1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 18:49:54 +00:00
openmw-tes3mp/apps/openmw/mwmechanics/pathfinding.cpp

433 lines
18 KiB
C++

#include "pathfinding.hpp"
#include <iterator>
#include <limits>
#include <components/detournavigator/exceptions.hpp>
#include <components/detournavigator/debug.hpp>
#include <components/detournavigator/navigator.hpp>
#include <components/debug/debuglog.hpp>
#include <components/misc/coordinateconverter.hpp>
#include "../mwbase/world.hpp"
#include "../mwbase/environment.hpp"
#include "../mwphysics/collisiontype.hpp"
#include "../mwworld/cellstore.hpp"
#include "../mwworld/class.hpp"
#include "pathgrid.hpp"
#include "actorutil.hpp"
namespace
{
// Chooses a reachable end pathgrid point. start is assumed reachable.
std::pair<int, bool> getClosestReachablePoint(const ESM::Pathgrid* grid,
const MWMechanics::PathgridGraph *graph,
const osg::Vec3f& pos, int start)
{
assert(grid && !grid->mPoints.empty());
float closestDistanceBetween = std::numeric_limits<float>::max();
float closestDistanceReachable = std::numeric_limits<float>::max();
int closestIndex = 0;
int closestReachableIndex = 0;
// TODO: if this full scan causes performance problems mapping pathgrid
// points to a quadtree may help
for(unsigned int counter = 0; counter < grid->mPoints.size(); counter++)
{
float potentialDistBetween = MWMechanics::PathFinder::distanceSquared(grid->mPoints[counter], pos);
if (potentialDistBetween < closestDistanceReachable)
{
// found a closer one
if (graph->isPointConnected(start, counter))
{
closestDistanceReachable = potentialDistBetween;
closestReachableIndex = counter;
}
if (potentialDistBetween < closestDistanceBetween)
{
closestDistanceBetween = potentialDistBetween;
closestIndex = counter;
}
}
}
// post-condition: start and endpoint must be connected
assert(graph->isPointConnected(start, closestReachableIndex));
// AiWander has logic that depends on whether a path was created, deleting
// allowed nodes if not. Hence a path needs to be created even if the start
// and the end points are the same.
return std::pair<int, bool>
(closestReachableIndex, closestReachableIndex == closestIndex);
}
float sqrDistance(const osg::Vec2f& lhs, const osg::Vec2f& rhs)
{
return (lhs - rhs).length2();
}
float sqrDistanceIgnoreZ(const osg::Vec3f& lhs, const osg::Vec3f& rhs)
{
return sqrDistance(osg::Vec2f(lhs.x(), lhs.y()), osg::Vec2f(rhs.x(), rhs.y()));
}
float getPathStepSize(const MWWorld::ConstPtr& actor)
{
const auto world = MWBase::Environment::get().getWorld();
const auto realHalfExtents = world->getHalfExtents(actor);
return 2 * std::max(realHalfExtents.x(), realHalfExtents.y());
}
float getHeight(const MWWorld::ConstPtr& actor)
{
const auto world = MWBase::Environment::get().getWorld();
const auto halfExtents = world->getHalfExtents(actor);
return 2.0 * halfExtents.z();
}
// Returns true if turn in `p2` is less than 10 degrees and all the 3 points are almost on one line.
bool isAlmostStraight(const osg::Vec3f& p1, const osg::Vec3f& p2, const osg::Vec3f& p3, float pointTolerance) {
osg::Vec3f v1 = p1 - p2;
osg::Vec3f v3 = p3 - p2;
v1.z() = v3.z() = 0;
float dotProduct = v1.x() * v3.x() + v1.y() * v3.y();
float crossProduct = v1.x() * v3.y() - v1.y() * v3.x();
// Check that the angle between v1 and v3 is less or equal than 10 degrees.
static const float cos170 = std::cos(osg::PI / 180 * 170);
bool checkAngle = dotProduct <= cos170 * v1.length() * v3.length();
// Check that distance from p2 to the line (p1, p3) is less or equal than `pointTolerance`.
bool checkDist = std::abs(crossProduct) <= pointTolerance * (p3 - p1).length() * 2;
return checkAngle && checkDist;
}
}
namespace MWMechanics
{
float getPathDistance(const MWWorld::Ptr& actor, const osg::Vec3f& lhs, const osg::Vec3f& rhs)
{
if (std::abs(lhs.z() - rhs.z()) > getHeight(actor) || canActorMoveByZAxis(actor))
return distance(lhs, rhs);
return distanceIgnoreZ(lhs, rhs);
}
bool checkWayIsClear(const osg::Vec3f& from, const osg::Vec3f& to, float offsetXY)
{
osg::Vec3f dir = to - from;
dir.z() = 0;
dir.normalize();
float verticalOffset = 200; // instead of '200' here we want the height of the actor
osg::Vec3f _from = from + dir*offsetXY + osg::Z_AXIS * verticalOffset;
// cast up-down ray and find height of hit in world space
float h = _from.z() - MWBase::Environment::get().getWorld()->getDistToNearestRayHit(_from, -osg::Z_AXIS, verticalOffset + PATHFIND_Z_REACH + 1);
return (std::abs(from.z() - h) <= PATHFIND_Z_REACH);
}
/*
* NOTE: This method may fail to find a path. The caller must check the
* result before using it. If there is no path the AI routies need to
* implement some other heuristics to reach the target.
*
* NOTE: It may be desirable to simply go directly to the endPoint if for
* example there are no pathgrids in this cell.
*
* NOTE: startPoint & endPoint are in world coordinates
*
* Updates mPath using aStarSearch() or ray test (if shortcut allowed).
* mPath consists of pathgrid points, except the last element which is
* endPoint. This may be useful where the endPoint is not on a pathgrid
* point (e.g. combat). However, if the caller has already chosen a
* pathgrid point (e.g. wander) then it may be worth while to call
* pop_back() to remove the redundant entry.
*
* NOTE: coordinates must be converted prior to calling getClosestPoint()
*
* |
* | cell
* | +-----------+
* | | |
* | | |
* | | @ |
* | i | j |
* |<--->|<---->| |
* | +-----------+
* | k
* |<---------->| world
* +-----------------------------
*
* i = x value of cell itself (multiply by ESM::Land::REAL_SIZE to convert)
* j = @.x in local coordinates (i.e. within the cell)
* k = @.x in world coordinates
*/
void PathFinder::buildPathByPathgridImpl(const osg::Vec3f& startPoint, const osg::Vec3f& endPoint,
const PathgridGraph& pathgridGraph, std::back_insert_iterator<std::deque<osg::Vec3f>> out)
{
const auto pathgrid = pathgridGraph.getPathgrid();
// Refer to AiWander reseach topic on openmw forums for some background.
// Maybe there is no pathgrid for this cell. Just go to destination and let
// physics take care of any blockages.
if(!pathgrid || pathgrid->mPoints.empty())
return;
// NOTE: getClosestPoint expects local coordinates
Misc::CoordinateConverter converter(mCell->getCell());
// NOTE: It is possible that getClosestPoint returns a pathgrind point index
// that is unreachable in some situations. e.g. actor is standing
// outside an area enclosed by walls, but there is a pathgrid
// point right behind the wall that is closer than any pathgrid
// point outside the wall
osg::Vec3f startPointInLocalCoords(converter.toLocalVec3(startPoint));
int startNode = getClosestPoint(pathgrid, startPointInLocalCoords);
osg::Vec3f endPointInLocalCoords(converter.toLocalVec3(endPoint));
std::pair<int, bool> endNode = getClosestReachablePoint(pathgrid, &pathgridGraph,
endPointInLocalCoords,
startNode);
if (!endNode.second)
return;
// if it's shorter for actor to travel from start to end, than to travel from either
// start or end to nearest pathgrid point, just travel from start to end.
float startToEndLength2 = (endPointInLocalCoords - startPointInLocalCoords).length2();
float endTolastNodeLength2 = distanceSquared(pathgrid->mPoints[endNode.first], endPointInLocalCoords);
float startTo1stNodeLength2 = distanceSquared(pathgrid->mPoints[startNode], startPointInLocalCoords);
if ((startToEndLength2 < startTo1stNodeLength2) || (startToEndLength2 < endTolastNodeLength2))
{
*out++ = endPoint;
return;
}
// AiWander has logic that depends on whether a path was created,
// deleting allowed nodes if not. Hence a path needs to be created
// even if the start and the end points are the same.
// NOTE: aStarSearch will return an empty path if the start and end
// nodes are the same
if(startNode == endNode.first)
{
ESM::Pathgrid::Point temp(pathgrid->mPoints[startNode]);
converter.toWorld(temp);
*out++ = makeOsgVec3(temp);
}
else
{
auto path = pathgridGraph.aStarSearch(startNode, endNode.first);
// If nearest path node is in opposite direction from second, remove it from path.
// Especially useful for wandering actors, if the nearest node is blocked for some reason.
if (path.size() > 1)
{
ESM::Pathgrid::Point secondNode = *(++path.begin());
osg::Vec3f firstNodeVec3f = makeOsgVec3(pathgrid->mPoints[startNode]);
osg::Vec3f secondNodeVec3f = makeOsgVec3(secondNode);
osg::Vec3f toSecondNodeVec3f = secondNodeVec3f - firstNodeVec3f;
osg::Vec3f toStartPointVec3f = startPointInLocalCoords - firstNodeVec3f;
if (toSecondNodeVec3f * toStartPointVec3f > 0)
{
ESM::Pathgrid::Point temp(secondNode);
converter.toWorld(temp);
// Add Z offset since path node can overlap with other objects.
// Also ignore doors in raytesting.
const int mask = MWPhysics::CollisionType_World;
bool isPathClear = !MWBase::Environment::get().getWorld()->castRay(
startPoint.x(), startPoint.y(), startPoint.z() + 16, temp.mX, temp.mY, temp.mZ + 16, mask);
if (isPathClear)
path.pop_front();
}
}
// convert supplied path to world coordinates
std::transform(path.begin(), path.end(), out,
[&] (ESM::Pathgrid::Point& point)
{
converter.toWorld(point);
return makeOsgVec3(point);
});
}
// If endNode found is NOT the closest PathGrid point to the endPoint,
// assume endPoint is not reachable from endNode. In which case,
// path ends at endNode.
//
// So only add the destination (which may be different to the closest
// pathgrid point) when endNode was the closest point to endPoint.
//
// This logic can fail in the opposite situate, e.g. endPoint may
// have been reachable but happened to be very close to an
// unreachable pathgrid point.
//
// The AI routines will have to deal with such situations.
*out++ = endPoint;
}
float PathFinder::getZAngleToNext(float x, float y) const
{
// This should never happen (programmers should have an if statement checking
// isPathConstructed that prevents this call if otherwise).
if(mPath.empty())
return 0.;
const auto& nextPoint = mPath.front();
const float directionX = nextPoint.x() - x;
const float directionY = nextPoint.y() - y;
return std::atan2(directionX, directionY);
}
float PathFinder::getXAngleToNext(float x, float y, float z) const
{
// This should never happen (programmers should have an if statement checking
// isPathConstructed that prevents this call if otherwise).
if(mPath.empty())
return 0.;
const osg::Vec3f dir = mPath.front() - osg::Vec3f(x, y, z);
return getXAngleToDir(dir);
}
void PathFinder::update(const osg::Vec3f& position, const float pointTolerance, const float destinationTolerance)
{
if (mPath.empty())
return;
while (mPath.size() > 1 && sqrDistanceIgnoreZ(mPath.front(), position) < pointTolerance * pointTolerance)
mPath.pop_front();
while (mPath.size() > 2 && isAlmostStraight(mPath[0], mPath[1], mPath[2], pointTolerance))
mPath.erase(mPath.begin() + 1);
if (mPath.size() > 1 && isAlmostStraight(position, mPath[0], mPath[1], pointTolerance))
mPath.pop_front();
if (mPath.size() == 1 && sqrDistanceIgnoreZ(mPath.front(), position) < destinationTolerance * destinationTolerance)
mPath.pop_front();
}
void PathFinder::buildStraightPath(const osg::Vec3f& endPoint)
{
mPath.clear();
mPath.push_back(endPoint);
mConstructed = true;
}
void PathFinder::buildPathByPathgrid(const osg::Vec3f& startPoint, const osg::Vec3f& endPoint,
const MWWorld::CellStore* cell, const PathgridGraph& pathgridGraph)
{
mPath.clear();
mCell = cell;
buildPathByPathgridImpl(startPoint, endPoint, pathgridGraph, std::back_inserter(mPath));
mConstructed = true;
}
void PathFinder::buildPathByNavMesh(const MWWorld::ConstPtr& actor, const osg::Vec3f& startPoint,
const osg::Vec3f& endPoint, const osg::Vec3f& halfExtents, const DetourNavigator::Flags flags,
const DetourNavigator::AreaCosts& areaCosts)
{
mPath.clear();
// If it's not possible to build path over navmesh due to disabled navmesh generation fallback to straight path
if (!buildPathByNavigatorImpl(actor, startPoint, endPoint, halfExtents, flags, areaCosts, std::back_inserter(mPath)))
mPath.push_back(endPoint);
mConstructed = true;
}
void PathFinder::buildPath(const MWWorld::ConstPtr& actor, const osg::Vec3f& startPoint, const osg::Vec3f& endPoint,
const MWWorld::CellStore* cell, const PathgridGraph& pathgridGraph, const osg::Vec3f& halfExtents,
const DetourNavigator::Flags flags, const DetourNavigator::AreaCosts& areaCosts)
{
mPath.clear();
mCell = cell;
bool hasNavMesh = false;
if (!actor.getClass().isPureWaterCreature(actor) && !actor.getClass().isPureFlyingCreature(actor))
hasNavMesh = buildPathByNavigatorImpl(actor, startPoint, endPoint, halfExtents, flags, areaCosts, std::back_inserter(mPath));
if (hasNavMesh && mPath.empty())
buildPathByNavigatorImpl(actor, startPoint, endPoint, halfExtents,
flags | DetourNavigator::Flag_usePathgrid, areaCosts, std::back_inserter(mPath));
if (mPath.empty())
buildPathByPathgridImpl(startPoint, endPoint, pathgridGraph, std::back_inserter(mPath));
if (!hasNavMesh && mPath.empty())
mPath.push_back(endPoint);
mConstructed = true;
}
bool PathFinder::buildPathByNavigatorImpl(const MWWorld::ConstPtr& actor, const osg::Vec3f& startPoint,
const osg::Vec3f& endPoint, const osg::Vec3f& halfExtents, const DetourNavigator::Flags flags,
const DetourNavigator::AreaCosts& areaCosts, std::back_insert_iterator<std::deque<osg::Vec3f>> out)
{
const auto world = MWBase::Environment::get().getWorld();
const auto stepSize = getPathStepSize(actor);
const auto navigator = world->getNavigator();
const auto status = navigator->findPath(halfExtents, stepSize, startPoint, endPoint, flags, areaCosts, out);
if (status == DetourNavigator::Status::NavMeshNotFound)
return false;
if (status != DetourNavigator::Status::Success)
{
Log(Debug::Debug) << "Build path by navigator error: \"" << DetourNavigator::getMessage(status)
<< "\" for \"" << actor.getClass().getName(actor) << "\" (" << actor.getBase()
<< ") from " << startPoint << " to " << endPoint << " with flags ("
<< DetourNavigator::WriteFlags {flags} << ")";
}
return true;
}
void PathFinder::buildPathByNavMeshToNextPoint(const MWWorld::ConstPtr& actor, const osg::Vec3f& halfExtents,
const DetourNavigator::Flags flags, const DetourNavigator::AreaCosts& areaCosts)
{
if (mPath.empty())
return;
const auto stepSize = getPathStepSize(actor);
const auto startPoint = actor.getRefData().getPosition().asVec3();
if (sqrDistanceIgnoreZ(mPath.front(), startPoint) <= 4 * stepSize * stepSize)
return;
const auto navigator = MWBase::Environment::get().getWorld()->getNavigator();
std::deque<osg::Vec3f> prePath;
auto prePathInserter = std::back_inserter(prePath);
const auto status = navigator->findPath(halfExtents, stepSize, startPoint, mPath.front(), flags, areaCosts,
prePathInserter);
if (status == DetourNavigator::Status::NavMeshNotFound)
return;
if (status != DetourNavigator::Status::Success)
{
Log(Debug::Debug) << "Build path by navigator error: \"" << DetourNavigator::getMessage(status)
<< "\" for \"" << actor.getClass().getName(actor) << "\" (" << actor.getBase()
<< ") from " << startPoint << " to " << mPath.front() << " with flags ("
<< DetourNavigator::WriteFlags {flags} << ")";
return;
}
while (!prePath.empty() && sqrDistanceIgnoreZ(prePath.front(), startPoint) < stepSize * stepSize)
prePath.pop_front();
while (!prePath.empty() && sqrDistanceIgnoreZ(prePath.back(), mPath.front()) < stepSize * stepSize)
prePath.pop_back();
std::copy(prePath.rbegin(), prePath.rend(), std::front_inserter(mPath));
}
}