1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-15 17:19:56 +00:00
openmw-tes3mp/components/detournavigator/chunkytrimesh.cpp
2020-11-18 18:52:00 +01:00

179 lines
6.4 KiB
C++

#include "chunkytrimesh.hpp"
#include "exceptions.hpp"
#include <osg/Vec2f>
#include <algorithm>
namespace DetourNavigator
{
namespace
{
struct BoundsItem
{
Rect mBounds;
std::ptrdiff_t mOffset;
unsigned char mAreaTypes;
};
template <std::size_t axis>
struct LessBoundsItem
{
bool operator ()(const BoundsItem& lhs, const BoundsItem& rhs) const
{
return lhs.mBounds.mMinBound[axis] < rhs.mBounds.mMinBound[axis];
}
};
void calcExtends(const std::vector<BoundsItem>& items, const std::size_t imin, const std::size_t imax,
Rect& bounds)
{
bounds = items[imin].mBounds;
std::for_each(
items.begin() + static_cast<std::ptrdiff_t>(imin) + 1,
items.begin() + static_cast<std::ptrdiff_t>(imax),
[&] (const BoundsItem& item)
{
for (int i = 0; i < 2; ++i)
{
bounds.mMinBound[i] = std::min(bounds.mMinBound[i], item.mBounds.mMinBound[i]);
bounds.mMaxBound[i] = std::max(bounds.mMaxBound[i], item.mBounds.mMaxBound[i]);
}
});
}
void subdivide(std::vector<BoundsItem>& items, const std::size_t imin, const std::size_t imax,
const std::size_t trisPerChunk, const std::vector<int>& inIndices, const std::vector<AreaType>& inAreaTypes,
std::size_t& curNode, std::vector<ChunkyTriMeshNode>& nodes, std::size_t& curTri,
std::vector<int>& outIndices, std::vector<AreaType>& outAreaTypes)
{
const auto inum = imax - imin;
const auto icur = curNode;
if (curNode >= nodes.size())
return;
ChunkyTriMeshNode& node = nodes[curNode++];
if (inum <= trisPerChunk)
{
// Leaf
calcExtends(items, imin, imax, node.mBounds);
// Copy triangles.
node.mOffset = static_cast<std::ptrdiff_t>(curTri);
node.mSize = inum;
for (std::size_t i = imin; i < imax; ++i)
{
std::copy(
inIndices.begin() + items[i].mOffset * 3,
inIndices.begin() + items[i].mOffset * 3 + 3,
outIndices.begin() + static_cast<std::ptrdiff_t>(curTri) * 3
);
outAreaTypes[curTri] = inAreaTypes[static_cast<std::size_t>(items[i].mOffset)];
curTri++;
}
}
else
{
// Split
calcExtends(items, imin, imax, node.mBounds);
if (node.mBounds.mMaxBound.x() - node.mBounds.mMinBound.x()
>= node.mBounds.mMaxBound.y() - node.mBounds.mMinBound.y())
{
// Sort along x-axis
std::sort(
items.begin() + static_cast<std::ptrdiff_t>(imin),
items.begin() + static_cast<std::ptrdiff_t>(imax),
LessBoundsItem<0> {}
);
}
else
{
// Sort along y-axis
std::sort(
items.begin() + static_cast<std::ptrdiff_t>(imin),
items.begin() + static_cast<std::ptrdiff_t>(imax),
LessBoundsItem<1> {}
);
}
const auto isplit = imin + inum / 2;
// Left
subdivide(items, imin, isplit, trisPerChunk, inIndices, inAreaTypes, curNode, nodes, curTri, outIndices, outAreaTypes);
// Right
subdivide(items, isplit, imax, trisPerChunk, inIndices, inAreaTypes, curNode, nodes, curTri, outIndices, outAreaTypes);
const auto iescape = static_cast<std::ptrdiff_t>(curNode) - static_cast<std::ptrdiff_t>(icur);
// Negative index means escape.
node.mOffset = -iescape;
}
}
}
ChunkyTriMesh::ChunkyTriMesh(const std::vector<float>& verts, const std::vector<int>& indices,
const std::vector<AreaType>& flags, const std::size_t trisPerChunk)
: mMaxTrisPerChunk(0)
{
const auto trianglesCount = indices.size() / 3;
if (trianglesCount == 0)
return;
const auto nchunks = (trianglesCount + trisPerChunk - 1) / trisPerChunk;
mNodes.resize(nchunks * 4);
mIndices.resize(trianglesCount * 3);
mAreaTypes.resize(trianglesCount);
// Build tree
std::vector<BoundsItem> items(trianglesCount);
for (std::size_t i = 0; i < trianglesCount; i++)
{
auto& item = items[i];
item.mOffset = static_cast<std::ptrdiff_t>(i);
item.mAreaTypes = flags[i];
// Calc triangle XZ bounds.
const auto baseIndex = static_cast<std::size_t>(indices[i * 3]) * 3;
item.mBounds.mMinBound.x() = item.mBounds.mMaxBound.x() = verts[baseIndex + 0];
item.mBounds.mMinBound.y() = item.mBounds.mMaxBound.y() = verts[baseIndex + 2];
for (std::size_t j = 1; j < 3; ++j)
{
const auto index = static_cast<std::size_t>(indices[i * 3 + j]) * 3;
item.mBounds.mMinBound.x() = std::min(item.mBounds.mMinBound.x(), verts[index + 0]);
item.mBounds.mMinBound.y() = std::min(item.mBounds.mMinBound.y(), verts[index + 2]);
item.mBounds.mMaxBound.x() = std::max(item.mBounds.mMaxBound.x(), verts[index + 0]);
item.mBounds.mMaxBound.y() = std::max(item.mBounds.mMaxBound.y(), verts[index + 2]);
}
}
std::size_t curTri = 0;
std::size_t curNode = 0;
subdivide(items, 0, trianglesCount, trisPerChunk, indices, flags, curNode, mNodes, curTri, mIndices, mAreaTypes);
items.clear();
mNodes.resize(curNode);
// Calc max tris per node.
for (auto& node : mNodes)
{
const bool isLeaf = node.mOffset >= 0;
if (!isLeaf)
continue;
if (node.mSize > mMaxTrisPerChunk)
mMaxTrisPerChunk = node.mSize;
}
}
}