1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 17:49:55 +00:00
openmw-tes3mp/components/sceneutil/mwshadowtechnique.cpp

3256 lines
123 KiB
C++

/* This file is based on OpenSceneGraph's src/osgShadow/ViewDependentShadowMap.cpp.
* Where applicable, any changes made are covered by OpenMW's GPL 3 license, not the OSGPL.
* The original copyright notice is listed below.
*/
/* -*-c++-*- OpenSceneGraph - Copyright (C) 1998-2011 Robert Osfield
*
* This library is open source and may be redistributed and/or modified under
* the terms of the OpenSceneGraph Public License (OSGPL) version 0.0 or
* (at your option) any later version. The full license is in LICENSE file
* included with this distribution, and on the openscenegraph.org website.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* OpenSceneGraph Public License for more details.
*/
#include "mwshadowtechnique.hpp"
#include <osgShadow/ShadowedScene>
#include <osg/CullFace>
#include <osg/Geometry>
#include <osg/io_utils>
#include <osg/Depth>
#include <sstream>
#include "shadowsbin.hpp"
namespace {
using namespace osgShadow;
using namespace SceneUtil;
#define dbl_max std::numeric_limits<double>::max()
//////////////////////////////////////////////////////////////////
// fragment shader
//
#if 0
static const char fragmentShaderSource_withBaseTexture[] =
"uniform sampler2D baseTexture; \n"
"uniform sampler2DShadow shadowTexture; \n"
" \n"
"void main(void) \n"
"{ \n"
" vec4 colorAmbientEmissive = gl_FrontLightModelProduct.sceneColor; \n"
" vec4 color = texture2D( baseTexture, gl_TexCoord[0].xy ); \n"
" color *= mix( colorAmbientEmissive, gl_Color, shadow2DProj( shadowTexture, gl_TexCoord[1] ).r ); \n"
" gl_FragColor = color; \n"
"} \n";
#else
static const char fragmentShaderSource_withBaseTexture[] =
"uniform sampler2D baseTexture; \n"
"uniform int baseTextureUnit; \n"
"uniform sampler2DShadow shadowTexture0; \n"
"uniform int shadowTextureUnit0; \n"
" \n"
"void main(void) \n"
"{ \n"
" vec4 colorAmbientEmissive = gl_FrontLightModelProduct.sceneColor; \n"
" vec4 color = texture2D( baseTexture, gl_TexCoord[baseTextureUnit].xy ); \n"
" color *= mix( colorAmbientEmissive, gl_Color, shadow2DProj( shadowTexture0, gl_TexCoord[shadowTextureUnit0] ).r ); \n"
" gl_FragColor = color; \n"
"} \n";
static const char fragmentShaderSource_withBaseTexture_twoShadowMaps[] =
"uniform sampler2D baseTexture; \n"
"uniform int baseTextureUnit; \n"
"uniform sampler2DShadow shadowTexture0; \n"
"uniform int shadowTextureUnit0; \n"
"uniform sampler2DShadow shadowTexture1; \n"
"uniform int shadowTextureUnit1; \n"
" \n"
"void main(void) \n"
"{ \n"
" vec4 colorAmbientEmissive = gl_FrontLightModelProduct.sceneColor; \n"
" vec4 color = texture2D( baseTexture, gl_TexCoord[baseTextureUnit].xy ); \n"
" float shadow0 = shadow2DProj( shadowTexture0, gl_TexCoord[shadowTextureUnit0] ).r; \n"
" float shadow1 = shadow2DProj( shadowTexture1, gl_TexCoord[shadowTextureUnit1] ).r; \n"
" color *= mix( colorAmbientEmissive, gl_Color, shadow0*shadow1 ); \n"
" gl_FragColor = color; \n"
"} \n";
#endif
std::string debugVertexShaderSource = "void main(void){gl_Position = gl_Vertex; gl_TexCoord[0]=gl_MultiTexCoord0;}";
std::string debugFragmentShaderSource =
"uniform sampler2D texture; \n"
" \n"
"void main(void) \n"
"{ \n"
#if 1
" float f = texture2D(texture, gl_TexCoord[0].xy).r; \n"
" \n"
" f = 256.0 * f; \n"
" float fC = floor( f ) / 256.0; \n"
" \n"
" f = 256.0 * fract( f ); \n"
" float fS = floor( f ) / 256.0; \n"
" \n"
" f = 256.0 * fract( f ); \n"
" float fH = floor( f ) / 256.0; \n"
" \n"
" fS *= 0.5; \n"
" fH = ( fH * 0.34 + 0.66 ) * ( 1.0 - fS ); \n"
" \n"
" vec3 rgb = vec3( ( fC > 0.5 ? ( 1.0 - fC ) : fC ), \n"
" abs( fC - 0.333333 ), \n"
" abs( fC - 0.666667 ) ); \n"
" \n"
" rgb = min( vec3( 1.0, 1.0, 1.0 ), 3.0 * rgb ); \n"
" \n"
" float fMax = max( max( rgb.r, rgb.g ), rgb.b ); \n"
" fMax = 1.0 / fMax; \n"
" \n"
" vec3 color = fMax * rgb; \n"
" \n"
" gl_FragColor = vec4( fS + fH * color, 1 ); \n"
#else
" gl_FragColor = texture2D(texture, gl_TexCoord[0].xy); \n"
#endif
"} \n";
std::string debugFrustumVertexShaderSource = "varying float depth; uniform mat4 transform; void main(void){gl_Position = transform * gl_Vertex; depth = gl_Position.z / gl_Position.w;}";
std::string debugFrustumFragmentShaderSource =
"varying float depth; \n"
" \n"
"void main(void) \n"
"{ \n"
#if 1
" float f = depth; \n"
" \n"
" f = 256.0 * f; \n"
" float fC = floor( f ) / 256.0; \n"
" \n"
" f = 256.0 * fract( f ); \n"
" float fS = floor( f ) / 256.0; \n"
" \n"
" f = 256.0 * fract( f ); \n"
" float fH = floor( f ) / 256.0; \n"
" \n"
" fS *= 0.5; \n"
" fH = ( fH * 0.34 + 0.66 ) * ( 1.0 - fS ); \n"
" \n"
" vec3 rgb = vec3( ( fC > 0.5 ? ( 1.0 - fC ) : fC ), \n"
" abs( fC - 0.333333 ), \n"
" abs( fC - 0.666667 ) ); \n"
" \n"
" rgb = min( vec3( 1.0, 1.0, 1.0 ), 3.0 * rgb ); \n"
" \n"
" float fMax = max( max( rgb.r, rgb.g ), rgb.b ); \n"
" fMax = 1.0 / fMax; \n"
" \n"
" vec3 color = fMax * rgb; \n"
" \n"
" gl_FragColor = vec4( fS + fH * color, 1 ); \n"
#else
" gl_FragColor = vec4(0.0, 0.0, 1.0, 0.0); \n"
#endif
"} \n";
template<class T>
class RenderLeafTraverser : public T
{
public:
RenderLeafTraverser()
{
}
void traverse(const osgUtil::RenderStage* rs)
{
traverse(static_cast<const osgUtil::RenderBin*>(rs));
}
void traverse(const osgUtil::RenderBin* renderBin)
{
const osgUtil::RenderBin::RenderBinList& rbl = renderBin->getRenderBinList();
for(osgUtil::RenderBin::RenderBinList::const_iterator itr = rbl.begin();
itr != rbl.end();
++itr)
{
traverse(itr->second.get());
}
const osgUtil::RenderBin::RenderLeafList& rll = renderBin->getRenderLeafList();
for(osgUtil::RenderBin::RenderLeafList::const_iterator itr = rll.begin();
itr != rll.end();
++itr)
{
handle(*itr);
}
const osgUtil::RenderBin::StateGraphList& rgl = renderBin->getStateGraphList();
for(osgUtil::RenderBin::StateGraphList::const_iterator itr = rgl.begin();
itr != rgl.end();
++itr)
{
traverse(*itr);
}
}
void traverse(const osgUtil::StateGraph* stateGraph)
{
const osgUtil::StateGraph::ChildList& cl = stateGraph->_children;
for(osgUtil::StateGraph::ChildList::const_iterator itr = cl.begin();
itr != cl.end();
++itr)
{
traverse(itr->second.get());
}
const osgUtil::StateGraph::LeafList& ll = stateGraph->_leaves;
for(osgUtil::StateGraph::LeafList::const_iterator itr = ll.begin();
itr != ll.end();
++itr)
{
handle(itr->get());
}
}
inline void handle(const osgUtil::RenderLeaf* renderLeaf)
{
this->operator()(renderLeaf);
}
};
///////////////////////////////////////////////////////////////////////////////////////////////
//
// VDSMCameraCullCallback
//
class VDSMCameraCullCallback : public osg::NodeCallback
{
public:
VDSMCameraCullCallback(MWShadowTechnique* vdsm, osg::Polytope& polytope);
void operator()(osg::Node*, osg::NodeVisitor* nv) override;
osg::RefMatrix* getProjectionMatrix() { return _projectionMatrix.get(); }
osgUtil::RenderStage* getRenderStage() { return _renderStage.get(); }
protected:
MWShadowTechnique* _vdsm;
osg::ref_ptr<osg::RefMatrix> _projectionMatrix;
osg::ref_ptr<osgUtil::RenderStage> _renderStage;
osg::Polytope _polytope;
};
VDSMCameraCullCallback::VDSMCameraCullCallback(MWShadowTechnique* vdsm, osg::Polytope& polytope):
_vdsm(vdsm),
_polytope(polytope)
{
}
void VDSMCameraCullCallback::operator()(osg::Node* node, osg::NodeVisitor* nv)
{
osgUtil::CullVisitor* cv = static_cast<osgUtil::CullVisitor*>(nv);
osg::Camera* camera = node->asCamera();
OSG_INFO<<"VDSMCameraCullCallback::operator()(osg::Node* "<<camera<<", osg::NodeVisitor* "<<cv<<")"<<std::endl;
#if 1
if (!_polytope.empty())
{
OSG_INFO<<"Pushing custom Polytope"<<std::endl;
osg::CullingSet& cs = cv->getProjectionCullingStack().back();
cs.setFrustum(_polytope);
cv->pushCullingSet();
}
#endif
// bin has to go inside camera cull or the rendertexture stage will override it
static osg::ref_ptr<osg::StateSet> ss;
if (!ss)
{
ShadowsBinAdder adder("ShadowsBin", _vdsm->getCastingPrograms());
ss = new osg::StateSet;
ss->setRenderBinDetails(osg::StateSet::OPAQUE_BIN, "ShadowsBin", osg::StateSet::OVERRIDE_PROTECTED_RENDERBIN_DETAILS);
}
cv->pushStateSet(ss);
if (_vdsm->getShadowedScene())
{
_vdsm->getShadowedScene()->osg::Group::traverse(*nv);
}
cv->popStateSet();
#if 1
if (!_polytope.empty())
{
OSG_INFO<<"Popping custom Polytope"<<std::endl;
cv->popCullingSet();
}
#endif
_renderStage = cv->getCurrentRenderBin()->getStage();
OSG_INFO<<"VDSM second : _renderStage = "<<_renderStage<<std::endl;
if (cv->getComputeNearFarMode() != osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR)
{
// make sure that the near plane is computed correctly.
cv->computeNearPlane();
osg::Matrixd projection = *(cv->getProjectionMatrix());
OSG_INFO<<"RTT Projection matrix "<<projection<<std::endl;
osg::Matrix::value_type left, right, bottom, top, zNear, zFar;
osg::Matrix::value_type epsilon = 1e-6;
if (fabs(projection(0,3))<epsilon && fabs(projection(1,3))<epsilon && fabs(projection(2,3))<epsilon )
{
projection.getOrtho(left, right,
bottom, top,
zNear, zFar);
OSG_INFO<<"Ortho zNear="<<zNear<<", zFar="<<zFar<<std::endl;
}
else
{
projection.getFrustum(left, right,
bottom, top,
zNear, zFar);
OSG_INFO<<"Frustum zNear="<<zNear<<", zFar="<<zFar<<std::endl;
}
OSG_INFO<<"Calculated zNear = "<<cv->getCalculatedNearPlane()<<", zFar = "<<cv->getCalculatedFarPlane()<<std::endl;
zNear = osg::maximum(zNear, cv->getCalculatedNearPlane());
zFar = osg::minimum(zFar, cv->getCalculatedFarPlane());
cv->setCalculatedNearPlane(zNear);
cv->setCalculatedFarPlane(zFar);
cv->clampProjectionMatrix(projection, zNear, zFar);
//OSG_INFO<<"RTT zNear = "<<zNear<<", zFar = "<<zFar<<std::endl;
OSG_INFO<<"RTT Projection matrix after clamping "<<projection<<std::endl;
camera->setProjectionMatrix(projection);
}
_projectionMatrix = cv->getProjectionMatrix();
}
} // namespace
MWShadowTechnique::ComputeLightSpaceBounds::ComputeLightSpaceBounds(osg::Viewport* viewport, const osg::Matrixd& projectionMatrix, osg::Matrixd& viewMatrix) :
osg::NodeVisitor(osg::NodeVisitor::TRAVERSE_ACTIVE_CHILDREN)
{
setCullingMode(osg::CullSettings::VIEW_FRUSTUM_CULLING);
pushViewport(viewport);
pushProjectionMatrix(new osg::RefMatrix(projectionMatrix));
pushModelViewMatrix(new osg::RefMatrix(viewMatrix), osg::Transform::ABSOLUTE_RF);
setName("SceneUtil::MWShadowTechnique::ComputeLightSpaceBounds,AcceptedByComponentsTerrainQuadTreeWorld");
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(osg::Node& node)
{
if (isCulled(node)) return;
// push the culling mode.
pushCurrentMask();
traverse(node);
// pop the culling mode.
popCurrentMask();
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(osg::Drawable& drawable)
{
if (isCulled(drawable)) return;
// push the culling mode.
pushCurrentMask();
updateBound(drawable.getBoundingBox());
// pop the culling mode.
popCurrentMask();
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(Terrain::QuadTreeWorld & quadTreeWorld)
{
// For now, just expand the bounds fully as terrain will fill them up and possible ways to detect which terrain definitely won't cast shadows aren't implemented.
update(osg::Vec3(-1.0, -1.0, 0.0));
update(osg::Vec3(1.0, 1.0, 0.0));
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(osg::Billboard&)
{
OSG_INFO << "Warning Billboards not yet supported" << std::endl;
return;
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(osg::Projection&)
{
// projection nodes won't affect a shadow map so their subgraphs should be ignored
return;
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(osg::Transform& transform)
{
if (isCulled(transform)) return;
// push the culling mode.
pushCurrentMask();
// absolute transforms won't affect a shadow map so their subgraphs should be ignored.
if (transform.getReferenceFrame() == osg::Transform::RELATIVE_RF)
{
osg::ref_ptr<osg::RefMatrix> matrix = new osg::RefMatrix(*getModelViewMatrix());
transform.computeLocalToWorldMatrix(*matrix, this);
pushModelViewMatrix(matrix.get(), transform.getReferenceFrame());
traverse(transform);
popModelViewMatrix();
}
// pop the culling mode.
popCurrentMask();
}
void MWShadowTechnique::ComputeLightSpaceBounds::apply(osg::Camera&)
{
// camera nodes won't affect a shadow map so their subgraphs should be ignored
return;
}
void MWShadowTechnique::ComputeLightSpaceBounds::updateBound(const osg::BoundingBox& bb)
{
if (!bb.valid()) return;
const osg::Matrix& matrix = *getModelViewMatrix() * *getProjectionMatrix();
update(bb.corner(0) * matrix);
update(bb.corner(1) * matrix);
update(bb.corner(2) * matrix);
update(bb.corner(3) * matrix);
update(bb.corner(4) * matrix);
update(bb.corner(5) * matrix);
update(bb.corner(6) * matrix);
update(bb.corner(7) * matrix);
}
void MWShadowTechnique::ComputeLightSpaceBounds::update(const osg::Vec3& v)
{
if (v.z()<-1.0f)
{
//OSG_NOTICE<<"discarding("<<v<<")"<<std::endl;
return;
}
float x = v.x();
if (x<-1.0f) x = -1.0f;
if (x>1.0f) x = 1.0f;
float y = v.y();
if (y<-1.0f) y = -1.0f;
if (y>1.0f) y = 1.0f;
_bb.expandBy(osg::Vec3(x, y, v.z()));
}
///////////////////////////////////////////////////////////////////////////////////////////////
//
// LightData
//
MWShadowTechnique::LightData::LightData(MWShadowTechnique::ViewDependentData* vdd):
_viewDependentData(vdd),
directionalLight(false)
{
}
void MWShadowTechnique::LightData::setLightData(osg::RefMatrix* lm, const osg::Light* l, const osg::Matrixd& modelViewMatrix)
{
lightMatrix = lm;
light = l;
lightPos = light->getPosition();
directionalLight = (light->getPosition().w()== 0.0);
if (directionalLight)
{
lightPos3.set(0.0, 0.0, 0.0); // directional light has no destinct position
lightDir.set(-lightPos.x(), -lightPos.y(), -lightPos.z());
lightDir.normalize();
OSG_INFO<<" Directional light, lightPos="<<lightPos<<", lightDir="<<lightDir<<std::endl;
if (lightMatrix.valid() && *lightMatrix != osg::Matrixf(modelViewMatrix))
{
OSG_INFO<<" Light matrix "<<*lightMatrix<<std::endl;
osg::Matrix lightToLocalMatrix(*lightMatrix * osg::Matrix::inverse(modelViewMatrix) );
lightDir = osg::Matrix::transform3x3( lightDir, lightToLocalMatrix );
lightDir.normalize();
OSG_INFO<<" new LightDir ="<<lightDir<<std::endl;
}
}
else
{
OSG_INFO<<" Positional light, lightPos="<<lightPos<<std::endl;
lightDir = light->getDirection();
lightDir.normalize();
if (lightMatrix.valid())
{
OSG_INFO<<" Light matrix "<<*lightMatrix<<std::endl;
osg::Matrix lightToLocalMatrix(*lightMatrix * osg::Matrix::inverse(modelViewMatrix) );
lightPos = lightPos * lightToLocalMatrix;
lightDir = osg::Matrix::transform3x3( lightDir, lightToLocalMatrix );
lightDir.normalize();
OSG_INFO<<" new LightPos ="<<lightPos<<std::endl;
OSG_INFO<<" new LightDir ="<<lightDir<<std::endl;
}
lightPos3.set(lightPos.x()/lightPos.w(), lightPos.y()/lightPos.w(), lightPos.z()/lightPos.w());
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
//
// ShadowData
//
MWShadowTechnique::ShadowData::ShadowData(MWShadowTechnique::ViewDependentData* vdd):
_viewDependentData(vdd),
_textureUnit(0)
{
const ShadowSettings* settings = vdd->getViewDependentShadowMap()->getShadowedScene()->getShadowSettings();
bool debug = settings->getDebugDraw();
// set up texgen
_texgen = new osg::TexGen;
// set up the texture
_texture = new osg::Texture2D;
osg::Vec2s textureSize = debug ? osg::Vec2s(512,512) : settings->getTextureSize();
_texture->setTextureSize(textureSize.x(), textureSize.y());
if (debug)
{
_texture->setInternalFormat(GL_RGB);
}
else
{
_texture->setInternalFormat(GL_DEPTH_COMPONENT);
_texture->setShadowComparison(true);
_texture->setShadowTextureMode(osg::Texture2D::LUMINANCE);
}
_texture->setFilter(osg::Texture2D::MIN_FILTER,osg::Texture2D::LINEAR);
_texture->setFilter(osg::Texture2D::MAG_FILTER,osg::Texture2D::LINEAR);
// the shadow comparison should fail if object is outside the texture
_texture->setWrap(osg::Texture2D::WRAP_S,osg::Texture2D::CLAMP_TO_BORDER);
_texture->setWrap(osg::Texture2D::WRAP_T,osg::Texture2D::CLAMP_TO_BORDER);
_texture->setBorderColor(osg::Vec4(1.0f,1.0f,1.0f,1.0f));
//_texture->setBorderColor(osg::Vec4(0.0f,0.0f,0.0f,0.0f));
// set up the camera
_camera = new osg::Camera;
_camera->setName("ShadowCamera");
_camera->setReferenceFrame(osg::Camera::ABSOLUTE_RF_INHERIT_VIEWPOINT);
_camera->setImplicitBufferAttachmentMask(0, 0);
//_camera->setClearColor(osg::Vec4(1.0f,1.0f,1.0f,1.0f));
_camera->setClearColor(osg::Vec4(0.0f,0.0f,0.0f,0.0f));
//_camera->setComputeNearFarMode(osg::Camera::COMPUTE_NEAR_FAR_USING_BOUNDING_VOLUMES);
//_camera->setComputeNearFarMode(osg::Camera::COMPUTE_NEAR_FAR_USING_PRIMITIVES);
// Now we are using Depth Clamping, we want to not cull things on the wrong side of the near plane.
// When the near and far planes are computed, OSG always culls anything on the wrong side of the near plane, even if it's told not to.
// Even if that weren't an issue, the near plane can't go past any shadow receivers or the depth-clamped fragments which ended up on the near plane can't cast shadows on those receivers.
// Unfortunately, this change will make shadows have less depth precision when there are no casters outside the view frustum.
// TODO: Find a better solution. E.g. detect when there are no casters outside the view frustum, write a new cull visitor that does all the wacky things we'd need it to.
_camera->setComputeNearFarMode(osg::Camera::DO_NOT_COMPUTE_NEAR_FAR);
// switch off small feature culling as this can cull out geometry that will still be large enough once perspective correction takes effect.
_camera->setCullingMode(_camera->getCullingMode() & ~osg::CullSettings::SMALL_FEATURE_CULLING);
// set viewport
_camera->setViewport(0,0,textureSize.x(),textureSize.y());
if (debug)
{
// clear just the depth buffer
_camera->setClearMask(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
// render after the main camera
_camera->setRenderOrder(osg::Camera::POST_RENDER);
// attach the texture and use it as the color buffer.
//_camera->attach(osg::Camera::DEPTH_BUFFER, _texture.get());
_camera->attach(osg::Camera::COLOR_BUFFER, _texture.get());
}
else
{
// clear the depth and colour bufferson each clear.
_camera->setClearMask(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
// set the camera to render before the main camera.
_camera->setRenderOrder(osg::Camera::PRE_RENDER);
// tell the camera to use OpenGL frame buffer object where supported.
_camera->setRenderTargetImplementation(osg::Camera::FRAME_BUFFER_OBJECT);
// attach the texture and use it as the color buffer.
_camera->attach(osg::Camera::DEPTH_BUFFER, _texture.get());
//_camera->attach(osg::Camera::COLOR_BUFFER, _texture.get());
}
}
void MWShadowTechnique::ShadowData::releaseGLObjects(osg::State* state) const
{
OSG_INFO<<"MWShadowTechnique::ShadowData::releaseGLObjects"<<std::endl;
_texture->releaseGLObjects(state);
_camera->releaseGLObjects(state);
}
///////////////////////////////////////////////////////////////////////////////////////////////
//
// Frustum
//
MWShadowTechnique::Frustum::Frustum(osgUtil::CullVisitor* cv, double minZNear, double maxZFar):
corners(8),
faces(6),
edges(12)
{
projectionMatrix = *(cv->getProjectionMatrix());
modelViewMatrix = *(cv->getModelViewMatrix());
OSG_INFO<<"Projection matrix "<<projectionMatrix<<std::endl;
if (cv->getComputeNearFarMode()!=osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR)
{
osg::Matrix::value_type zNear = osg::maximum<osg::Matrix::value_type>(cv->getCalculatedNearPlane(),minZNear);
osg::Matrix::value_type zFar = osg::minimum<osg::Matrix::value_type>(cv->getCalculatedFarPlane(),maxZFar);
cv->clampProjectionMatrix(projectionMatrix, zNear, zFar);
OSG_INFO<<"zNear = "<<zNear<<", zFar = "<<zFar<<std::endl;
OSG_INFO<<"Projection matrix after clamping "<<projectionMatrix<<std::endl;
}
corners[0].set(-1.0,-1.0,-1.0);
corners[1].set(1.0,-1.0,-1.0);
corners[2].set(1.0,-1.0,1.0);
corners[3].set(-1.0,-1.0,1.0);
corners[4].set(-1.0,1.0,-1.0);
corners[5].set(1.0,1.0,-1.0);
corners[6].set(1.0,1.0,1.0);
corners[7].set(-1.0,1.0,1.0);
osg::Matrixd clipToWorld;
clipToWorld.invert(modelViewMatrix * projectionMatrix);
// transform frustum corners from clipspace to world coords, and compute center
for(Vertices::iterator itr = corners.begin();
itr != corners.end();
++itr)
{
*itr = (*itr) * clipToWorld;
OSG_INFO<<" corner "<<*itr<<std::endl;
}
// compute eye point
eye = osg::Vec3d(0.0,0.0,0.0) * osg::Matrix::inverse(modelViewMatrix);
// compute center and the frustumCenterLine
centerNearPlane = (corners[0]+corners[1]+corners[5]+corners[4])*0.25;
centerFarPlane = (corners[3]+corners[2]+corners[6]+corners[7])*0.25;
center = (centerNearPlane+centerFarPlane)*0.5;
frustumCenterLine = centerFarPlane-centerNearPlane;
frustumCenterLine.normalize();
OSG_INFO<<" center "<<center<<std::endl;
faces[0].push_back(0);
faces[0].push_back(3);
faces[0].push_back(7);
faces[0].push_back(4);
faces[1].push_back(1);
faces[1].push_back(5);
faces[1].push_back(6);
faces[1].push_back(2);
faces[2].push_back(0);
faces[2].push_back(1);
faces[2].push_back(2);
faces[2].push_back(3);
faces[3].push_back(4);
faces[3].push_back(7);
faces[3].push_back(6);
faces[3].push_back(5);
faces[4].push_back(0);
faces[4].push_back(4);
faces[4].push_back(5);
faces[4].push_back(1);
faces[5].push_back(2);
faces[5].push_back(6);
faces[5].push_back(7);
faces[5].push_back(3);
edges[0].push_back(0); edges[0].push_back(1); // corner points on edge
edges[0].push_back(2); edges[0].push_back(4); // faces on edge
edges[1].push_back(1); edges[1].push_back(2); // corner points on edge
edges[1].push_back(2); edges[1].push_back(1); // faces on edge
edges[2].push_back(2); edges[2].push_back(3); // corner points on edge
edges[2].push_back(2); edges[2].push_back(5); // faces on edge
edges[3].push_back(3); edges[3].push_back(0); // corner points on edge
edges[3].push_back(2); edges[3].push_back(0); // faces on edge
edges[4].push_back(0); edges[4].push_back(4); // corner points on edge
edges[4].push_back(0); edges[4].push_back(4); // faces on edge
edges[5].push_back(1); edges[5].push_back(5); // corner points on edge
edges[5].push_back(4); edges[5].push_back(1); // faces on edge
edges[6].push_back(2); edges[6].push_back(6); // corner points on edge
edges[6].push_back(1); edges[6].push_back(5); // faces on edge
edges[7].push_back(3); edges[7].push_back(7); // corner points on edge
edges[7].push_back(5); edges[7].push_back(0); // faces on edge
edges[8].push_back(4); edges[8].push_back(5); // corner points on edge
edges[8].push_back(3); edges[8].push_back(4); // faces on edge
edges[9].push_back(5); edges[9].push_back(6); // corner points on edge
edges[9].push_back(3); edges[9].push_back(1); // faces on edge
edges[10].push_back(6);edges[10].push_back(7); // corner points on edge
edges[10].push_back(3);edges[10].push_back(5); // faces on edge
edges[11].push_back(7); edges[11].push_back(4); // corner points on edge
edges[11].push_back(3); edges[11].push_back(0); // faces on edge
}
///////////////////////////////////////////////////////////////////////////////////////////////
//
// ViewDependentData
//
MWShadowTechnique::ViewDependentData::ViewDependentData(MWShadowTechnique* vdsm):
_viewDependentShadowMap(vdsm)
{
OSG_INFO<<"ViewDependentData::ViewDependentData()"<<this<<std::endl;
for (auto& perFrameStateset : _stateset)
perFrameStateset = new osg::StateSet;
}
void MWShadowTechnique::ViewDependentData::releaseGLObjects(osg::State* state) const
{
for(ShadowDataList::const_iterator itr = _shadowDataList.begin();
itr != _shadowDataList.end();
++itr)
{
(*itr)->releaseGLObjects(state);
}
}
///////////////////////////////////////////////////////////////////////////////////////////////
//
// MWShadowTechnique
//
MWShadowTechnique::MWShadowTechnique():
ShadowTechnique(),
_enableShadows(false),
_debugHud(nullptr),
_castingPrograms{ nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr }
{
_shadowRecievingPlaceholderStateSet = new osg::StateSet;
mSetDummyStateWhenDisabled = false;
}
MWShadowTechnique::MWShadowTechnique(const MWShadowTechnique& vdsm, const osg::CopyOp& copyop):
ShadowTechnique(vdsm,copyop)
, _castingPrograms(vdsm._castingPrograms)
{
_shadowRecievingPlaceholderStateSet = new osg::StateSet;
_enableShadows = vdsm._enableShadows;
mSetDummyStateWhenDisabled = vdsm.mSetDummyStateWhenDisabled;
}
MWShadowTechnique::~MWShadowTechnique()
{
}
void MWShadowTechnique::init()
{
if (!_shadowedScene) return;
OSG_INFO<<"MWShadowTechnique::init()"<<std::endl;
createShaders();
_dirty = false;
}
void MWShadowTechnique::cleanSceneGraph()
{
OSG_INFO<<"MWShadowTechnique::cleanSceneGraph()"<<std::endl;
}
void MWShadowTechnique::enableShadows()
{
_enableShadows = true;
}
void MWShadowTechnique::disableShadows(bool setDummyState)
{
_enableShadows = false;
mSetDummyStateWhenDisabled = setDummyState;
}
void SceneUtil::MWShadowTechnique::enableDebugHUD()
{
_debugHud = new DebugHUD(getShadowedScene()->getShadowSettings()->getNumShadowMapsPerLight());
}
void SceneUtil::MWShadowTechnique::disableDebugHUD()
{
_debugHud = nullptr;
}
void SceneUtil::MWShadowTechnique::setSplitPointUniformLogarithmicRatio(double ratio)
{
_splitPointUniformLogRatio = ratio;
}
void SceneUtil::MWShadowTechnique::setSplitPointDeltaBias(double bias)
{
_splitPointDeltaBias = bias;
}
void SceneUtil::MWShadowTechnique::setPolygonOffset(float factor, float units)
{
_polygonOffsetFactor = factor;
_polygonOffsetUnits = units;
if (_polygonOffset)
{
_polygonOffset->setFactor(factor);
_polygonOffset->setUnits(units);
}
}
void SceneUtil::MWShadowTechnique::setShadowFadeStart(float shadowFadeStart)
{
_shadowFadeStart = shadowFadeStart;
}
void SceneUtil::MWShadowTechnique::enableFrontFaceCulling()
{
_useFrontFaceCulling = true;
if (_shadowCastingStateSet)
{
_shadowCastingStateSet->setAttribute(new osg::CullFace(osg::CullFace::FRONT), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
_shadowCastingStateSet->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
}
}
void SceneUtil::MWShadowTechnique::disableFrontFaceCulling()
{
_useFrontFaceCulling = false;
if (_shadowCastingStateSet)
{
_shadowCastingStateSet->removeAttribute(osg::StateAttribute::CULLFACE);
_shadowCastingStateSet->setMode(GL_CULL_FACE, osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE);
}
}
void SceneUtil::MWShadowTechnique::setupCastingShader(Shader::ShaderManager & shaderManager)
{
// This can't be part of the constructor as OSG mandates that there be a trivial constructor available
osg::ref_ptr<osg::Shader> castingVertexShader = shaderManager.getShader("shadowcasting_vertex.glsl", {}, osg::Shader::VERTEX);
osg::ref_ptr<osg::GLExtensions> exts = osg::GLExtensions::Get(0, false);
std::string useGPUShader4 = exts && exts->isGpuShader4Supported ? "1" : "0";
for (int alphaFunc = GL_NEVER; alphaFunc <= GL_ALWAYS; ++alphaFunc)
{
auto& program = _castingPrograms[alphaFunc - GL_NEVER];
program = new osg::Program();
program->addShader(castingVertexShader);
program->addShader(shaderManager.getShader("shadowcasting_fragment.glsl", { {"alphaFunc", std::to_string(alphaFunc)},
{"alphaToCoverage", "0"},
{"useGPUShader4", useGPUShader4}
}, osg::Shader::FRAGMENT));
}
}
MWShadowTechnique::ViewDependentData* MWShadowTechnique::createViewDependentData(osgUtil::CullVisitor* /*cv*/)
{
return new ViewDependentData(this);
}
MWShadowTechnique::ViewDependentData* MWShadowTechnique::getViewDependentData(osgUtil::CullVisitor* cv)
{
std::lock_guard<std::mutex> lock(_viewDependentDataMapMutex);
ViewDependentDataMap::iterator itr = _viewDependentDataMap.find(cv);
if (itr!=_viewDependentDataMap.end()) return itr->second.get();
osg::ref_ptr<ViewDependentData> vdd = createViewDependentData(cv);
_viewDependentDataMap[cv] = vdd;
return vdd.release();
}
void MWShadowTechnique::update(osg::NodeVisitor& nv)
{
OSG_INFO<<"MWShadowTechnique::update(osg::NodeVisitor& "<<&nv<<")"<<std::endl;
_shadowedScene->osg::Group::traverse(nv);
}
void MWShadowTechnique::cull(osgUtil::CullVisitor& cv)
{
if (!_enableShadows)
{
if (mSetDummyStateWhenDisabled)
{
osg::ref_ptr<osg::StateSet> dummyState = new osg::StateSet();
ShadowSettings* settings = getShadowedScene()->getShadowSettings();
int baseUnit = settings->getBaseShadowTextureUnit();
int endUnit = baseUnit + settings->getNumShadowMapsPerLight();
for (int i = baseUnit; i < endUnit; ++i)
{
dummyState->setTextureAttributeAndModes(i, _fallbackShadowMapTexture, osg::StateAttribute::ON);
dummyState->addUniform(new osg::Uniform(("shadowTexture" + std::to_string(i - baseUnit)).c_str(), i));
dummyState->addUniform(new osg::Uniform(("shadowTextureUnit" + std::to_string(i - baseUnit)).c_str(), i));
}
cv.pushStateSet(dummyState);
}
_shadowedScene->osg::Group::traverse(cv);
if (mSetDummyStateWhenDisabled)
cv.popStateSet();
return;
}
OSG_INFO<<std::endl<<std::endl<<"MWShadowTechnique::cull(osg::CullVisitor&"<<&cv<<")"<<std::endl;
if (!_shadowCastingStateSet)
{
OSG_INFO<<"Warning, init() has not yet been called so ShadowCastingStateSet has not been setup yet, unable to create shadows."<<std::endl;
_shadowedScene->osg::Group::traverse(cv);
return;
}
ViewDependentData* vdd = getViewDependentData(&cv);
if (!vdd)
{
OSG_INFO<<"Warning, now ViewDependentData created, unable to create shadows."<<std::endl;
_shadowedScene->osg::Group::traverse(cv);
return;
}
ShadowSettings* settings = getShadowedScene()->getShadowSettings();
OSG_INFO<<"cv->getProjectionMatrix()="<<*cv.getProjectionMatrix()<<std::endl;
osg::CullSettings::ComputeNearFarMode cachedNearFarMode = cv.getComputeNearFarMode();
osg::RefMatrix& viewProjectionMatrix = *cv.getProjectionMatrix();
// check whether this main views projection is perspective or orthographic
bool orthographicViewFrustum = viewProjectionMatrix(0,3)==0.0 &&
viewProjectionMatrix(1,3)==0.0 &&
viewProjectionMatrix(2,3)==0.0;
double minZNear = 0.0;
double maxZFar = dbl_max;
if (cachedNearFarMode==osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR)
{
double left, right, top, bottom;
if (orthographicViewFrustum)
{
viewProjectionMatrix.getOrtho(left, right, bottom, top, minZNear, maxZFar);
}
else
{
viewProjectionMatrix.getFrustum(left, right, bottom, top, minZNear, maxZFar);
}
OSG_INFO<<"minZNear="<<minZNear<<", maxZFar="<<maxZFar<<std::endl;
}
// set the compute near/far mode to the highest quality setting to ensure we push the near plan out as far as possible
if (settings->getComputeNearFarModeOverride()!=osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR)
{
cv.setComputeNearFarMode(settings->getComputeNearFarModeOverride());
}
// 1. Traverse main scene graph
auto* shadowReceiverStateSet = vdd->getStateSet(cv.getTraversalNumber());
shadowReceiverStateSet->clear();
cv.pushStateSet(shadowReceiverStateSet);
cullShadowReceivingScene(&cv);
cv.popStateSet();
if (cv.getComputeNearFarMode()!=osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR)
{
OSG_INFO<<"Just done main subgraph traversak"<<std::endl;
// make sure that the near plane is computed correctly so that any projection matrix computations
// are all done correctly.
cv.computeNearPlane();
}
// clamp the minZNear and maxZFar to those provided by ShadowSettings
maxZFar = osg::minimum(settings->getMaximumShadowMapDistance(),maxZFar);
if (minZNear>maxZFar) minZNear = maxZFar*settings->getMinimumShadowMapNearFarRatio();
//OSG_NOTICE<<"maxZFar "<<maxZFar<<std::endl;
// Workaround for absurdly huge viewing distances where OSG would otherwise push the near plane out.
cv.setNearFarRatio(minZNear / maxZFar);
Frustum frustum(&cv, minZNear, maxZFar);
if (_debugHud)
{
osg::ref_ptr<osg::Vec3Array> vertexArray = new osg::Vec3Array();
for (osg::Vec3d &vertex : frustum.corners)
vertexArray->push_back((osg::Vec3)vertex);
_debugHud->setFrustumVertices(vertexArray, cv.getTraversalNumber());
}
double reducedNear, reducedFar;
if (cv.getComputeNearFarMode() != osg::CullSettings::DO_NOT_COMPUTE_NEAR_FAR)
{
reducedNear = osg::maximum<double>(cv.getCalculatedNearPlane(), minZNear);
reducedFar = osg::minimum<double>(cv.getCalculatedFarPlane(), maxZFar);
}
else
{
reducedNear = minZNear;
reducedFar = maxZFar;
}
// return compute near far mode back to it's original settings
cv.setComputeNearFarMode(cachedNearFarMode);
OSG_INFO<<"frustum.eye="<<frustum.eye<<", frustum.centerNearPlane, "<<frustum.centerNearPlane<<" distance = "<<(frustum.eye-frustum.centerNearPlane).length()<<std::endl;
// 2. select active light sources
// create a list of light sources + their matrices to place them
selectActiveLights(&cv, vdd);
unsigned int pos_x = 0;
unsigned int textureUnit = settings->getBaseShadowTextureUnit();
unsigned int numValidShadows = 0;
ShadowDataList& sdl = vdd->getShadowDataList();
ShadowDataList previous_sdl;
previous_sdl.swap(sdl);
unsigned int numShadowMapsPerLight = settings->getNumShadowMapsPerLight();
LightDataList& pll = vdd->getLightDataList();
for(LightDataList::iterator itr = pll.begin();
itr != pll.end();
++itr)
{
// 3. create per light/per shadow map division of lightspace/frustum
// create a list of light/shadow map data structures
LightData& pl = **itr;
// 3.1 compute light space polytope
//
osg::Polytope polytope = computeLightViewFrustumPolytope(frustum, pl);
// if polytope is empty then no rendering.
if (polytope.empty())
{
OSG_NOTICE<<"Polytope empty no shadow to render"<<std::endl;
continue;
}
// 3.2 compute RTT camera view+projection matrix settings
//
osg::Matrixd projectionMatrix;
osg::Matrixd viewMatrix;
if (!computeShadowCameraSettings(frustum, pl, projectionMatrix, viewMatrix))
{
OSG_NOTICE<<"No valid Camera settings, no shadow to render"<<std::endl;
continue;
}
// if we are using multiple shadow maps and CastShadowTraversalMask is being used
// traverse the scene to compute the extents of the objects
if (/*numShadowMapsPerLight>1 &&*/ _shadowedScene->getCastsShadowTraversalMask()!=0xffffffff)
{
// osg::ElapsedTime timer;
osg::ref_ptr<osg::Viewport> viewport = new osg::Viewport(0,0,2048,2048);
ComputeLightSpaceBounds clsb(viewport.get(), projectionMatrix, viewMatrix);
clsb.setTraversalMask(_shadowedScene->getCastsShadowTraversalMask());
osg::Matrixd invertModelView;
invertModelView.invert(viewMatrix);
osg::Polytope local_polytope(polytope);
local_polytope.transformProvidingInverse(invertModelView);
osg::CullingSet& cs = clsb.getProjectionCullingStack().back();
cs.setFrustum(local_polytope);
clsb.pushCullingSet();
_shadowedScene->accept(clsb);
// OSG_NOTICE<<"Extents of LightSpace "<<clsb._bb.xMin()<<", "<<clsb._bb.xMax()<<", "<<clsb._bb.yMin()<<", "<<clsb._bb.yMax()<<", "<<clsb._bb.zMin()<<", "<<clsb._bb.zMax()<<std::endl;
// OSG_NOTICE<<" time "<<timer.elapsedTime_m()<<"ms, mask = "<<std::hex<<_shadowedScene->getCastsShadowTraversalMask()<<std::endl;
if (clsb._bb.xMin()>-1.0f || clsb._bb.xMax()<1.0f || clsb._bb.yMin()>-1.0f || clsb._bb.yMax()<1.0f)
{
// OSG_NOTICE<<"Need to clamp projection matrix"<<std::endl;
#if 1
double xMid = (clsb._bb.xMin()+clsb._bb.xMax())*0.5f;
double xRange = clsb._bb.xMax()-clsb._bb.xMin();
#else
double xMid = 0.0;
double xRange = 2.0;
#endif
double yMid = (clsb._bb.yMin()+clsb._bb.yMax())*0.5f;
double yRange = (clsb._bb.yMax()-clsb._bb.yMin());
osg::Matrixd cornerConverter = osg::Matrixd::inverse(projectionMatrix) * osg::Matrixd::inverse(viewMatrix) * *cv.getModelViewMatrix();
double minZ = dbl_max;
double maxZ = -dbl_max;
clsb._bb._max[2] = 1.0;
for (unsigned int i = 0; i < 8; i++)
{
osg::Vec3 corner = clsb._bb.corner(i);
corner = corner * cornerConverter;
maxZ = osg::maximum<double>(maxZ, -corner.z());
minZ = osg::minimum<double>(minZ, -corner.z());
}
reducedNear = osg::maximum<double>(reducedNear, minZ);
reducedFar = osg::minimum<double>(reducedFar, maxZ);
// OSG_NOTICE<<" xMid="<<xMid<<", yMid="<<yMid<<", xRange="<<xRange<<", yRange="<<yRange<<std::endl;
projectionMatrix =
projectionMatrix *
osg::Matrixd::translate(osg::Vec3d(-xMid,-yMid,0.0)) *
osg::Matrixd::scale(osg::Vec3d(2.0/xRange, 2.0/yRange,1.0));
}
}
#if 0
double splitPoint = 0.0;
if (numShadowMapsPerLight>1)
{
osg::Vec3d eye_v = frustum.eye * viewMatrix;
osg::Vec3d center_v = frustum.center * viewMatrix;
osg::Vec3d viewdir_v = center_v-eye_v; viewdir_v.normalize();
osg::Vec3d lightdir(0.0,0.0,-1.0);
double dotProduct_v = lightdir * viewdir_v;
double angle = acosf(dotProduct_v);
osg::Vec3d eye_ls = eye_v * projectionMatrix;
OSG_INFO<<"Angle between view vector and eye "<<osg::RadiansToDegrees(angle)<<std::endl;
OSG_INFO<<"eye_ls="<<eye_ls<<std::endl;
if (eye_ls.y()>=-1.0 && eye_ls.y()<=1.0)
{
OSG_INFO<<"Eye point inside light space clip region "<<std::endl;
splitPoint = 0.0;
}
else
{
double n = -1.0-eye_ls.y();
double f = 1.0-eye_ls.y();
double sqrt_nf = sqrt(n*f);
double mid = eye_ls.y()+sqrt_nf;
double ratioOfMidToUseForSplit = 0.8;
splitPoint = mid * ratioOfMidToUseForSplit;
OSG_INFO<<" n="<<n<<", f="<<f<<", sqrt_nf="<<sqrt_nf<<" mid="<<mid<<std::endl;
}
}
#endif
// 4. For each light/shadow map
for (unsigned int sm_i=0; sm_i<numShadowMapsPerLight; ++sm_i)
{
osg::ref_ptr<ShadowData> sd;
if (previous_sdl.empty())
{
OSG_INFO<<"Create new ShadowData"<<std::endl;
sd = new ShadowData(vdd);
}
else
{
OSG_INFO<<"Taking ShadowData from from of previous_sdl"<<std::endl;
sd = previous_sdl.front();
previous_sdl.erase(previous_sdl.begin());
}
osg::ref_ptr<osg::Camera> camera = sd->_camera;
camera->setProjectionMatrix(projectionMatrix);
camera->setViewMatrix(viewMatrix);
if (settings->getDebugDraw())
{
camera->getViewport()->x() = pos_x;
pos_x += static_cast<unsigned int>(camera->getViewport()->width()) + 40;
}
// transform polytope in model coords into light spaces eye coords.
osg::Matrixd invertModelView;
invertModelView.invert(camera->getViewMatrix());
osg::Polytope local_polytope(polytope);
local_polytope.transformProvidingInverse(invertModelView);
double cascaseNear = reducedNear;
double cascadeFar = reducedFar;
if (numShadowMapsPerLight>1)
{
// compute the start and end range in non-dimensional coords
#if 0
double r_start = (sm_i==0) ? -1.0 : (double(sm_i)/double(numShadowMapsPerLight)*2.0-1.0);
double r_end = (sm_i+1==numShadowMapsPerLight) ? 1.0 : (double(sm_i+1)/double(numShadowMapsPerLight)*2.0-1.0);
#elif 0
// hardwired for 2 splits
double r_start = (sm_i==0) ? -1.0 : splitPoint;
double r_end = (sm_i+1==numShadowMapsPerLight) ? 1.0 : splitPoint;
#else
double r_start, r_end;
// split system based on the original Parallel Split Shadow Maps paper.
double n = reducedNear;
double f = reducedFar;
double i = double(sm_i);
double m = double(numShadowMapsPerLight);
if (sm_i == 0)
r_start = -1.0;
else
{
// compute the split point in main camera view
double ciLog = n * pow(f / n, i / m);
double ciUniform = n + (f - n) * i / m;
double ci = _splitPointUniformLogRatio * ciLog + (1.0 - _splitPointUniformLogRatio) * ciUniform + _splitPointDeltaBias;
cascaseNear = ci;
// work out where this is in light space
osg::Vec3d worldSpacePos = frustum.eye + frustum.frustumCenterLine * ci;
osg::Vec3d lightSpacePos = worldSpacePos * viewMatrix * projectionMatrix;
r_start = lightSpacePos.y();
}
if (sm_i + 1 == numShadowMapsPerLight)
r_end = 1.0;
else
{
// compute the split point in main camera view
double ciLog = n * pow(f / n, (i + 1) / m);
double ciUniform = n + (f - n) * (i + 1) / m;
double ci = _splitPointUniformLogRatio * ciLog + (1.0 - _splitPointUniformLogRatio) * ciUniform + _splitPointDeltaBias;
cascadeFar = ci;
// work out where this is in light space
osg::Vec3d worldSpacePos = frustum.eye + frustum.frustumCenterLine * ci;
osg::Vec3d lightSpacePos = worldSpacePos * viewMatrix * projectionMatrix;
r_end = lightSpacePos.y();
}
#endif
// for all by the last shadowmap shift the r_end so that it overlaps slightly with the next shadowmap
// to prevent a seam showing through between the shadowmaps
if (sm_i+1<numShadowMapsPerLight) r_end+=0.01;
// We can't add these clipping planes with cascaded shadow maps as they wouldn't be parallel to the light direction.
if (settings->getMultipleShadowMapHint() == ShadowSettings::PARALLEL_SPLIT && sm_i>0)
{
// not the first shadowmap so insert a polytope to clip the scene from before r_start
// plane in clip space coords
osg::Plane plane(0.0,1.0,0.0,-r_start);
// transform into eye coords
plane.transformProvidingInverse(projectionMatrix);
local_polytope.getPlaneList().push_back(plane);
//OSG_NOTICE<<"Adding r_start plane "<<plane<<std::endl;
}
if (settings->getMultipleShadowMapHint() == ShadowSettings::PARALLEL_SPLIT && sm_i+1<numShadowMapsPerLight)
{
// not the last shadowmap so insert a polytope to clip the scene from beyond r_end
// plane in clip space coords
osg::Plane plane(0.0,-1.0,0.0,r_end);
// transform into eye coords
plane.transformProvidingInverse(projectionMatrix);
local_polytope.getPlaneList().push_back(plane);
//OSG_NOTICE<<"Adding r_end plane "<<plane<<std::endl;
}
local_polytope.setupMask();
if (settings->getMultipleShadowMapHint() == ShadowSettings::PARALLEL_SPLIT)
{
// OSG_NOTICE<<"Need to adjust RTT camera projection and view matrix here, r_start="<<r_start<<", r_end="<<r_end<<std::endl;
// OSG_NOTICE<<" textureUnit = "<<textureUnit<<std::endl;
double mid_r = (r_start + r_end)*0.5;
double range_r = (r_end - r_start);
// OSG_NOTICE<<" mid_r = "<<mid_r<<", range_r = "<<range_r<<std::endl;
camera->setProjectionMatrix(
camera->getProjectionMatrix() *
osg::Matrixd::translate(osg::Vec3d(0.0,-mid_r,0.0)) *
osg::Matrixd::scale(osg::Vec3d(1.0,2.0/range_r,1.0)));
}
}
std::vector<osg::Plane> extraPlanes;
if (settings->getMultipleShadowMapHint() == ShadowSettings::CASCADED)
{
cropShadowCameraToMainFrustum(frustum, camera, cascaseNear, cascadeFar, extraPlanes);
for (auto plane : extraPlanes)
local_polytope.getPlaneList().push_back(plane);
local_polytope.setupMask();
}
else
cropShadowCameraToMainFrustum(frustum, camera, reducedNear, reducedFar, extraPlanes);
osg::ref_ptr<VDSMCameraCullCallback> vdsmCallback = new VDSMCameraCullCallback(this, local_polytope);
camera->setCullCallback(vdsmCallback.get());
// 4.3 traverse RTT camera
//
cv.pushStateSet(_shadowCastingStateSet.get());
cullShadowCastingScene(&cv, camera.get());
cv.popStateSet();
if (!orthographicViewFrustum && settings->getShadowMapProjectionHint()==ShadowSettings::PERSPECTIVE_SHADOW_MAP)
{
{
osg::Matrix validRegionMatrix = cv.getCurrentCamera()->getInverseViewMatrix() * camera->getViewMatrix() * camera->getProjectionMatrix();
std::string validRegionUniformName = "validRegionMatrix" + std::to_string(sm_i);
osg::ref_ptr<osg::Uniform> validRegionUniform;
for (auto uniform : _uniforms[cv.getTraversalNumber() % 2])
{
if (uniform->getName() == validRegionUniformName)
validRegionUniform = uniform;
}
if (!validRegionUniform)
{
validRegionUniform = new osg::Uniform(osg::Uniform::FLOAT_MAT4, validRegionUniformName);
_uniforms[cv.getTraversalNumber() % 2].push_back(validRegionUniform);
}
validRegionUniform->set(validRegionMatrix);
}
if (settings->getMultipleShadowMapHint() == ShadowSettings::CASCADED)
adjustPerspectiveShadowMapCameraSettings(vdsmCallback->getRenderStage(), frustum, pl, camera.get(), cascaseNear, cascadeFar);
else
adjustPerspectiveShadowMapCameraSettings(vdsmCallback->getRenderStage(), frustum, pl, camera.get(), reducedNear, reducedFar);
if (vdsmCallback->getProjectionMatrix())
{
vdsmCallback->getProjectionMatrix()->set(camera->getProjectionMatrix());
}
}
// 4.4 compute main scene graph TexGen + uniform settings + setup state
//
assignTexGenSettings(&cv, camera.get(), textureUnit, sd->_texgen.get());
// mark the light as one that has active shadows and requires shaders
pl.textureUnits.push_back(textureUnit);
// pass on shadow data to ShadowDataList
sd->_textureUnit = textureUnit;
if (textureUnit >= 8)
{
OSG_NOTICE<<"Shadow texture unit is invalid for texgen, will not be used."<<std::endl;
}
else
{
sdl.push_back(sd);
}
// increment counters.
++textureUnit;
++numValidShadows ;
if (_debugHud)
_debugHud->draw(sd->_texture, sm_i, camera->getViewMatrix() * camera->getProjectionMatrix(), cv);
}
}
if (numValidShadows>0)
{
prepareStateSetForRenderingShadow(*vdd, cv.getTraversalNumber());
}
// OSG_NOTICE<<"End of shadow setup Projection matrix "<<*cv.getProjectionMatrix()<<std::endl;
}
bool MWShadowTechnique::selectActiveLights(osgUtil::CullVisitor* cv, ViewDependentData* vdd) const
{
OSG_INFO<<"selectActiveLights"<<std::endl;
LightDataList& pll = vdd->getLightDataList();
LightDataList previous_ldl;
previous_ldl.swap(pll);
//MR testing giving a specific light
osgUtil::RenderStage * rs = cv->getCurrentRenderBin()->getStage();
OSG_INFO<<"selectActiveLights osgUtil::RenderStage="<<rs<<std::endl;
osg::Matrixd modelViewMatrix = *(cv->getModelViewMatrix());
osgUtil::PositionalStateContainer::AttrMatrixList& aml =
rs->getPositionalStateContainer()->getAttrMatrixList();
const ShadowSettings* settings = getShadowedScene()->getShadowSettings();
for(osgUtil::PositionalStateContainer::AttrMatrixList::reverse_iterator itr = aml.rbegin();
itr != aml.rend();
++itr)
{
const osg::Light* light = dynamic_cast<const osg::Light*>(itr->first.get());
if (light && light->getLightNum() >= 0)
{
// is LightNum matched to that defined in settings
if (settings && settings->getLightNum()>=0 && light->getLightNum()!=settings->getLightNum()) continue;
LightDataList::iterator pll_itr = pll.begin();
for(; pll_itr != pll.end(); ++pll_itr)
{
if ((*pll_itr)->light->getLightNum()==light->getLightNum()) break;
}
if (pll_itr==pll.end())
{
OSG_INFO<<"Light num "<<light->getLightNum()<<std::endl;
LightData* ld = new LightData(vdd);
ld->setLightData(itr->second.get(), light, modelViewMatrix);
pll.push_back(ld);
}
else
{
OSG_INFO<<"Light num "<<light->getLightNum()<<" already used, ignore light"<<std::endl;
}
}
}
return !pll.empty();
}
void MWShadowTechnique::createShaders()
{
OSG_INFO<<"MWShadowTechnique::createShaders()"<<std::endl;
unsigned int _baseTextureUnit = 0;
_shadowCastingStateSet = new osg::StateSet;
ShadowSettings* settings = getShadowedScene()->getShadowSettings();
if (!settings->getDebugDraw())
{
// note soft (attribute only no mode override) setting. When this works ?
// 1. for objects prepared for backface culling
// because they usually also set CullFace and CullMode on in their state
// For them we override CullFace but CullMode remains set by them
// 2. For one faced, trees, and similar objects which cannot use
// backface nor front face so they usually use CullMode off set here.
// In this case we will draw them in their entirety.
if (_useFrontFaceCulling)
{
_shadowCastingStateSet->setAttribute(new osg::CullFace(osg::CullFace::FRONT), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
// make sure GL_CULL_FACE is off by default
// we assume that if object has cull face attribute set to back
// it will also set cull face mode ON so no need for override
_shadowCastingStateSet->setMode(GL_CULL_FACE, osg::StateAttribute::OFF);
}
else
_shadowCastingStateSet->setMode(GL_CULL_FACE, osg::StateAttribute::OFF | osg::StateAttribute::OVERRIDE);
}
_polygonOffset = new osg::PolygonOffset(_polygonOffsetFactor, _polygonOffsetUnits);
_shadowCastingStateSet->setAttribute(_polygonOffset.get(), osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
_shadowCastingStateSet->setMode(GL_POLYGON_OFFSET_FILL, osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
osg::ref_ptr<osg::Uniform> baseTextureSampler = new osg::Uniform("baseTexture",(int)_baseTextureUnit);
osg::ref_ptr<osg::Uniform> baseTextureUnit = new osg::Uniform("baseTextureUnit",(int)_baseTextureUnit);
osg::ref_ptr<osg::Uniform> maxDistance = new osg::Uniform("maximumShadowMapDistance", (float)settings->getMaximumShadowMapDistance());
osg::ref_ptr<osg::Uniform> fadeStart = new osg::Uniform("shadowFadeStart", (float)_shadowFadeStart);
for (auto& perFrameUniformList : _uniforms)
{
perFrameUniformList.clear();
perFrameUniformList.push_back(baseTextureSampler);
perFrameUniformList.emplace_back(baseTextureUnit.get());
perFrameUniformList.push_back(maxDistance);
perFrameUniformList.push_back(fadeStart);
}
for(unsigned int sm_i=0; sm_i<settings->getNumShadowMapsPerLight(); ++sm_i)
{
{
std::stringstream sstr;
sstr<<"shadowTexture"<<sm_i;
osg::ref_ptr<osg::Uniform> shadowTextureSampler = new osg::Uniform(sstr.str().c_str(),(int)(settings->getBaseShadowTextureUnit()+sm_i));
for (auto& perFrameUniformList : _uniforms)
perFrameUniformList.emplace_back(shadowTextureSampler.get());
}
{
std::stringstream sstr;
sstr<<"shadowTextureUnit"<<sm_i;
osg::ref_ptr<osg::Uniform> shadowTextureUnit = new osg::Uniform(sstr.str().c_str(),(int)(settings->getBaseShadowTextureUnit()+sm_i));
for (auto& perFrameUniformList : _uniforms)
perFrameUniformList.emplace_back(shadowTextureUnit.get());
}
}
switch(settings->getShaderHint())
{
case(ShadowSettings::NO_SHADERS):
{
OSG_INFO<<"No shaders provided by, user must supply own shaders"<<std::endl;
break;
}
case(ShadowSettings::PROVIDE_VERTEX_AND_FRAGMENT_SHADER):
case(ShadowSettings::PROVIDE_FRAGMENT_SHADER):
{
_program = new osg::Program;
//osg::ref_ptr<osg::Shader> fragment_shader = new osg::Shader(osg::Shader::FRAGMENT, fragmentShaderSource_noBaseTexture);
if (settings->getNumShadowMapsPerLight()==2)
{
_program->addShader(new osg::Shader(osg::Shader::FRAGMENT, fragmentShaderSource_withBaseTexture_twoShadowMaps));
}
else
{
_program->addShader(new osg::Shader(osg::Shader::FRAGMENT, fragmentShaderSource_withBaseTexture));
}
break;
}
}
{
osg::ref_ptr<osg::Image> image = new osg::Image;
image->allocateImage( 1, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE );
*(osg::Vec4ub*)image->data() = osg::Vec4ub( 0xFF, 0xFF, 0xFF, 0xFF );
_fallbackBaseTexture = new osg::Texture2D(image.get());
_fallbackBaseTexture->setWrap(osg::Texture2D::WRAP_S,osg::Texture2D::REPEAT);
_fallbackBaseTexture->setWrap(osg::Texture2D::WRAP_T,osg::Texture2D::REPEAT);
_fallbackBaseTexture->setFilter(osg::Texture2D::MIN_FILTER,osg::Texture2D::NEAREST);
_fallbackBaseTexture->setFilter(osg::Texture2D::MAG_FILTER,osg::Texture2D::NEAREST);
_fallbackShadowMapTexture = new osg::Texture2D(image.get());
_fallbackShadowMapTexture->setWrap(osg::Texture2D::WRAP_S,osg::Texture2D::REPEAT);
_fallbackShadowMapTexture->setWrap(osg::Texture2D::WRAP_T,osg::Texture2D::REPEAT);
_fallbackShadowMapTexture->setFilter(osg::Texture2D::MIN_FILTER,osg::Texture2D::NEAREST);
_fallbackShadowMapTexture->setFilter(osg::Texture2D::MAG_FILTER,osg::Texture2D::NEAREST);
_fallbackShadowMapTexture->setShadowComparison(true);
_fallbackShadowMapTexture->setShadowCompareFunc(osg::Texture::ShadowCompareFunc::ALWAYS);
}
if (!_castingPrograms[GL_ALWAYS - GL_NEVER])
OSG_NOTICE << "Shadow casting shader has not been set up. Remember to call setupCastingShader(Shader::ShaderManager &)" << std::endl;
// Always use the GL_ALWAYS shader as the shadows bin will change it if necessary
_shadowCastingStateSet->setAttributeAndModes(_castingPrograms[GL_ALWAYS - GL_NEVER], osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE);
// The casting program uses a sampler, so to avoid undefined behaviour, we must bind a dummy texture in case no other is supplied
_shadowCastingStateSet->setTextureAttributeAndModes(0, _fallbackBaseTexture.get(), osg::StateAttribute::ON);
_shadowCastingStateSet->addUniform(new osg::Uniform("useDiffuseMapForShadowAlpha", true));
_shadowCastingStateSet->addUniform(new osg::Uniform("alphaTestShadows", false));
osg::ref_ptr<osg::Depth> depth = new osg::Depth;
depth->setWriteMask(true);
_shadowCastingStateSet->setAttribute(depth, osg::StateAttribute::ON|osg::StateAttribute::OVERRIDE);
_shadowCastingStateSet->setMode(GL_DEPTH_CLAMP, osg::StateAttribute::ON);
// TODO: compare performance when alpha testing is handled here versus using a discard in the fragment shader
}
osg::Polytope MWShadowTechnique::computeLightViewFrustumPolytope(Frustum& frustum, LightData& positionedLight)
{
OSG_INFO<<"computeLightViewFrustumPolytope()"<<std::endl;
osg::Polytope polytope;
polytope.setToUnitFrustum();
polytope.transformProvidingInverse( frustum.projectionMatrix );
polytope.transformProvidingInverse( frustum.modelViewMatrix );
osg::Polytope lightVolumePolytope;
if (positionedLight.directionalLight)
{
osg::Polytope::PlaneList& planes = polytope.getPlaneList();
osg::Polytope::ClippingMask selector_mask = 0x1;
osg::Polytope::ClippingMask result_mask = 0x0;
for(unsigned int i=0; i<planes.size(); ++i, selector_mask <<= 1)
{
OSG_INFO<<" plane "<<planes[i]<<" planes["<<i<<"].dotProductNormal(lightDir)="<<planes[i].dotProductNormal(positionedLight.lightDir);
if (planes[i].dotProductNormal(positionedLight.lightDir)>=0.0)
{
OSG_INFO<<" Need remove side "<<i<<std::endl;
}
else
{
OSG_INFO<<std::endl;
lightVolumePolytope.add(planes[i]);
result_mask = result_mask | selector_mask;
}
}
OSG_INFO<<" planes.size() = "<<planes.size()<<std::endl;
OSG_INFO<<" planes.getResultMask() = "<<polytope.getResultMask()<<std::endl;
OSG_INFO<<" resultMask = "<<result_mask<<std::endl;
polytope.setResultMask(result_mask);
}
else
{
const osg::Polytope::PlaneList& planes = polytope.getPlaneList();
osg::Polytope::ClippingMask selector_mask = 0x1;
osg::Polytope::ClippingMask result_mask = 0x0;
for(unsigned int i=0; i<planes.size(); ++i, selector_mask <<= 1)
{
double d = planes[i].distance(positionedLight.lightPos3);
OSG_INFO<<" plane "<<planes[i]<<" planes["<<i<<"].distance(lightPos3)="<<d;
if (d<0.0)
{
OSG_INFO<<" Need remove side "<<i<<std::endl;
}
else
{
OSG_INFO<<std::endl;
lightVolumePolytope.add(planes[i]);
result_mask = result_mask | selector_mask;
}
}
OSG_INFO<<" planes.size() = "<<planes.size()<<std::endl;
OSG_INFO<<" planes.getResultMask() = "<<polytope.getResultMask()<<std::endl;
OSG_INFO<<" resultMask = "<<result_mask<<std::endl;
polytope.setResultMask(result_mask);
}
OSG_INFO<<"Which frustum edges are active?"<<std::endl;
for(unsigned int i=0; i<12; ++i)
{
Frustum::Indices& indices = frustum.edges[i];
unsigned int corner_a = indices[0];
unsigned int corner_b = indices[1];
unsigned int face_a = indices[2];
unsigned int face_b = indices[3];
bool face_a_active = (polytope.getResultMask()&(0x1<<face_a))!=0;
bool face_b_active = (polytope.getResultMask()&(0x1<<face_b))!=0;
unsigned int numActive = 0;
if (face_a_active) ++numActive;
if (face_b_active) ++numActive;
if (numActive==1)
{
osg::Plane boundaryPlane;
if (positionedLight.directionalLight)
{
osg::Vec3d normal = (frustum.corners[corner_b]-frustum.corners[corner_a])^positionedLight.lightDir;
normal.normalize();
boundaryPlane.set(normal, frustum.corners[corner_a]);
}
else
{
boundaryPlane.set(positionedLight.lightPos3, frustum.corners[corner_a], frustum.corners[corner_b]);
}
OSG_INFO<<"Boundary Edge "<<i<<", corner_a="<<corner_a<<", corner_b="<<corner_b<<", face_a_active="<<face_a_active<<", face_b_active="<<face_b_active;
if (boundaryPlane.distance(frustum.center)<0.0)
{
boundaryPlane.flip();
OSG_INFO<<", flipped boundary edge "<<boundaryPlane<<std::endl;
}
else
{
OSG_INFO<<", no need to flip boundary edge "<<boundaryPlane<<std::endl;
}
lightVolumePolytope.add(boundaryPlane);
}
else OSG_INFO<<"Internal Edge "<<i<<", corner_a="<<corner_a<<", corner_b="<<corner_b<<", face_a_active="<<face_a_active<<", face_b_active="<<face_b_active<<std::endl;
}
const osg::Polytope::PlaneList& planes = lightVolumePolytope.getPlaneList();
for(unsigned int i=0; i<planes.size(); ++i)
{
OSG_INFO<<" plane "<<planes[i]<<" "<<((lightVolumePolytope.getResultMask() & (0x1<<i))?"on":"off")<<std::endl;
}
return lightVolumePolytope;
}
bool MWShadowTechnique::computeShadowCameraSettings(Frustum& frustum, LightData& positionedLight, osg::Matrixd& projectionMatrix, osg::Matrixd& viewMatrix)
{
OSG_INFO<<"standardShadowMapCameraSettings()"<<std::endl;
osg::Vec3d lightSide;
const ShadowSettings* settings = getShadowedScene()->getShadowSettings();
double dotProduct_v = positionedLight.lightDir * frustum.frustumCenterLine;
double gamma_v = acos(dotProduct_v);
if (gamma_v<osg::DegreesToRadians(settings->getPerspectiveShadowMapCutOffAngle()) || gamma_v>osg::DegreesToRadians(180.0-settings->getPerspectiveShadowMapCutOffAngle()))
{
OSG_INFO<<"View direction and Light direction below tolerance"<<std::endl;
osg::Vec3d viewSide = osg::Matrixd::transform3x3(frustum.modelViewMatrix, osg::Vec3d(1.0,0.0,0.0));
lightSide = positionedLight.lightDir ^ (viewSide ^ positionedLight.lightDir);
lightSide.normalize();
}
else
{
lightSide = positionedLight.lightDir ^ frustum.frustumCenterLine;
lightSide.normalize();
}
osg::Vec3d lightUp = lightSide ^ positionedLight.lightDir;
#if 0
OSG_NOTICE<<"positionedLight.lightDir="<<positionedLight.lightDir<<std::endl;
OSG_NOTICE<<"lightSide="<<lightSide<<std::endl;
OSG_NOTICE<<"lightUp="<<lightUp<<std::endl;
#endif
if (positionedLight.directionalLight)
{
double xMin=0.0, xMax=0.0;
double yMin=0.0, yMax=0.0;
double zMin=0.0, zMax=0.0;
for(Frustum::Vertices::iterator itr = frustum.corners.begin();
itr != frustum.corners.end();
++itr)
{
osg::Vec3d cornerDelta(*itr - frustum.center);
osg::Vec3d cornerInLightCoords(cornerDelta*lightSide,
cornerDelta*lightUp,
cornerDelta*positionedLight.lightDir);
OSG_INFO<<" corner ="<<*itr<<" in lightcoords "<<cornerInLightCoords<<std::endl;
xMin = osg::minimum( xMin, cornerInLightCoords.x());
xMax = osg::maximum( xMax, cornerInLightCoords.x());
yMin = osg::minimum( yMin, cornerInLightCoords.y());
yMax = osg::maximum( yMax, cornerInLightCoords.y());
zMin = osg::minimum( zMin, cornerInLightCoords.z());
zMax = osg::maximum( zMax, cornerInLightCoords.z());
}
OSG_INFO<<"before bs xMin="<<xMin<<", xMax="<<xMax<<", yMin="<<yMin<<", yMax="<<yMax<<", zMin="<<zMin<<", zMax="<<zMax<<std::endl;
osg::BoundingSphere bs = _shadowedScene->getBound();
osg::Vec3d modelCenterRelativeFrustumCenter(bs.center()-frustum.center);
osg::Vec3d modelCenterInLightCoords(modelCenterRelativeFrustumCenter*lightSide,
modelCenterRelativeFrustumCenter*lightUp,
modelCenterRelativeFrustumCenter*positionedLight.lightDir);
OSG_INFO<<"modelCenterInLight="<<modelCenterInLightCoords<<" radius="<<bs.radius()<<std::endl;
double radius(bs.radius());
xMin = osg::maximum(xMin, modelCenterInLightCoords.x()-radius);
xMax = osg::minimum(xMax, modelCenterInLightCoords.x()+radius);
yMin = osg::maximum(yMin, modelCenterInLightCoords.y()-radius);
yMax = osg::minimum(yMax, modelCenterInLightCoords.y()+radius);
zMin = modelCenterInLightCoords.z()-radius;
zMax = osg::minimum(zMax, modelCenterInLightCoords.z()+radius);
OSG_INFO<<"after bs xMin="<<xMin<<", xMax="<<xMax<<", yMin="<<yMin<<", yMax="<<yMax<<", zMin="<<zMin<<", zMax="<<zMax<<std::endl;
if (xMin>=xMax || yMin>=yMax || zMin>=zMax)
{
OSG_INFO<<"Warning nothing available to create shadows"<<zMax<<std::endl;
return false;
}
else
{
projectionMatrix.makeOrtho(xMin,xMax, yMin, yMax,0.0,zMax-zMin);
viewMatrix.makeLookAt(frustum.center+positionedLight.lightDir*zMin, frustum.center+positionedLight.lightDir*zMax, lightUp);
}
}
else
{
double zMax=-dbl_max;
OSG_INFO<<"lightDir = "<<positionedLight.lightDir<<std::endl;
OSG_INFO<<"lightPos3 = "<<positionedLight.lightPos3<<std::endl;
for(Frustum::Vertices::iterator itr = frustum.corners.begin();
itr != frustum.corners.end();
++itr)
{
osg::Vec3d cornerDelta(*itr - positionedLight.lightPos3);
osg::Vec3d cornerInLightCoords(cornerDelta*lightSide,
cornerDelta*lightUp,
cornerDelta*positionedLight.lightDir);
OSG_INFO<<" cornerInLightCoords= "<<cornerInLightCoords<<std::endl;
zMax = osg::maximum( zMax, cornerInLightCoords.z());
}
OSG_INFO<<"zMax = "<<zMax<<std::endl;
if (zMax<0.0)
{
// view frustum entirely behind light
return false;
}
double minRatio = 0.0001;
double zMin=zMax*minRatio;
double fov = positionedLight.light->getSpotCutoff() * 2.0;
if(fov < 180.0) // spotlight
{
projectionMatrix.makePerspective(fov, 1.0, zMin, zMax);
viewMatrix.makeLookAt(positionedLight.lightPos3,
positionedLight.lightPos3+positionedLight.lightDir, lightUp);
}
else
{
double fovMAX = 160.0f;
fov = 0.0;
// calculate the max FOV from the corners of the frustum relative to the light position
for(Frustum::Vertices::iterator itr = frustum.corners.begin();
itr != frustum.corners.end();
++itr)
{
osg::Vec3d cornerDelta(*itr - positionedLight.lightPos3);
double length = cornerDelta.length();
if (length==0.0) fov = osg::minimum(fov, 180.0);
else
{
double dotProduct = cornerDelta*positionedLight.lightDir;
double angle = 2.0*osg::RadiansToDegrees( acos(dotProduct/length) );
fov = osg::maximum(fov, angle);
}
}
OSG_INFO<<"Computed fov = "<<fov<<std::endl;
if (fov>fovMAX)
{
OSG_INFO<<"Clampping fov = "<<fov<<std::endl;
fov=fovMAX;
}
projectionMatrix.makePerspective(fov, 1.0, zMin, zMax);
viewMatrix.makeLookAt(positionedLight.lightPos3,
positionedLight.lightPos3+positionedLight.lightDir, lightUp);
}
}
return true;
}
struct ConvexHull
{
typedef std::vector<osg::Vec3d> Vertices;
typedef std::pair< osg::Vec3d, osg::Vec3d > Edge;
typedef std::list< Edge > Edges;
Edges _edges;
bool valid() const { return !_edges.empty(); }
void setToFrustum(MWShadowTechnique::Frustum& frustum)
{
_edges.push_back( Edge(frustum.corners[0],frustum.corners[1]) );
_edges.push_back( Edge(frustum.corners[1],frustum.corners[2]) );
_edges.push_back( Edge(frustum.corners[2],frustum.corners[3]) );
_edges.push_back( Edge(frustum.corners[3],frustum.corners[0]) );
_edges.push_back( Edge(frustum.corners[4],frustum.corners[5]) );
_edges.push_back( Edge(frustum.corners[5],frustum.corners[6]) );
_edges.push_back( Edge(frustum.corners[6],frustum.corners[7]) );
_edges.push_back( Edge(frustum.corners[7],frustum.corners[4]) );
_edges.push_back( Edge(frustum.corners[0],frustum.corners[4]) );
_edges.push_back( Edge(frustum.corners[1],frustum.corners[5]) );
_edges.push_back( Edge(frustum.corners[2],frustum.corners[6]) );
_edges.push_back( Edge(frustum.corners[3],frustum.corners[7]) );
}
struct ConvexHull2D
{
// Implementation based on https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain#C++
typedef osg::Vec3d Point;
static double cross(const Point &O, const Point &A, const Point &B)
{
return (A.x() - O.x())*(B.y() - O.y()) - (A.y() - O.y())*(B.x() - O.x());
}
// Calculates the 2D convex hull and returns it as a vector containing the points in CCW order with the first and last point being the same.
static std::vector<Point> convexHull(std::set<Point> &P)
{
size_t n = P.size(), k = 0;
if (n <= 3)
return std::vector<Point>(P.cbegin(), P.cend());
std::vector<Point> H(2 * n);
// Points are already sorted in a std::set
// Build lower hull
for (auto pItr = P.cbegin(); pItr != P.cend(); ++pItr)
{
while (k >= 2 && cross(H[k - 2], H[k - 1], *pItr) <= 0)
k--;
H[k++] = *pItr;
}
// Build upper hull
size_t t = k + 1;
for (auto pItr = std::next(P.crbegin()); pItr != P.crend(); ++pItr)
{
while (k >= t && cross(H[k - 2], H[k - 1], *pItr) <= 0)
k--;
H[k++] = *pItr;
}
H.resize(k - 1);
return H;
}
};
Vertices findInternalEdges(osg::Vec3d mainVertex, Vertices connectedVertices)
{
Vertices internalEdgeVertices;
for (auto vertex : connectedVertices)
{
osg::Matrixd matrix;
osg::Vec3d dir = vertex - mainVertex;
matrix.makeLookAt(mainVertex, vertex, dir.z() == 0 ? osg::Vec3d(0, 0, 1) : osg::Vec3d(1, 0, 0));
Vertices testVertices;
for (auto testVertex : connectedVertices)
{
if (vertex != testVertex)
testVertices.push_back(testVertex);
}
std::vector<double> bearings;
for (auto testVertex : testVertices)
{
osg::Vec3d transformedVertex = testVertex * matrix;
bearings.push_back(atan2(transformedVertex.y(), transformedVertex.x()));
}
std::sort(bearings.begin(), bearings.end());
bool keep = false;
for (auto itr = bearings.begin(); itr + 1 != bearings.end(); ++itr)
{
if (*itr + osg::PI < *(itr + 1))
{
keep = true;
break;
}
}
if (!keep && bearings[0] + osg::PI > bearings.back())
keep = true;
if (!keep)
internalEdgeVertices.push_back(vertex);
}
return internalEdgeVertices;
}
void extendTowardsNegativeZ()
{
typedef std::set<osg::Vec3d> VertexSet;
// Collect the set of vertices
VertexSet vertices;
for (Edge edge : _edges)
{
vertices.insert(edge.first);
vertices.insert(edge.second);
}
if (vertices.size() == 0)
return;
// Get the vertices contributing to the 2D convex hull
Vertices extremeVertices = ConvexHull2D::convexHull(vertices);
VertexSet extremeVerticesSet(extremeVertices.cbegin(), extremeVertices.cend());
// Add their extrusions to the final edge collection
// We extrude as far as -1.5 as the coordinate space shouldn't ever put any shadow casters further than -1.0
Edges finalEdges;
// Add edges towards -Z
for (auto vertex : extremeVertices)
finalEdges.push_back(Edge(vertex, osg::Vec3d(vertex.x(), vertex.y(), -1.5)));
// Add edge loop to 'seal' the hull
for (auto itr = extremeVertices.cbegin(); itr != extremeVertices.cend() - 1; ++itr)
finalEdges.push_back(Edge(osg::Vec3d(itr->x(), itr->y(), -1.5), osg::Vec3d((itr + 1)->x(), (itr + 1)->y(), -1.5)));
// The convex hull algorithm we are using sometimes places a point at both ends of the vector, so we don't always need to add the last edge separately.
if (extremeVertices.front() != extremeVertices.back())
finalEdges.push_back(Edge(osg::Vec3d(extremeVertices.front().x(), extremeVertices.front().y(), -1.5), osg::Vec3d(extremeVertices.back().x(), extremeVertices.back().y(), -1.5)));
// Remove internal edges connected to extreme vertices
for (auto vertex : extremeVertices)
{
Vertices connectedVertices;
for (Edge edge : _edges)
{
if (edge.first == vertex)
connectedVertices.push_back(edge.second);
else if (edge.second == vertex)
connectedVertices.push_back(edge.first);
}
connectedVertices.push_back(osg::Vec3d(vertex.x(), vertex.y(), -1.5));
Vertices unwantedEdgeEnds = findInternalEdges(vertex, connectedVertices);
for (auto edgeEnd : unwantedEdgeEnds)
{
for (auto itr = _edges.begin(); itr != _edges.end();)
{
if (*itr == Edge(vertex, edgeEnd))
{
itr = _edges.erase(itr);
break;
}
else if (*itr == Edge(edgeEnd, vertex))
{
itr = _edges.erase(itr);
break;
}
else
++itr;
}
}
}
// Gather connected vertices
VertexSet unprocessedConnectedVertices(extremeVertices.begin(), extremeVertices.end());
VertexSet connectedVertices;
while (unprocessedConnectedVertices.size() > 0)
{
osg::Vec3d vertex = *unprocessedConnectedVertices.begin();
unprocessedConnectedVertices.erase(unprocessedConnectedVertices.begin());
connectedVertices.insert(vertex);
for (Edge edge : _edges)
{
osg::Vec3d otherEnd;
if (edge.first == vertex)
otherEnd = edge.second;
else if (edge.second == vertex)
otherEnd - edge.first;
else
continue;
if (connectedVertices.count(otherEnd))
continue;
unprocessedConnectedVertices.insert(otherEnd);
}
}
for (Edge edge : _edges)
{
if (connectedVertices.count(edge.first) || connectedVertices.count(edge.second))
finalEdges.push_back(edge);
}
_edges = finalEdges;
}
void transform(const osg::Matrixd& m)
{
for(Edges::iterator itr = _edges.begin();
itr != _edges.end();
++itr)
{
itr->first = itr->first * m;
itr->second = itr->second * m;
}
}
void clip(const osg::Plane& plane)
{
Vertices intersections;
// OSG_NOTICE<<"clip("<<plane<<") edges.size()="<<_edges.size()<<std::endl;
for(Edges::iterator itr = _edges.begin();
itr != _edges.end();
)
{
double d0 = plane.distance(itr->first);
double d1 = plane.distance(itr->second);
if (d0<0.0 && d1<0.0)
{
// OSG_NOTICE<<" Edge completely outside, removing"<<std::endl;
Edges::iterator to_delete_itr = itr;
++itr;
_edges.erase(to_delete_itr);
}
else if (d0>=0.0 && d1>=0.0)
{
// OSG_NOTICE<<" Edge completely inside"<<std::endl;
++itr;
}
else
{
osg::Vec3d& v0 = itr->first;
osg::Vec3d& v1 = itr->second;
osg::Vec3d intersection = v0 - (v1-v0)*(d0/(d1-d0));
intersections.push_back(intersection);
// OSG_NOTICE<<" Edge across clip plane, v0="<<v0<<", v1="<<v1<<", intersection= "<<intersection<<std::endl;
if (d0<0.0)
{
// move first vertex on edge
v0 = intersection;
}
else
{
// move second vertex on edge
v1 = intersection;
}
++itr;
}
}
// OSG_NOTICE<<"After clipping, have "<<intersections.size()<<" to insert"<<std::endl;
if (intersections.size() < 2)
{
return;
}
if (intersections.size() == 2)
{
_edges.push_back( Edge(intersections[0], intersections[1]) );
return;
}
if (intersections.size() == 3)
{
_edges.push_back( Edge(intersections[0], intersections[1]) );
_edges.push_back( Edge(intersections[1], intersections[2]) );
_edges.push_back( Edge(intersections[2], intersections[0]) );
return;
}
// more than 3 intersections so have to sort them in clockwise order so that
// we can generate the edges correctly.
osg::Vec3d normal(plane.getNormal());
osg::Vec3d side_x = osg::Vec3d(1.0,0.0,0.0) ^ normal;
osg::Vec3d side_y = osg::Vec3d(0.0,1.0,0.0) ^ normal;
osg::Vec3d side = (side_x.length2()>=side_y.length2()) ? side_x : side_y;
side.normalize();
osg::Vec3d up = side ^ normal;
up.normalize();
osg::Vec3d center;
for(Vertices::iterator itr = intersections.begin();
itr != intersections.end();
++itr)
{
center += *itr;
center.x() = osg::maximum(center.x(), -dbl_max);
center.y() = osg::maximum(center.y(), -dbl_max);
center.z() = osg::maximum(center.z(), -dbl_max);
center.x() = osg::minimum(center.x(), dbl_max);
center.y() = osg::minimum(center.y(), dbl_max);
center.z() = osg::minimum(center.z(), dbl_max);
}
center /= double(intersections.size());
typedef std::map<double, std::list<std::pair<osg::Vec3d, double>>> VertexMap;
VertexMap vertexMap;
for(Vertices::iterator itr = intersections.begin();
itr != intersections.end();
++itr)
{
osg::Vec3d dv = (*itr-center);
double h = dv * side;
double v = dv * up;
double angle = atan2(h,v);
// OSG_NOTICE<<"angle = "<<osg::RadiansToDegrees(angle)<<", h="<<h<<" v= "<<v<<std::endl;
// We need to make sure all intersections are added to the list in the right order, even if they're so far away that their angles work out the same.
double sortValue;
if (angle < osg::DegreesToRadians(-135.0) || angle > osg::DegreesToRadians(135.0))
sortValue = -h;
else if (angle < osg::DegreesToRadians(-45.0))
sortValue = v;
else if (angle < osg::DegreesToRadians(45.0))
sortValue = h;
else
sortValue = -v;
if (vertexMap.count(angle))
{
auto listItr = vertexMap[angle].begin();
while (listItr != vertexMap[angle].end() && listItr->second < sortValue)
++listItr;
vertexMap[angle].insert(listItr, std::make_pair(*itr, sortValue));
}
else
vertexMap[angle].push_back(std::make_pair(*itr, sortValue));
}
osg::Vec3d previous_v = vertexMap.rbegin()->second.back().first;
for(VertexMap::iterator itr = vertexMap.begin();
itr != vertexMap.end();
++itr)
{
for (auto vertex : itr->second)
{
_edges.push_back(Edge(previous_v, vertex.first));
previous_v = vertex.first;
}
}
// OSG_NOTICE<<" after clip("<<plane<<") edges.size()="<<_edges.size()<<std::endl;
}
void clip(const osg::Polytope& polytope)
{
const osg::Polytope::PlaneList& planes = polytope.getPlaneList();
for(osg::Polytope::PlaneList::const_iterator itr = planes.begin();
itr != planes.end();
++itr)
{
clip(*itr);
}
}
double min(unsigned int index) const
{
double m = dbl_max;
for(Edges::const_iterator itr = _edges.begin();
itr != _edges.end();
++itr)
{
const Edge& edge = *itr;
if (edge.first[index]<m) m = edge.first[index];
if (edge.second[index]<m) m = edge.second[index];
}
return m;
}
double max(unsigned int index) const
{
double m = -dbl_max;
for(Edges::const_iterator itr = _edges.begin();
itr != _edges.end();
++itr)
{
const Edge& edge = *itr;
if (edge.first[index]>m) m = edge.first[index];
if (edge.second[index]>m) m = edge.second[index];
}
return m;
}
double minRatio(const osg::Vec3d& eye, unsigned int index) const
{
double m = dbl_max;
osg::Vec3d delta;
double ratio;
for(Edges::const_iterator itr = _edges.begin();
itr != _edges.end();
++itr)
{
const Edge& edge = *itr;
delta = edge.first-eye;
ratio = delta[index]/delta[1];
if (ratio<m) m = ratio;
delta = edge.second-eye;
ratio = delta[index]/delta[1];
if (ratio<m) m = ratio;
}
return m;
}
double maxRatio(const osg::Vec3d& eye, unsigned int index) const
{
double m = -dbl_max;
osg::Vec3d delta;
double ratio;
for(Edges::const_iterator itr = _edges.begin();
itr != _edges.end();
++itr)
{
const Edge& edge = *itr;
delta = edge.first-eye;
ratio = delta[index]/delta[1];
if (ratio>m) m = ratio;
delta = edge.second-eye;
ratio = delta[index]/delta[1];
if (ratio>m) m = ratio;
}
return m;
}
void output(std::ostream& out)
{
out<<"ConvexHull"<<std::endl;
for(Edges::const_iterator itr = _edges.begin();
itr != _edges.end();
++itr)
{
const Edge& edge = *itr;
out<<" edge ("<<edge.first<<") ("<<edge.second<<")"<<std::endl;
}
}
};
struct RenderLeafBounds
{
RenderLeafBounds():
computeRatios(false),
numRenderLeaf(0),
n(0.0),
previous_modelview(0),
clip_min_x(-1.0), clip_max_x(1.0),
clip_min_y(-1.0), clip_max_y(1.0),
clip_min_z(-1.0), clip_max_z(1.0),
clip_min_x_ratio(-dbl_max), clip_max_x_ratio(dbl_max),
clip_min_z_ratio(-dbl_max), clip_max_z_ratio(dbl_max),
min_x_ratio(dbl_max), max_x_ratio(-dbl_max),
min_z_ratio(dbl_max), max_z_ratio(-dbl_max),
min_x(1.0), max_x(-1.0),
min_y(1.0), max_y(-1.0),
min_z(1.0), max_z(-1.0)
{
//OSG_NOTICE<<std::endl<<"RenderLeafBounds"<<std::endl;
}
void set(const osg::Matrixd& p)
{
computeRatios = false;
light_p = p;
clip_min_x = -dbl_max; clip_max_x = dbl_max;
clip_min_y = -dbl_max; clip_max_y = dbl_max;
clip_min_z = -dbl_max; clip_max_z = dbl_max;
min_x = dbl_max; max_x = -dbl_max;
min_y = dbl_max; max_y = -dbl_max;
min_z = dbl_max; max_z = -dbl_max;
}
void set(const osg::Matrixd& p, osg::Vec3d& e_ls, double nr)
{
computeRatios = true;
light_p = p;
eye_ls = e_ls;
n = nr;
}
void operator() (const osgUtil::RenderLeaf* renderLeaf)
{
++numRenderLeaf;
if (renderLeaf->_modelview.get()!=previous_modelview)
{
previous_modelview = renderLeaf->_modelview.get();
if (previous_modelview)
{
light_mvp.mult(*renderLeaf->_modelview, light_p);
}
else
{
// no modelview matrix (such as when LightPointNode is in the scene graph) so assume
// that modelview matrix is indentity.
light_mvp = light_p;
}
// OSG_INFO<<"Computing new light_mvp "<<light_mvp<<std::endl;
}
else
{
// OSG_INFO<<"Reusing light_mvp "<<light_mvp<<std::endl;
}
const osg::BoundingBox& bb = renderLeaf->_drawable->getBoundingBox();
if (bb.valid())
{
// OSG_NOTICE<<"checked extents of "<<renderLeaf->_drawable->getName()<<std::endl;
handle(osg::Vec3d(bb.xMin(),bb.yMin(),bb.zMin()));
handle(osg::Vec3d(bb.xMax(),bb.yMin(),bb.zMin()));
handle(osg::Vec3d(bb.xMin(),bb.yMax(),bb.zMin()));
handle(osg::Vec3d(bb.xMax(),bb.yMax(),bb.zMin()));
handle(osg::Vec3d(bb.xMin(),bb.yMin(),bb.zMax()));
handle(osg::Vec3d(bb.xMax(),bb.yMin(),bb.zMax()));
handle(osg::Vec3d(bb.xMin(),bb.yMax(),bb.zMax()));
handle(osg::Vec3d(bb.xMax(),bb.yMax(),bb.zMax()));
}
else
{
OSG_INFO<<"bb invalid"<<std::endl;
}
}
void handle(const osg::Vec3d& v)
{
osg::Vec3d ls = v * light_mvp;
// OSG_NOTICE<<" corner v="<<v<<", ls="<<ls<<std::endl;
if (computeRatios)
{
osg::Vec3d delta = ls-eye_ls;
double x_ratio, z_ratio;
if (delta.y()>n)
{
x_ratio = delta.x()/delta.y();
z_ratio = delta.z()/delta.y();
}
else
{
x_ratio = delta.x()/n;
z_ratio = delta.z()/n;
}
if (x_ratio<min_x_ratio) min_x_ratio = x_ratio;
if (x_ratio>max_x_ratio) max_x_ratio = x_ratio;
if (z_ratio<min_z_ratio) min_z_ratio = z_ratio;
if (z_ratio>max_z_ratio) max_z_ratio = z_ratio;
}
// clip to the light space
if (ls.x()<clip_min_x) ls.x()=clip_min_x;
if (ls.x()>clip_max_x) ls.x()=clip_max_x;
if (ls.y()<clip_min_y) ls.y()=clip_min_y;
if (ls.y()>clip_max_y) ls.y()=clip_max_y;
if (ls.z()<clip_min_z) ls.z()=clip_min_z;
if (ls.z()>clip_max_z) ls.z()=clip_max_z;
// compute the xyz range.
if (ls.x()<min_x) min_x=ls.x();
if (ls.x()>max_x) max_x=ls.x();
if (ls.y()<min_y) min_y=ls.y();
if (ls.y()>max_y) max_y=ls.y();
if (ls.z()<min_z) { min_z=ls.z(); /* OSG_NOTICE<<" - ";*/ }
if (ls.z()>max_z) { max_z=ls.z(); /* OSG_NOTICE<<" + ";*/ }
// OSG_NOTICE<<" bb.z() in ls = "<<ls.z()<<std::endl;
}
bool computeRatios;
unsigned int numRenderLeaf;
osg::Matrixd light_p;
osg::Vec3d eye_ls;
double n;
osg::Matrixd light_mvp;
osg::RefMatrix* previous_modelview;
double clip_min_x, clip_max_x;
double clip_min_y, clip_max_y;
double clip_min_z, clip_max_z;
double clip_min_x_ratio, clip_max_x_ratio;
double clip_min_z_ratio, clip_max_z_ratio;
double min_x_ratio, max_x_ratio;
double min_z_ratio, max_z_ratio;
double min_x, max_x;
double min_y, max_y;
double min_z, max_z;
};
bool MWShadowTechnique::cropShadowCameraToMainFrustum(Frustum& frustum, osg::Camera* camera, double viewNear, double viewFar, std::vector<osg::Plane>& planeList)
{
osg::Matrixd light_p = camera->getProjectionMatrix();
osg::Matrixd light_v = camera->getViewMatrix();
osg::Matrixd light_vp = light_v * light_p;
osg::Matrixd oldLightP = light_p;
ConvexHull convexHull;
convexHull.setToFrustum(frustum);
osg::Vec3d nearPoint = frustum.eye + frustum.frustumCenterLine * viewNear;
osg::Vec3d farPoint = frustum.eye + frustum.frustumCenterLine * viewFar;
double nearDist = -frustum.frustumCenterLine * nearPoint;
double farDist = frustum.frustumCenterLine * farPoint;
convexHull.clip(osg::Plane(frustum.frustumCenterLine, nearDist));
convexHull.clip(osg::Plane(-frustum.frustumCenterLine, farDist));
convexHull.transform(light_vp);
double xMin = -1.0, xMax = 1.0;
double yMin = -1.0, yMax = 1.0;
double zMin = -1.0, zMax = 1.0;
if (convexHull.valid())
{
xMin = osg::maximum(-1.0, convexHull.min(0));
xMax = osg::minimum(1.0, convexHull.max(0));
yMin = osg::maximum(-1.0, convexHull.min(1));
yMax = osg::minimum(1.0, convexHull.max(1));
zMin = osg::maximum(-1.0, convexHull.min(2));
zMax = osg::minimum(1.0, convexHull.max(2));
}
else
return false;
if (xMin != -1.0 || yMin != -1.0 || zMin != -1.0 ||
xMax != 1.0 || yMax != 1.0 || zMax != 1.0)
{
osg::Matrix m;
m.makeTranslate(osg::Vec3d(-0.5*(xMax + xMin),
-0.5*(yMax + yMin),
-0.5*(zMax + zMin)));
m.postMultScale(osg::Vec3d(2.0 / (xMax - xMin),
2.0 / (yMax - yMin),
2.0 / (zMax - zMin)));
light_p.postMult(m);
camera->setProjectionMatrix(light_p);
convexHull.transform(osg::Matrixd::inverse(oldLightP));
xMin = convexHull.min(0);
xMax = convexHull.max(0);
yMin = convexHull.min(1);
yMax = convexHull.max(1);
zMin = convexHull.min(2);
planeList.emplace_back(0.0, -1.0, 0.0, yMax);
planeList.emplace_back(0.0, 1.0, 0.0, -yMin);
planeList.emplace_back(-1.0, 0.0, 0.0, xMax);
planeList.emplace_back(1.0, 0.0, 0.0, -xMin);
// In view space, the light is at the most positive value, and we want to cull stuff beyond the minimum value.
planeList.emplace_back(0.0, 0.0, 1.0, -zMin);
// Don't add a zMax culling plane - we still want those objects, but don't care about their depth buffer value.
}
return true;
}
bool MWShadowTechnique::adjustPerspectiveShadowMapCameraSettings(osgUtil::RenderStage* renderStage, Frustum& frustum, LightData& /*positionedLight*/, osg::Camera* camera, double viewNear, double viewFar)
{
const ShadowSettings* settings = getShadowedScene()->getShadowSettings();
//frustum.projectionMatrix;
//frustum.modelViewMatrix;
osg::Matrixd light_p = camera->getProjectionMatrix();
osg::Matrixd light_v = camera->getViewMatrix();
osg::Matrixd light_vp = light_v * light_p;
osg::Vec3d lightdir(0.0,0.0,-1.0);
// check whether this light space projection is perspective or orthographic.
bool orthographicLightSpaceProjection = light_p(0,3)==0.0 && light_p(1,3)==0.0 && light_p(2,3)==0.0;
if (!orthographicLightSpaceProjection)
{
OSG_INFO<<"perspective light space projection not yet supported."<<std::endl;
return false;
}
//OSG_NOTICE<<"light_v="<<light_v<<std::endl;
//OSG_NOTICE<<"light_p="<<light_p<<std::endl;
ConvexHull convexHull;
convexHull.setToFrustum(frustum);
osg::Vec3d nearPoint = frustum.eye + frustum.frustumCenterLine * viewNear;
osg::Vec3d farPoint = frustum.eye + frustum.frustumCenterLine * viewFar;
double nearDist = -frustum.frustumCenterLine * nearPoint;
double farDist = frustum.frustumCenterLine * farPoint;
convexHull.clip(osg::Plane(frustum.frustumCenterLine, nearDist));
convexHull.clip(osg::Plane(-frustum.frustumCenterLine, farDist));
#if 0
OSG_NOTICE<<"ws ConvexHull xMin="<<convexHull.min(0)<<", xMax="<<convexHull.max(0)<<std::endl;
OSG_NOTICE<<"ws ConvexHull yMin="<<convexHull.min(1)<<", yMax="<<convexHull.max(1)<<std::endl;
OSG_NOTICE<<"ws ConvexHull zMin="<<convexHull.min(2)<<", zMax="<<convexHull.max(2)<<std::endl;
convexHull.output(osg::notify(osg::NOTICE));
#endif
convexHull.transform(light_vp);
ConvexHull convexHullUnextended = convexHull;
convexHull.extendTowardsNegativeZ();
#if 0
convexHull.output(osg::notify(osg::NOTICE));
OSG_NOTICE<<"ls ConvexHull xMin="<<convexHull.min(0)<<", xMax="<<convexHull.max(0)<<std::endl;
OSG_NOTICE<<"ls ConvexHull yMin="<<convexHull.min(1)<<", yMax="<<convexHull.max(1)<<std::endl;
OSG_NOTICE<<"ls ConvexHull zMin="<<convexHull.min(2)<<", zMax="<<convexHull.max(2)<<std::endl;
#endif
#if 0
// only applicable when the light space contains the whole model contained in the view frustum.
{
convexHull.clip(osg::Plane(0.0,0.0,1,1.0)); // clip by near plane of light space.
convexHull.clip(osg::Plane(0.0,0.0,-1,1.0)); // clip by far plane of light space.
}
#endif
#if 1
if (renderStage)
{
#if 1
osg::ElapsedTime timer;
#endif
RenderLeafTraverser<RenderLeafBounds> rli;
rli.set(light_p);
rli.traverse(renderStage);
if (rli.numRenderLeaf==0)
{
return false;
}
#if 0
OSG_NOTICE<<"New Time for RenderLeafTraverser "<<timer.elapsedTime_m()<<"ms, number of render leaves "<<rli.numRenderLeaf<<std::endl;
OSG_NOTICE<<" scene bounds min_x="<<rli.min_x<<", max_x="<<rli.max_x<<std::endl;
OSG_NOTICE<<" scene bounds min_y="<<rli.min_y<<", max_y="<<rli.max_y<<std::endl;
OSG_NOTICE<<" scene bounds min_z="<<rli.min_z<<", max_z="<<rli.max_z<<std::endl;
#endif
#if 0
double widest_x = osg::maximum(fabs(rli.min_x), fabs(rli.max_x));
double widest_y = osg::maximum(fabs(rli.min_y), fabs(rli.max_y));
double widest_z = osg::maximum(fabs(rli.min_z), fabs(rli.max_z));
#endif
#if 1
#if 1
convexHull.clip(osg::Plane(1.0,0.0,0.0,-rli.min_x));
convexHull.clip(osg::Plane(-1.0,0.0,0.0,rli.max_x));
convexHullUnextended.clip(osg::Plane(1.0, 0.0, 0.0, -rli.min_x));
convexHullUnextended.clip(osg::Plane(-1.0, 0.0, 0.0, rli.max_x));
#else
convexHull.clip(osg::Plane(1.0,0.0,0.0,widest_x));
convexHull.clip(osg::Plane(-1.0,0.0,0.0,widest_x));
#endif
#if 1
convexHull.clip(osg::Plane(0.0,1.0,0.0,-rli.min_y));
convexHull.clip(osg::Plane(0.0,-1.0,0.0,rli.max_y));
convexHullUnextended.clip(osg::Plane(0.0, 1.0, 0.0, -rli.min_y));
convexHullUnextended.clip(osg::Plane(0.0, -1.0, 0.0, rli.max_y));
#endif
#endif
#if 1
convexHull.clip(osg::Plane(0.0,0.0,1.0,-rli.min_z));
convexHull.clip(osg::Plane(0.0,0.0,-1.0,rli.max_z));
convexHullUnextended.clip(osg::Plane(0.0, 0.0, 1.0, -rli.min_z));
convexHullUnextended.clip(osg::Plane(0.0, 0.0, -1.0, rli.max_z));
#elif 0
convexHull.clip(osg::Plane(0.0,0.0,1.0,1.0));
convexHull.clip(osg::Plane(0.0,0.0,-1.0,1.0));
#endif
#if 0
OSG_NOTICE<<"widest_x = "<<widest_x<<std::endl;
OSG_NOTICE<<"widest_y = "<<widest_y<<std::endl;
OSG_NOTICE<<"widest_z = "<<widest_z<<std::endl;
#endif
}
#endif
#if 0
convexHull.output(osg::notify(osg::NOTICE));
OSG_NOTICE<<"after clipped ls ConvexHull xMin="<<convexHull.min(0)<<", xMax="<<convexHull.max(0)<<std::endl;
OSG_NOTICE<<"after clipped ls ConvexHull yMin="<<convexHull.min(1)<<", yMax="<<convexHull.max(1)<<std::endl;
OSG_NOTICE<<"after clipped ls ConvexHull zMin="<<convexHull.min(2)<<", zMax="<<convexHull.max(2)<<std::endl;
#endif
double xMin=-1.0, xMax=1.0;
double yMin=-1.0, yMax=1.0;
double zMin=-1.0, zMax=1.0;
if (convexHull.valid())
{
double widest_x = osg::maximum(fabs(convexHull.min(0)), fabs(convexHull.max(0)));
xMin = osg::maximum(-1.0,-widest_x);
xMax = osg::minimum(1.0,widest_x);
yMin = osg::maximum(-1.0,convexHull.min(1));
yMax = osg::minimum(1.0,convexHull.max(1));
}
else
{
// clipping of convex hull has invalidated it, so reset it so later checks on it provide valid results.
convexHull.setToFrustum(frustum);
convexHull.transform(light_vp);
}
#if 0
OSG_NOTICE<<"xMin = "<<xMin<<", \txMax = "<<xMax<<std::endl;
OSG_NOTICE<<"yMin = "<<yMin<<", \tyMax = "<<yMax<<std::endl;
OSG_NOTICE<<"zMin = "<<zMin<<", \tzMax = "<<zMax<<std::endl;
#endif
#if 1
// we always want the lightspace to include the computed near plane.
zMin = -1.0;
if (xMin!=-1.0 || yMin!=-1.0 || zMin!=-1.0 ||
xMax!=1.0 || yMax!=1.0 || zMax!=1.0)
{
osg::Matrix m;
m.makeTranslate(osg::Vec3d(-0.5*(xMax+xMin),
-0.5*(yMax+yMin),
-0.5*(zMax+zMin)));
m.postMultScale(osg::Vec3d(2.0/(xMax-xMin),
2.0/(yMax-yMin),
2.0/(zMax-zMin)));
convexHull.transform(m);
convexHullUnextended.transform(m);
light_p.postMult(m);
light_vp = light_v * light_p;
#if 0
OSG_NOTICE<<"Adjusting projection matrix "<<m<<std::endl;
convexHull.output(osg::notify(osg::NOTICE));
#endif
camera->setProjectionMatrix(light_p);
}
#endif
osg::Vec3d eye_v = frustum.eye * light_v;
//osg::Vec3d centerNearPlane_v = frustum.centerNearPlane * light_v;
osg::Vec3d center_v = frustum.center * light_v;
osg::Vec3d viewdir_v = center_v-eye_v; viewdir_v.normalize();
double dotProduct_v = lightdir * viewdir_v;
double gamma_v = acos(dotProduct_v);
if (gamma_v<osg::DegreesToRadians(settings->getPerspectiveShadowMapCutOffAngle()) || gamma_v>osg::DegreesToRadians(180-settings->getPerspectiveShadowMapCutOffAngle()))
{
// OSG_NOTICE<<"Light and view vectors near parallel - use standard shadow map."<<std::endl;
return true;
}
//OSG_NOTICE<<"gamma="<<osg::RadiansToDegrees(gamma_v)<<std::endl;
//OSG_NOTICE<<"eye_v="<<eye_v<<std::endl;
//OSG_NOTICE<<"viewdir_v="<<viewdir_v<<std::endl;
osg::Vec3d eye_ls = frustum.eye * light_vp;
#if 0
if (eye_ls.y()>-1.0)
{
OSG_NOTICE<<"Eye point within light space - use standard shadow map."<<std::endl;
return true;
}
#endif
//osg::Vec3d centerNearPlane_ls = frustum.centerNearPlane * light_vp;
//osg::Vec3d centerFarPlane_ls = frustum.centerFarPlane * light_vp;
osg::Vec3d center_ls = frustum.center * light_vp;
osg::Vec3d viewdir_ls = center_ls-eye_ls; viewdir_ls.normalize();
osg::Vec3d side = lightdir ^ viewdir_ls; side.normalize();
osg::Vec3d up = side ^ lightdir;
double d = 2.0;
double alpha = osg::DegreesToRadians(30.0);
double n = tan(alpha)*tan(osg::PI_2-gamma_v)*tan(osg::PI_2-gamma_v);
//double n = tan(alpha)*tan(osg::PI_2-gamma_v);
//OSG_NOTICE<<"n = "<<n<<", eye_ls.y()="<<eye_ls.y()<<", eye_v="<<eye_v<<", eye="<<frustum.eye<<std::endl;
double min_n = osg::maximum(-1.0-eye_ls.y(), settings->getMinimumShadowMapNearFarRatio());
if (n<min_n)
{
//OSG_NOTICE<<"Clamping n to eye point"<<std::endl;
n=min_n;
}
//n = min_n;
//n = 0.01;
//n = z_n;
double f = n+d;
double a = (f+n)/(f-n);
double b = -2.0*f*n/(f-n);
osg::Vec3d virtual_eye(0.0,-1.0-n, eye_ls.z());
osg::Matrixd lightView;
lightView.makeLookAt(virtual_eye, virtual_eye+lightdir, up);
#if 0
OSG_NOTICE<<"n = "<<n<<", f="<<f<<std::endl;
OSG_NOTICE<<"eye_ls = "<<eye_ls<<", virtual_eye="<<virtual_eye<<std::endl;
OSG_NOTICE<<"frustum.eyes="<<frustum.eye<<std::endl;
#endif
double min_x_ratio = 0.0;
double max_x_ratio = 0.0;
double min_z_ratio = dbl_max;
double max_z_ratio = -dbl_max;
min_x_ratio = convexHull.valid() ? convexHull.minRatio(virtual_eye,0) : -dbl_max;
max_x_ratio = convexHull.valid() ? convexHull.maxRatio(virtual_eye,0) : dbl_max;
//min_z_ratio = convexHull.minRatio(virtual_eye,2);
//max_z_ratio = convexHull.maxRatio(virtual_eye,2);
if (convexHullUnextended.valid())
{
min_z_ratio = convexHullUnextended.minRatio(virtual_eye, 2);
max_z_ratio = convexHullUnextended.maxRatio(virtual_eye, 2);
}
#if 0
OSG_NOTICE<<"convexHull min_x_ratio = "<<min_x_ratio<<std::endl;
OSG_NOTICE<<"convexHull max_x_ratio = "<<max_x_ratio<<std::endl;
OSG_NOTICE<<"convexHull min_z_ratio = "<<min_z_ratio<<std::endl;
OSG_NOTICE<<"convexHull max_z_ratio = "<<max_z_ratio<<std::endl;
#endif
#if 1
if (renderStage)
{
#if 1
osg::ElapsedTime timer;
#endif
RenderLeafTraverser<RenderLeafBounds> rli;
rli.set(light_p, virtual_eye, n);
rli.traverse(renderStage);
if (rli.numRenderLeaf==0)
{
return false;
}
#if 0
OSG_NOTICE<<"Time for RenderLeafTraverser "<<timer.elapsedTime_m()<<"ms, number of render leaves "<<rli.numRenderLeaf<<std::endl;
OSG_NOTICE<<"scene bounds min_x="<<rli.min_x<<", max_x="<<rli.max_x<<std::endl;
OSG_NOTICE<<"scene bounds min_y="<<rli.min_y<<", max_y="<<rli.max_y<<std::endl;
OSG_NOTICE<<"scene bounds min_z="<<rli.min_z<<", max_z="<<rli.max_z<<std::endl;
OSG_NOTICE<<"min_x_ratio="<<rli.min_x_ratio<<", max_x_ratio="<<rli.max_x_ratio<<std::endl;
OSG_NOTICE<<"min_z_ratio="<<rli.min_z_ratio<<", max_z_ratio="<<rli.max_z_ratio<<std::endl;
#endif
if (rli.min_x_ratio>min_x_ratio) min_x_ratio = rli.min_x_ratio;
if (rli.max_x_ratio<max_x_ratio) max_x_ratio = rli.max_x_ratio;
if (min_z_ratio == dbl_max || rli.min_z_ratio > min_z_ratio)
min_z_ratio = rli.min_z_ratio;
if (max_z_ratio == -dbl_max || rli.max_z_ratio < max_z_ratio)
max_z_ratio = rli.max_z_ratio;
}
#endif
double best_x_ratio = osg::maximum(fabs(min_x_ratio),fabs(max_x_ratio));
double best_z_ratio = osg::maximum(fabs(min_z_ratio),fabs(max_z_ratio));
//best_z_ratio = osg::maximum(1.0, best_z_ratio);
#if 0
OSG_NOTICE<<"min_x_ratio = "<<min_x_ratio<<std::endl;
OSG_NOTICE<<"max_x_ratio = "<<max_x_ratio<<std::endl;
OSG_NOTICE<<"best_x_ratio = "<<best_x_ratio<<std::endl;
OSG_NOTICE<<"min_z_ratio = "<<min_z_ratio<<std::endl;
OSG_NOTICE<<"max_z_ratio = "<<max_z_ratio<<std::endl;
OSG_NOTICE<<"best_z_ratio = "<<best_z_ratio<<std::endl;
#endif
//best_z_ratio *= 10.0;
osg::Matrixd lightPerspective( 1.0/best_x_ratio, 0.0, 0.0, 0.0,
0.0, a, 0.0, 1.0,
0.0, 0.0, 1.0/best_z_ratio, 0.0,
0.0, b, 0.0, 0.0 );
osg::Matrixd light_persp = light_p * lightView * lightPerspective;
#if 0
OSG_NOTICE<<"light_p = "<<light_p<<std::endl;
OSG_NOTICE<<"lightView = "<<lightView<<std::endl;
OSG_NOTICE<<"lightPerspective = "<<lightPerspective<<std::endl;
OSG_NOTICE<<"light_persp result = "<<light_persp<<std::endl;
#endif
camera->setProjectionMatrix(light_persp);
return true;
}
bool MWShadowTechnique::assignTexGenSettings(osgUtil::CullVisitor* cv, osg::Camera* camera, unsigned int textureUnit, osg::TexGen* texgen)
{
OSG_INFO<<"assignTexGenSettings() textureUnit="<<textureUnit<<" texgen="<<texgen<<std::endl;
texgen->setMode(osg::TexGen::EYE_LINEAR);
// compute the matrix which takes a vertex from local coords into tex coords
// We actually use two matrices one used to define texgen
// and second that will be used as modelview when appling to OpenGL
texgen->setPlanesFromMatrix( camera->getProjectionMatrix() *
osg::Matrix::translate(1.0,1.0,1.0) *
osg::Matrix::scale(0.5,0.5,0.5) );
// Place texgen with modelview which removes big offsets (making it float friendly)
osg::ref_ptr<osg::RefMatrix> refMatrix =
new osg::RefMatrix( camera->getInverseViewMatrix() * (*(cv->getModelViewMatrix())) );
osgUtil::RenderStage* currentStage = cv->getCurrentRenderBin()->getStage();
currentStage->getPositionalStateContainer()->addPositionedTextureAttribute( textureUnit, refMatrix.get(), texgen );
return true;
}
void MWShadowTechnique::cullShadowReceivingScene(osgUtil::CullVisitor* cv) const
{
OSG_INFO<<"cullShadowReceivingScene()"<<std::endl;
// record the traversal mask on entry so we can reapply it later.
unsigned int traversalMask = cv->getTraversalMask();
cv->setTraversalMask( traversalMask & _shadowedScene->getShadowSettings()->getReceivesShadowTraversalMask() );
_shadowedScene->osg::Group::traverse(*cv);
cv->setTraversalMask( traversalMask );
return;
}
void MWShadowTechnique::cullShadowCastingScene(osgUtil::CullVisitor* cv, osg::Camera* camera) const
{
OSG_INFO<<"cullShadowCastingScene()"<<std::endl;
// record the traversal mask on entry so we can reapply it later.
unsigned int traversalMask = cv->getTraversalMask();
cv->setTraversalMask( traversalMask & _shadowedScene->getShadowSettings()->getCastsShadowTraversalMask() );
if (camera) camera->accept(*cv);
cv->setTraversalMask( traversalMask );
return;
}
osg::StateSet* MWShadowTechnique::prepareStateSetForRenderingShadow(ViewDependentData& vdd, unsigned int traversalNumber) const
{
OSG_INFO<<" prepareStateSetForRenderingShadow() "<<vdd.getStateSet(traversalNumber)<<std::endl;
osg::ref_ptr<osg::StateSet> stateset = vdd.getStateSet(traversalNumber);
stateset->clear();
stateset->setTextureAttributeAndModes(0, _fallbackBaseTexture.get(), osg::StateAttribute::ON);
for(const auto& uniform : _uniforms[traversalNumber % 2])
{
OSG_INFO<<"addUniform("<<uniform->getName()<<")"<<std::endl;
stateset->addUniform(uniform);
}
if (_program.valid())
{
stateset->setAttribute(_program.get());
}
LightDataList& pll = vdd.getLightDataList();
for(LightDataList::iterator itr = pll.begin();
itr != pll.end();
++itr)
{
// 3. create per light/per shadow map division of lightspace/frustum
// create a list of light/shadow map data structures
LightData& pl = (**itr);
// if no texture units have been activated for this light then no shadow state required.
if (pl.textureUnits.empty()) continue;
for(LightData::ActiveTextureUnits::iterator atu_itr = pl.textureUnits.begin();
atu_itr != pl.textureUnits.end();
++atu_itr)
{
OSG_INFO<<" Need to assign state for "<<*atu_itr<<std::endl;
}
}
const ShadowSettings* settings = getShadowedScene()->getShadowSettings();
unsigned int shadowMapModeValue = settings->getUseOverrideForShadowMapTexture() ?
osg::StateAttribute::ON | osg::StateAttribute::OVERRIDE :
osg::StateAttribute::ON;
ShadowDataList& sdl = vdd.getShadowDataList();
for(ShadowDataList::iterator itr = sdl.begin();
itr != sdl.end();
++itr)
{
// 3. create per light/per shadow map division of lightspace/frustum
// create a list of light/shadow map data structures
ShadowData& sd = (**itr);
OSG_INFO<<" ShadowData for "<<sd._textureUnit<<std::endl;
stateset->setTextureAttributeAndModes(sd._textureUnit, sd._texture.get(), shadowMapModeValue);
stateset->setTextureMode(sd._textureUnit,GL_TEXTURE_GEN_S,osg::StateAttribute::ON);
stateset->setTextureMode(sd._textureUnit,GL_TEXTURE_GEN_T,osg::StateAttribute::ON);
stateset->setTextureMode(sd._textureUnit,GL_TEXTURE_GEN_R,osg::StateAttribute::ON);
stateset->setTextureMode(sd._textureUnit,GL_TEXTURE_GEN_Q,osg::StateAttribute::ON);
}
return stateset;
}
void MWShadowTechnique::resizeGLObjectBuffers(unsigned int /*maxSize*/)
{
// the way that ViewDependentData is mapped shouldn't
}
void MWShadowTechnique::releaseGLObjects(osg::State* state) const
{
std::lock_guard<std::mutex> lock(_viewDependentDataMapMutex);
for(ViewDependentDataMap::const_iterator itr = _viewDependentDataMap.begin();
itr != _viewDependentDataMap.end();
++itr)
{
ViewDependentData* vdd = itr->second.get();
if (vdd)
{
vdd->releaseGLObjects(state);
}
}
if (_debugHud)
_debugHud->releaseGLObjects(state);
}
class DoubleBufferCallback : public osg::Callback
{
public:
DoubleBufferCallback(osg::NodeList &children) : mChildren(children) {}
bool run(osg::Object* node, osg::Object* visitor) override
{
// We can't use a static cast as NodeVisitor virtually inherits from Object
osg::ref_ptr<osg::NodeVisitor> nodeVisitor = visitor->asNodeVisitor();
unsigned int traversalNumber = nodeVisitor->getTraversalNumber();
mChildren[traversalNumber % 2]->accept(*nodeVisitor);
return true;
}
protected:
osg::NodeList mChildren;
};
SceneUtil::MWShadowTechnique::DebugHUD::DebugHUD(int numberOfShadowMapsPerLight) : mDebugProgram(new osg::Program)
{
osg::ref_ptr<osg::Shader> vertexShader = new osg::Shader(osg::Shader::VERTEX, debugVertexShaderSource);
mDebugProgram->addShader(vertexShader);
osg::ref_ptr<osg::Shader> fragmentShader = new osg::Shader(osg::Shader::FRAGMENT, debugFragmentShaderSource);
mDebugProgram->addShader(fragmentShader);
osg::ref_ptr<osg::Program> frustumProgram = new osg::Program;
vertexShader = new osg::Shader(osg::Shader::VERTEX, debugFrustumVertexShaderSource);
frustumProgram->addShader(vertexShader);
fragmentShader = new osg::Shader(osg::Shader::FRAGMENT, debugFrustumFragmentShaderSource);
frustumProgram->addShader(fragmentShader);
for (auto& frustumGeometry : mFrustumGeometries)
{
frustumGeometry = new osg::Geometry();
frustumGeometry->setCullingActive(false);
frustumGeometry->getOrCreateStateSet()->setAttributeAndModes(frustumProgram, osg::StateAttribute::ON);
}
osg::ref_ptr<osg::DrawElementsUShort> frustumDrawElements = new osg::DrawElementsUShort(osg::PrimitiveSet::LINE_STRIP);
for (auto & geom : mFrustumGeometries)
geom->addPrimitiveSet(frustumDrawElements);
frustumDrawElements->push_back(0);
frustumDrawElements->push_back(1);
frustumDrawElements->push_back(2);
frustumDrawElements->push_back(3);
frustumDrawElements->push_back(0);
frustumDrawElements->push_back(4);
frustumDrawElements->push_back(5);
frustumDrawElements->push_back(6);
frustumDrawElements->push_back(7);
frustumDrawElements->push_back(4);
frustumDrawElements = new osg::DrawElementsUShort(osg::PrimitiveSet::LINES);
for (auto & geom : mFrustumGeometries)
geom->addPrimitiveSet(frustumDrawElements);
frustumDrawElements->push_back(1);
frustumDrawElements->push_back(5);
frustumDrawElements->push_back(2);
frustumDrawElements->push_back(6);
frustumDrawElements->push_back(3);
frustumDrawElements->push_back(7);
for (int i = 0; i < numberOfShadowMapsPerLight; ++i)
addAnotherShadowMap();
}
void SceneUtil::MWShadowTechnique::DebugHUD::draw(osg::ref_ptr<osg::Texture2D> texture, unsigned int shadowMapNumber, const osg::Matrixd &matrix, osgUtil::CullVisitor& cv)
{
// It might be possible to change shadow settings at runtime
if (shadowMapNumber > mDebugCameras.size())
addAnotherShadowMap();
osg::ref_ptr<osg::StateSet> stateSet = new osg::StateSet();
stateSet->setTextureAttributeAndModes(sDebugTextureUnit, texture, osg::StateAttribute::ON);
auto frustumUniform = mFrustumUniforms[cv.getTraversalNumber() % 2][shadowMapNumber];
frustumUniform->set(matrix);
stateSet->addUniform(frustumUniform);
// Some of these calls may be superfluous.
unsigned int traversalMask = cv.getTraversalMask();
cv.setTraversalMask(mDebugGeometry[shadowMapNumber]->getNodeMask());
cv.pushStateSet(stateSet);
mDebugCameras[shadowMapNumber]->accept(cv);
cv.popStateSet();
cv.setTraversalMask(traversalMask);
// cv.getState()->setCheckForGLErrors(osg::State::ONCE_PER_ATTRIBUTE);
}
void SceneUtil::MWShadowTechnique::DebugHUD::releaseGLObjects(osg::State* state) const
{
for (auto const& camera : mDebugCameras)
camera->releaseGLObjects(state);
mDebugProgram->releaseGLObjects(state);
for (auto const& node : mDebugGeometry)
node->releaseGLObjects(state);
for (auto const& node : mFrustumTransforms)
node->releaseGLObjects(state);
for (auto const& node : mFrustumGeometries)
node->releaseGLObjects(state);
}
void SceneUtil::MWShadowTechnique::DebugHUD::setFrustumVertices(osg::ref_ptr<osg::Vec3Array> vertices, unsigned int traversalNumber)
{
mFrustumGeometries[traversalNumber % 2]->setVertexArray(vertices);
}
void SceneUtil::MWShadowTechnique::DebugHUD::addAnotherShadowMap()
{
unsigned int shadowMapNumber = mDebugCameras.size();
mDebugCameras.push_back(new osg::Camera);
mDebugCameras[shadowMapNumber]->setViewport(200 * shadowMapNumber, 0, 200, 200);
mDebugCameras[shadowMapNumber]->setRenderOrder(osg::Camera::POST_RENDER);
mDebugCameras[shadowMapNumber]->setClearColor(osg::Vec4(1.0, 1.0, 0.0, 1.0));
mDebugCameras[shadowMapNumber]->getOrCreateStateSet()->setMode(GL_DEPTH_TEST, osg::StateAttribute::OFF);
mDebugGeometry.emplace_back(osg::createTexturedQuadGeometry(osg::Vec3(-1, -1, 0), osg::Vec3(2, 0, 0), osg::Vec3(0, 2, 0)));
mDebugGeometry[shadowMapNumber]->setCullingActive(false);
mDebugCameras[shadowMapNumber]->addChild(mDebugGeometry[shadowMapNumber]);
osg::ref_ptr<osg::StateSet> stateSet = mDebugGeometry[shadowMapNumber]->getOrCreateStateSet();
stateSet->setAttributeAndModes(mDebugProgram, osg::StateAttribute::ON);
osg::ref_ptr<osg::Uniform> textureUniform = new osg::Uniform("texture", sDebugTextureUnit);
//textureUniform->setType(osg::Uniform::SAMPLER_2D);
stateSet->addUniform(textureUniform.get());
mFrustumTransforms.push_back(new osg::Group);
osg::NodeList frustumGeometryNodeList(mFrustumGeometries.cbegin(), mFrustumGeometries.cend());
mFrustumTransforms[shadowMapNumber]->setCullCallback(new DoubleBufferCallback(frustumGeometryNodeList));
mFrustumTransforms[shadowMapNumber]->setCullingActive(false);
mDebugCameras[shadowMapNumber]->addChild(mFrustumTransforms[shadowMapNumber]);
for(auto& uniformVector : mFrustumUniforms)
uniformVector.push_back(new osg::Uniform(osg::Uniform::FLOAT_MAT4, "transform"));
}