mirror of
https://github.com/TES3MP/openmw-tes3mp.git
synced 2025-01-15 22:19:54 +00:00
c50b18b3bb
By definition this is not 'Mutable state of a cell' and does not belong in CellStore. This change should improve startup times (graph is now loaded on demand) and edits to 'pathgrid.hpp' no longer cause the entirety of OpenMW to be rebuilt.
343 lines
12 KiB
C++
343 lines
12 KiB
C++
#include "pathgrid.hpp"
|
|
|
|
#include "../mwbase/world.hpp"
|
|
#include "../mwbase/environment.hpp"
|
|
|
|
#include "../mwworld/cellstore.hpp"
|
|
#include "../mwworld/esmstore.hpp"
|
|
|
|
namespace
|
|
{
|
|
// See http://theory.stanford.edu/~amitp/GameProgramming/Heuristics.html
|
|
//
|
|
// One of the smallest cost in Seyda Neen is between points 77 & 78:
|
|
// pt x y
|
|
// 77 = 8026, 4480
|
|
// 78 = 7986, 4218
|
|
//
|
|
// Euclidean distance is about 262 (ignoring z) and Manhattan distance is 300
|
|
// (again ignoring z). Using a value of about 300 for D seems like a reasonable
|
|
// starting point for experiments. If in doubt, just use value 1.
|
|
//
|
|
// The distance between 3 & 4 are pretty small, too.
|
|
// 3 = 5435, 223
|
|
// 4 = 5948, 193
|
|
//
|
|
// Approx. 514 Euclidean distance and 533 Manhattan distance.
|
|
//
|
|
float manhattan(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
|
|
{
|
|
return 300.0f * (abs(a.mX - b.mX) + abs(a.mY - b.mY) + abs(a.mZ - b.mZ));
|
|
}
|
|
|
|
// Choose a heuristics - Note that these may not be the best for directed
|
|
// graphs with non-uniform edge costs.
|
|
//
|
|
// distance:
|
|
// - sqrt((curr.x - goal.x)^2 + (curr.y - goal.y)^2 + (curr.z - goal.z)^2)
|
|
// - slower but more accurate
|
|
//
|
|
// Manhattan:
|
|
// - |curr.x - goal.x| + |curr.y - goal.y| + |curr.z - goal.z|
|
|
// - faster but not the shortest path
|
|
float costAStar(const ESM::Pathgrid::Point& a, const ESM::Pathgrid::Point& b)
|
|
{
|
|
//return distance(a, b);
|
|
return manhattan(a, b);
|
|
}
|
|
}
|
|
|
|
namespace MWMechanics
|
|
{
|
|
PathgridGraph::PathgridGraph(const MWWorld::CellStore *cell)
|
|
: mCell(NULL)
|
|
, mPathgrid(NULL)
|
|
, mIsExterior(0)
|
|
, mGraph(0)
|
|
, mIsGraphConstructed(false)
|
|
, mSCCId(0)
|
|
, mSCCIndex(0)
|
|
{
|
|
load(cell);
|
|
}
|
|
|
|
/*
|
|
* mGraph is populated with the cost of each allowed edge.
|
|
*
|
|
* The data structure is based on the code in buildPath2() but modified.
|
|
* Please check git history if interested.
|
|
*
|
|
* mGraph[v].edges[i].index = w
|
|
*
|
|
* v = point index of location "from"
|
|
* i = index of edges from point v
|
|
* w = point index of location "to"
|
|
*
|
|
*
|
|
* Example: (notice from p(0) to p(2) is not allowed in this example)
|
|
*
|
|
* mGraph[0].edges[0].index = 1
|
|
* .edges[1].index = 3
|
|
*
|
|
* mGraph[1].edges[0].index = 0
|
|
* .edges[1].index = 2
|
|
* .edges[2].index = 3
|
|
*
|
|
* mGraph[2].edges[0].index = 1
|
|
*
|
|
* (etc, etc)
|
|
*
|
|
*
|
|
* low
|
|
* cost
|
|
* p(0) <---> p(1) <------------> p(2)
|
|
* ^ ^
|
|
* | |
|
|
* | +-----> p(3)
|
|
* +---------------->
|
|
* high cost
|
|
*/
|
|
bool PathgridGraph::load(const MWWorld::CellStore *cell)
|
|
{
|
|
if(!cell)
|
|
return false;
|
|
|
|
if(mIsGraphConstructed)
|
|
return true;
|
|
|
|
mCell = cell->getCell();
|
|
mIsExterior = cell->getCell()->isExterior();
|
|
mPathgrid = MWBase::Environment::get().getWorld()->getStore().get<ESM::Pathgrid>().search(*cell->getCell());
|
|
if(!mPathgrid)
|
|
return false;
|
|
|
|
|
|
mGraph.resize(mPathgrid->mPoints.size());
|
|
for(int i = 0; i < static_cast<int> (mPathgrid->mEdges.size()); i++)
|
|
{
|
|
ConnectedPoint neighbour;
|
|
neighbour.cost = costAStar(mPathgrid->mPoints[mPathgrid->mEdges[i].mV0],
|
|
mPathgrid->mPoints[mPathgrid->mEdges[i].mV1]);
|
|
// forward path of the edge
|
|
neighbour.index = mPathgrid->mEdges[i].mV1;
|
|
mGraph[mPathgrid->mEdges[i].mV0].edges.push_back(neighbour);
|
|
// reverse path of the edge
|
|
// NOTE: These are redundant, ESM already contains the required reverse paths
|
|
//neighbour.index = mPathgrid->mEdges[i].mV0;
|
|
//mGraph[mPathgrid->mEdges[i].mV1].edges.push_back(neighbour);
|
|
}
|
|
buildConnectedPoints();
|
|
mIsGraphConstructed = true;
|
|
return true;
|
|
}
|
|
|
|
const ESM::Pathgrid *PathgridGraph::getPathgrid() const
|
|
{
|
|
return mPathgrid;
|
|
}
|
|
|
|
// v is the pathgrid point index (some call them vertices)
|
|
void PathgridGraph::recursiveStrongConnect(int v)
|
|
{
|
|
mSCCPoint[v].first = mSCCIndex; // index
|
|
mSCCPoint[v].second = mSCCIndex; // lowlink
|
|
mSCCIndex++;
|
|
mSCCStack.push_back(v);
|
|
int w;
|
|
|
|
for(int i = 0; i < static_cast<int> (mGraph[v].edges.size()); i++)
|
|
{
|
|
w = mGraph[v].edges[i].index;
|
|
if(mSCCPoint[w].first == -1) // not visited
|
|
{
|
|
recursiveStrongConnect(w); // recurse
|
|
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
|
|
mSCCPoint[w].second);
|
|
}
|
|
else
|
|
{
|
|
if(find(mSCCStack.begin(), mSCCStack.end(), w) != mSCCStack.end())
|
|
mSCCPoint[v].second = std::min(mSCCPoint[v].second,
|
|
mSCCPoint[w].first);
|
|
}
|
|
}
|
|
|
|
if(mSCCPoint[v].second == mSCCPoint[v].first)
|
|
{ // new component
|
|
do
|
|
{
|
|
w = mSCCStack.back();
|
|
mSCCStack.pop_back();
|
|
mGraph[w].componentId = mSCCId;
|
|
}
|
|
while(w != v);
|
|
mSCCId++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* mGraph contains the strongly connected component group id's along
|
|
* with pre-calculated edge costs.
|
|
*
|
|
* A cell can have disjointed pathgrids, e.g. Seyda Neen has 3
|
|
*
|
|
* mGraph for Seyda Neen will therefore have 3 different values. When
|
|
* selecting a random pathgrid point for AiWander, mGraph can be checked
|
|
* for quickly finding whether the destination is reachable.
|
|
*
|
|
* Otherwise, buildPath can automatically select a closest reachable end
|
|
* pathgrid point (reachable from the closest start point).
|
|
*
|
|
* Using Tarjan's algorithm:
|
|
*
|
|
* mGraph | graph G |
|
|
* mSCCPoint | V | derived from mPoints
|
|
* mGraph[v].edges | E (for v) |
|
|
* mSCCIndex | index | tracking smallest unused index
|
|
* mSCCStack | S |
|
|
* mGraph[v].edges[i].index | w |
|
|
*
|
|
*/
|
|
void PathgridGraph::buildConnectedPoints()
|
|
{
|
|
// both of these are set to zero in the constructor
|
|
//mSCCId = 0; // how many strongly connected components in this cell
|
|
//mSCCIndex = 0;
|
|
int pointsSize = static_cast<int> (mPathgrid->mPoints.size());
|
|
mSCCPoint.resize(pointsSize, std::pair<int, int> (-1, -1));
|
|
mSCCStack.reserve(pointsSize);
|
|
|
|
for(int v = 0; v < pointsSize; v++)
|
|
{
|
|
if(mSCCPoint[v].first == -1) // undefined (haven't visited)
|
|
recursiveStrongConnect(v);
|
|
}
|
|
}
|
|
|
|
bool PathgridGraph::isPointConnected(const int start, const int end) const
|
|
{
|
|
return (mGraph[start].componentId == mGraph[end].componentId);
|
|
}
|
|
|
|
void PathgridGraph::getNeighbouringPoints(const int index, ESM::Pathgrid::PointList &nodes) const
|
|
{
|
|
for(int i = 0; i < static_cast<int> (mGraph[index].edges.size()); i++)
|
|
{
|
|
int neighbourIndex = mGraph[index].edges[i].index;
|
|
if (neighbourIndex != index)
|
|
nodes.push_back(mPathgrid->mPoints[neighbourIndex]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* NOTE: Based on buildPath2(), please check git history if interested
|
|
* Should consider using a 3rd party library version (e.g. boost)
|
|
*
|
|
* Find the shortest path to the target goal using a well known algorithm.
|
|
* Uses mGraph which has pre-computed costs for allowed edges. It is assumed
|
|
* that mGraph is already constructed.
|
|
*
|
|
* Should be possible to make this MT safe.
|
|
*
|
|
* Returns path which may be empty. path contains pathgrid points in local
|
|
* cell coordinates (indoors) or world coordinates (external).
|
|
*
|
|
* Input params:
|
|
* start, goal - pathgrid point indexes (for this cell)
|
|
*
|
|
* Variables:
|
|
* openset - point indexes to be traversed, lowest cost at the front
|
|
* closedset - point indexes already traversed
|
|
* gScore - past accumulated costs vector indexed by point index
|
|
* fScore - future estimated costs vector indexed by point index
|
|
*
|
|
* TODO: An intersting exercise might be to cache the paths created for a
|
|
* start/goal pair. To cache the results the paths need to be in
|
|
* pathgrid points form (currently they are converted to world
|
|
* coordinates). Essentially trading speed w/ memory.
|
|
*/
|
|
std::list<ESM::Pathgrid::Point> PathgridGraph::aStarSearch(const int start,
|
|
const int goal) const
|
|
{
|
|
std::list<ESM::Pathgrid::Point> path;
|
|
if(!isPointConnected(start, goal))
|
|
{
|
|
return path; // there is no path, return an empty path
|
|
}
|
|
|
|
int graphSize = static_cast<int> (mGraph.size());
|
|
std::vector<float> gScore (graphSize, -1);
|
|
std::vector<float> fScore (graphSize, -1);
|
|
std::vector<int> graphParent (graphSize, -1);
|
|
|
|
// gScore & fScore keep costs for each pathgrid point in mPoints
|
|
gScore[start] = 0;
|
|
fScore[start] = costAStar(mPathgrid->mPoints[start], mPathgrid->mPoints[goal]);
|
|
|
|
std::list<int> openset;
|
|
std::list<int> closedset;
|
|
openset.push_back(start);
|
|
|
|
int current = -1;
|
|
|
|
while(!openset.empty())
|
|
{
|
|
current = openset.front(); // front has the lowest cost
|
|
openset.pop_front();
|
|
|
|
if(current == goal)
|
|
break;
|
|
|
|
closedset.push_back(current); // remember we've been here
|
|
|
|
// check all edges for the current point index
|
|
for(int j = 0; j < static_cast<int> (mGraph[current].edges.size()); j++)
|
|
{
|
|
if(std::find(closedset.begin(), closedset.end(), mGraph[current].edges[j].index) ==
|
|
closedset.end())
|
|
{
|
|
// not in closedset - i.e. have not traversed this edge destination
|
|
int dest = mGraph[current].edges[j].index;
|
|
float tentative_g = gScore[current] + mGraph[current].edges[j].cost;
|
|
bool isInOpenSet = std::find(openset.begin(), openset.end(), dest) != openset.end();
|
|
if(!isInOpenSet
|
|
|| tentative_g < gScore[dest])
|
|
{
|
|
graphParent[dest] = current;
|
|
gScore[dest] = tentative_g;
|
|
fScore[dest] = tentative_g + costAStar(mPathgrid->mPoints[dest],
|
|
mPathgrid->mPoints[goal]);
|
|
if(!isInOpenSet)
|
|
{
|
|
// add this edge to openset, lowest cost goes to the front
|
|
// TODO: if this causes performance problems a hash table may help
|
|
std::list<int>::iterator it = openset.begin();
|
|
for(it = openset.begin(); it!= openset.end(); ++it)
|
|
{
|
|
if(fScore[*it] > fScore[dest])
|
|
break;
|
|
}
|
|
openset.insert(it, dest);
|
|
}
|
|
}
|
|
} // if in closedset, i.e. traversed this edge already, try the next edge
|
|
}
|
|
}
|
|
|
|
if(current != goal)
|
|
return path; // for some reason couldn't build a path
|
|
|
|
// reconstruct path to return, using local coordinates
|
|
while(graphParent[current] != -1)
|
|
{
|
|
path.push_front(mPathgrid->mPoints[current]);
|
|
current = graphParent[current];
|
|
}
|
|
|
|
// add first node to path explicitly
|
|
path.push_front(mPathgrid->mPoints[start]);
|
|
return path;
|
|
}
|
|
}
|
|
|