
}
void RollController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
traverse(node, nv);
if (hasInput())
{
double newTime = nv->getFrameStamp()->getSimulationTime();
double duration = newTime - mStartingTime;
mStartingTime = newTime;
float value = mData.interpKey(getInputValue(nv));
osg::MatrixTransform* transform = static_cast<osg::MatrixTransform*>(node);
osg::Matrix matrix = transform->getMatrix();
// Rotate around "roll" axis.
// Note: in original game rotation speed is the framerate-dependent in a very tricky way.
// Do not replicate this behaviour until we will really need it.
// For now consider controller's current value as an angular speed in radians per 1/60 seconds.
matrix = osg::Matrix::rotate(value * duration * 60.f, 0, 0, 1) * matrix;
transform->setMatrix(matrix);
}
}
AlphaController::AlphaController()
{
}
AlphaController::AlphaController(const Nif::NiFloatData *data, const osg::Material* baseMaterial)
: mData(data->mKeyList, 1.f)
, mBaseMaterial(baseMaterial)
{
}
AlphaController::AlphaController(const Nif::NiFloatInterpolator* interpolator, const osg::Material* baseMaterial)
: mData(interpolator)
, mBaseMaterial(baseMaterial)
{
}
AlphaController::AlphaController(const AlphaController &copy, const osg::CopyOp &copyop)
: StateSetUpdater(copy, copyop), Controller(copy)
, mData(copy.mData)
, mBaseMaterial(copy.mBaseMaterial)
{
}
void AlphaController::setDefaults(osg::StateSet *stateset)
{
stateset->setAttribute(static_cast<osg::Material*>(mBaseMaterial->clone(osg::CopyOp::DEEP_COPY_ALL)), osg::StateAttribute::ON);
}
void AlphaController::apply(osg::StateSet *stateset, osg::NodeVisitor *nv)
{
if (hasInput())
{
float value = mData.interpKey(getInputValue(nv));
osg::Material* mat = static_cast<osg::Material*>(stateset->getAttribute(osg::StateAttribute::MATERIAL));
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse.a() = value;
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
}
}
MaterialColorController::MaterialColorController()
{
}
MaterialColorController::MaterialColorController(const Nif::NiPosData *data, TargetColor color, const osg::Material* baseMaterial)
: mData(data->mKeyList, osg::Vec3f(1,1,1))
, mTargetColor(color)
, mBaseMaterial(baseMaterial)
{
}
MaterialColorController::MaterialColorController(const Nif::NiPoint3Interpolator* interpolator, TargetColor color, const osg::Material* baseMaterial)
: mData(interpolator)
, mTargetColor(color)
, mBaseMaterial(baseMaterial)
{
}
MaterialColorController::MaterialColorController(const MaterialColorController &copy, const osg::CopyOp &copyop)
: StateSetUpdater(copy, copyop), Controller(copy)
, mData(copy.mData)
, mTargetColor(copy.mTargetColor)
, mBaseMaterial(copy.mBaseMaterial)
{
}
void MaterialColorController::setDefaults(osg::StateSet *stateset)
{
stateset->setAttribute(static_cast<osg::Material*>(mBaseMaterial->clone(osg::CopyOp::DEEP_COPY_ALL)), osg::StateAttribute::ON);
}
void MaterialColorController::apply(osg::StateSet *stateset, osg::NodeVisitor *nv)
{
if (hasInput())
{
osg::Vec3f value = mData.interpKey(getInputValue(nv));
osg::Material* mat = static_cast<osg::Material*>(stateset->getAttribute(osg::StateAttribute::MATERIAL));
switch (mTargetColor)
{
case Diffuse:
{
osg::Vec4f diffuse = mat->getDiffuse(osg::Material::FRONT_AND_BACK);
diffuse.set(value.x(), value.y(), value.z(), diffuse.a());
mat->setDiffuse(osg::Material::FRONT_AND_BACK, diffuse);
break;
}
case Specular:
{
osg::Vec4f specular = mat->getSpecular(osg::Material::FRONT_AND_BACK);
specular.set(value.x(), value.y(), value.z(), specular.a());
mat->setSpecular(osg::Material::FRONT_AND_BACK, specular);
break;
}
case Emissive:
{
osg::Vec4f emissive = mat->getEmission(osg::Material::FRONT_AND_BACK);
emissive.set(value.x(), value.y(), value.z(), emissive.a());
mat->setEmission(osg::Material::FRONT_AND_BACK, emissive);
break;
}
case Ambient:
default:
{
osg::Vec4f ambient = mat->getAmbient(osg::Material::FRONT_AND_BACK);
ambient.set(value.x(), value.y(), value.z(), ambient.a());
mat->setAmbient(osg::Material::FRONT_AND_BACK, ambient);
}
}
}
}
FlipController::FlipController(const Nif::NiFlipController *ctrl, const std::vector<osg::ref_ptr<osg::Texture2D> >& textures)
: mTexSlot(0) // always affects diffuse
, mDelta(ctrl->mDelta)
, mTextures(textures)
{
if (!ctrl->mInterpolator.empty())
mData = ctrl->mInterpolator.getPtr();
}
FlipController::FlipController(int texSlot, float delta, const std::vector<osg::ref_ptr<osg::Texture2D> >& textures)
: mTexSlot(texSlot)
, mDelta(delta)
, mTextures(textures)
{
}
FlipController::FlipController(const FlipController &copy, const osg::CopyOp &copyop)
: StateSetUpdater(copy, copyop)
, Controller(copy)
, mTexSlot(copy.mTexSlot)
, mDelta(copy.mDelta)
, mTextures(copy.mTextures)
, mData(copy.mData)
{
}
void FlipController::apply(osg::StateSet* stateset, osg::NodeVisitor* nv)
{
if (hasInput() && !mTextures.empty())
{
int curTexture = 0;
if (mDelta != 0)
curTexture = int(getInputValue(nv) / mDelta) % mTextures.size();
else
curTexture = int(mData.interpKey(getInputValue(nv))) % mTextures.size();
stateset->setTextureAttribute(mTexSlot, mTextures[curTexture]);
}
}
ParticleSystemController::ParticleSystemController(const Nif::NiParticleSystemController *ctrl)
: mEmitStart(ctrl->startTime), mEmitStop(ctrl->stopTime)
{
}
ParticleSystemController::ParticleSystemController()
: mEmitStart(0.f), mEmitStop(0.f)
{
}
ParticleSystemController::ParticleSystemController(const ParticleSystemController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mEmitStart(copy.mEmitStart)
, mEmitStop(copy.mEmitStop)
{
}
void ParticleSystemController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
osgParticle::ParticleProcessor* emitter = static_cast<osgParticle::ParticleProcessor*>(node);
if (hasInput())
{
float time = getInputValue(nv);
emitter->getParticleSystem()->setFrozen(false);
emitter->setEnabled(time >= mEmitStart && time < mEmitStop);
}
else
emitter->getParticleSystem()->setFrozen(true);
traverse(node, nv);
}
PathController::PathController(const PathController &copy, const osg::CopyOp &copyop)
: osg::NodeCallback(copy, copyop)
, Controller(copy)
, mPath(copy.mPath)
, mPercent(copy.mPercent)
, mFlags(copy.mFlags)
{
}
PathController::PathController(const Nif::NiPathController* ctrl)
: mPath(ctrl->posData->mKeyList, osg::Vec3f())
, mPercent(ctrl->floatData->mKeyList, 1.f)
, mFlags(ctrl->flags)
{
}
float PathController::getPercent(float time) const
{
float percent = mPercent.interpKey(time);
if (percent < 0.f)
percent = std::fmod(percent, 1.f) + 1.f;
else if (percent > 1.f)
percent = std::fmod(percent, 1.f);
return percent;
}
void PathController::operator() (osg::Node* node, osg::NodeVisitor* nv)
{
if (mPath.empty() || mPercent.empty() || !hasInput())
{
traverse(node, nv);
return;
}
osg::MatrixTransform* trans = static_cast<osg::MatrixTransform*>(node);
osg::Matrix mat = trans->getMatrix();
float time = getInputValue(nv);
float percent = getPercent(time);
osg::Vec3f pos(mPath.interpKey(percent));
mat.setTrans(pos);
trans->setMatrix(mat);
traverse(node, nv);
}
}