1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-28 05:15:32 +00:00
openmw-tes3mp/monster/compiler/variables.d
nkorslund 838d4f0ebe More scripting updates
git-svn-id: https://openmw.svn.sourceforge.net/svnroot/openmw/trunk@78 ea6a568a-9f4f-0410-981a-c910a81bb256
2008-12-30 02:53:32 +00:00

827 lines
21 KiB
D

/*
Monster - an advanced game scripting language
Copyright (C) 2007, 2008 Nicolay Korslund
Email: <korslund@gmail.com>
WWW: http://monster.snaptoad.com/
This file (variables.d) is part of the Monster script language
package.
Monster is distributed as free software: you can redistribute it
and/or modify it under the terms of the GNU General Public License
version 3, as published by the Free Software Foundation.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
version 3 along with this program. If not, see
http://www.gnu.org/licenses/ .
*/
module monster.compiler.variables;
import monster.compiler.types;
import monster.compiler.tokenizer;
import monster.compiler.expression;
import monster.compiler.scopes;
import monster.compiler.statement;
import monster.compiler.block;
import monster.compiler.assembler;
import std.string;
import std.stdio;
import monster.vm.mclass;
import monster.vm.error;
enum VarType
{
Class,
Param,
Local,
}
struct Variable
{
Type type;
VarType vtype;
Token name;
VarScope sc; // Scope that owns this variable
int number; // Index used in bytecode to reference this variable
bool isRef; // Is this a reference variable?
bool isConst; // Used for function parameters
bool isVararg; // A vararg function parameter
}
// Variable declaration. Handles local and class variables, function
// parameters and loop variables.
class VarDeclaration : Block
{
Variable *var;
// Initializer expression, if any. Eg:
// int i = 3; => init = 3.
Expression init;
bool allowRef; // Allows reference variable.
bool allowNoType; // Allow no type to be specified (used in foreach)
bool allowConst; // Allows const.
this() {}
// Used when the type is already given, and we only need to read the
// name and what follows. This is used for multiple declarations,
// ie. int i=1, j=2; and will possibly also be used in other places
// later.
this(Type type)
{
assert(var is null);
var = new Variable;
var.type = type;
}
// Parse keywords allowed on variables
private void parseKeywords(ref TokenArray toks)
{
Floc loc;
while(1)
{
if(isNext(toks, TT.Ref, loc))
{
if(var.isRef)
fail("Multiple token 'ref' in variable declaration",
loc);
if(!allowRef)
fail("You cannot use 'ref' variables here", loc);
var.isRef = true;
continue;
}
if(isNext(toks, TT.Const, loc))
{
if(var.isConst)
fail("Multiple token 'const' in variable declaration",
loc);
var.isConst = true;
continue;
}
break;
}
}
// Parse a series of array specifiers, ie.
// []
// [][]...
// [expr1][expr2]....
// If takeExpr = false then the last form is not allowed
static ExprArray getArray(ref TokenArray toks, bool takeExpr = false)
{
// Arrays?
ExprArray arrayArgs;
while(isNext(toks,TT.LeftSquare))
{
Expression expr = null;
// Is there an expression inside the brackets?
if(!isNext(toks, TT.RightSquare))
{
Floc loc = getLoc(toks);
expr = Expression.identify(toks);
if(!takeExpr)
fail("Array expression [" ~ expr.toString ~
"] not allowed here", loc);
if(!isNext(toks, TT.RightSquare))
fail("Expected matching ]", toks);
}
// Insert the expression (or a null if the brackets were
// empty)
arrayArgs ~= expr;
}
return arrayArgs;
}
// Get the total number of array dimensions. Eg. int[] j[][]; has a
// total of three dimensions. This is now handled entirely by the
// Type class so this function is here for backwards compatability.
int arrays()
{
return var.type.arrays;
}
// This is slightly messy. But what I'm trying to do IS slightly
// messy.
static bool hasType(TokenArray toks)
{
// Remove the type, if any
if(!Type.canParseRem(toks)) return false;
// Skip any keywords
while(1)
{
if(isNext(toks, TT.Ref)) continue;
break;
}
// There must be a variable identifier at the end
return isNext(toks, TT.Identifier);
}
override void parse(ref TokenArray toks)
{
if(var is null)
{
var = new Variable;
// Keywords may come before or after the type
parseKeywords(toks);
// Parse the type, if any.
if(!allowNoType || hasType(toks))
{
var.type = Type.identify(toks);
parseKeywords(toks);
}
}
// The type was already set externally.
else
{
assert(var.type !is null);
// allowNoType is not used in these cases
assert(allowNoType == false);
}
if(!isNext(toks, TT.Identifier, var.name))
fail("Variable name must be identifier", toks);
loc = var.name.loc;
// Look for arrays after the variable name.
ExprArray arrayArgs = getArray(toks);
/* We must append these arrays to the type, in the reverse
order. Eg.
int[1][2] i[4][3];
is the same as
int[1][2][3][4] i;
(also the same as int i[4][3][2][1];)
Since we don't take expressions here yet the order is
irrelevant, but let's set it up right.
*/
foreach_reverse(e; arrayArgs)
{
assert(e is null);
var.type = new ArrayType(var.type);
}
// Does the variable have an initializer?
if(isNext(toks, TT.Equals))
init = Expression.identify(toks);
}
char[] toString()
{
char[] res = var.type.toString() ~ " " ~ var.name.str;
if(init !is null)
res ~= " = " ~ init.toString;
return res;
}
bool isParam = false;
// Special version only called from FuncDeclaration.resolve()
void resolveParam(Scope sc)
{
isParam = true;
resolve(sc);
}
// Sets var.number. Only for function parameters.
void setNumber(int num)
{
assert(num<0, "VarDec.setNumber was given a positive num: " ~ .toString(num));
assert(isParam);
var.number = num;
}
// Calls resolve() for all sub-expressions
override void resolve(Scope sc)
{
var.type.resolve(sc);
//writefln("Type is: %s", var.type);
if(var.type.isReplacer)
{
//writefln(" (we're here!)");
var.type = var.type.getBase();
}
//writefln(" now it is: %s", var.type);
// Allow 'const' for function array parameters
if(isParam && var.type.isArray())
allowConst = true;
// Handle initial value normally
if(init !is null)
{
init.resolve(sc);
// If 'var' is present, just copy the type of the init value
if(var.type.isVar)
var.type = init.type;
else
{
// Convert type, if necessary.
try var.type.typeCast(init);
catch(TypeException)
fail(format("Cannot initialize %s of type %s with %s of type %s",
var.name.str, var.type,
init, init.type), loc);
}
assert(init.type == var.type);
}
// If it's a struct, check that the variable is not part of
// itself.
if(var.type.isStruct)
{
auto st = cast(StructType)var.type;
if(st.sc is sc)
{
// We are inside ourselves
assert(sc.isStruct);
fail("Struct variables cannot be used inside the struct itself!",
loc);
}
}
// We can't have var at this point
if(var.type.isVar)
fail("cannot implicitly determine type", loc);
// Illegal types are illegal
if(!var.type.isLegal)
fail("Cannot create variables of type " ~ var.type.toString, loc);
if(!allowConst && var.isConst)
fail("'const' is not allowed here", loc);
// Store the scope in the var struct for later referral.
var.sc = cast(VarScope)sc;
assert(var.sc !is null, "variables can only be declared in VarScopes");
if(!isParam)
{
// If we are not a function parameter, we must get
// var.number from the scope.
if(sc.isClass())
// Class variable. Get a position in the data segment.
var.number = sc.addNewDataVar(var.type.getSize());
else
// We're a local variable. Ask the scope what number we
// should have.
var.number = sc.addNewLocalVar(var.type.getSize());
}
else assert(sc.isFunc());
// Insert ourselves into the scope.
sc.insertVar(var);
}
int[] getCTimeValue()
out(res)
{
assert(res.length == var.type.getSize, "Size mismatch");
}
body
{
// Does this variable have an initializer?
if(init !is null)
{
// And can it be evaluated at compile time?
if(!init.isCTime)
fail("Expression " ~ init.toString ~
" is not computable at compile time", init.loc);
return init.evalCTime();
}
else
// Use the default initializer.
return var.type.defaultInit();
}
// Executed for local variables upon declaration. Push the variable
// on the stack.
void compile()
{
// Validate the type
var.type.validate(loc);
setLine();
if(init !is null)
// Push the initializer
init.eval();
else
// Default initializer
var.type.pushInit();
}
}
// Represents a reference to a variable. Simply stores the token
// representing the identifier. Evaluation is handled by the variable
// declaration itself. This allows us to use this class for local and
// global variables as well as for properties, without handling each
// case separately. The special names (currently __STACK__) are
// handled internally.
class VariableExpr : MemberExpression
{
Token name;
Variable *var;
Property prop;
enum VType
{
None, // Should never be set
LocalVar, // Local variable
ThisVar, // Variable in this object and this class
ParentVar, // Variable in another class but this object
FarOtherVar, // Another class, another object
Property, // Property (like .length of arrays)
Special, // Special name (like __STACK__)
Type, // Typename
}
VType vtype;
int classIndex = -1; // Index of the class that owns this variable.
CIndex singCls = -1; // Singleton class index
static bool canParse(TokenArray toks)
{
return
isNext(toks, TT.Identifier) ||
isNext(toks, TT.Singleton) ||
isNext(toks, TT.State) ||
isNext(toks, TT.Clone) ||
isNext(toks, TT.Const);
}
// Does this variable name refer to a type name rather than an
// actual variable?
bool isType()
{
return type.isMeta();
}
bool isProperty()
out(res)
{
if(res)
{
assert(prop.name != "");
assert(var is null);
assert(!isSpecial);
}
else
{
assert(prop.name == "");
}
}
body
{
return vtype == VType.Property;
}
bool isSpecial() { return vtype == VType.Special; }
override:
char[] toString() { return name.str; }
// Ask the variable if we can write to it.
bool isLValue()
{
// Specials are read only
if(isSpecial)
return false;
// Properties may or may not be changable
if(isProperty)
return prop.isLValue;
// Normal variables are always lvalues.
return true;
}
bool isStatic()
{
// Properties can be static
if(isProperty)
return prop.isStatic;
// Type names are always static. However, isType will return
// false for type names of eg. singletons, since these will not
// resolve to a meta type.
if(isType)
return true;
return false;
}
// TODO: isCTime - should be usable for static properties and members
void parse(ref TokenArray toks)
{
name = next(toks);
loc = name.loc;
}
void writeProperty()
{
assert(isProperty);
prop.setValue();
}
void resolve(Scope sc)
out
{
// Some sanity checks on the result
if(isProperty) assert(var is null);
if(var !is null)
{
assert(var.sc !is null);
assert(!isProperty);
}
assert(type !is null);
assert(vtype != VType.None);
}
body
{
if(isMember) // Are we called as a member?
{
// Look up the name in the scope belonging to the owner
assert(leftScope !is null);
// Check first if this is a variable
var = leftScope.findVar(name.str);
if(var !is null)
{
// We are a member variable
type = var.type;
// The object pointer is pushed on the stack. We must
// also provide the class index, so the variable is
// changed in the correct class (it could be a parent
// class of the given object.)
vtype = VType.FarOtherVar;
assert(var.sc.isClass);
classIndex = var.sc.getClass().getIndex();
return;
}
// Check for properties last
if(leftScope.findProperty(name, ownerType, prop))
{
// We are a property
vtype = VType.Property;
type = prop.getType;
return;
}
// No match
fail(name.str ~ " is not a member of " ~ ownerType.toString,
loc);
}
// Not a member
// Look for reserved names first.
if(name.str == "__STACK__")
{
vtype = VType.Special;
type = BasicType.getInt;
return;
}
if(name.type == TT.Const)
fail("Cannot use const as a variable", name.loc);
if(name.type == TT.Clone)
fail("Cannot use clone as a variable", name.loc);
// These are special cases that work both as properties
// (object.state) and as non-member variables (state=...) inside
// class functions / state code. Since we already handle them
// nicely as properties, treat them as properties.
if(name.type == TT.Singleton || name.type == TT.State)
{
if(!sc.isInClass)
fail(name.str ~ " can only be used in classes", name.loc);
if(!sc.findProperty(name, sc.getClass().objType, prop))
assert(0, "should have found property " ~ name.str ~
" in scope " ~ sc.toString);
vtype = VType.Property;
type = prop.getType;
return;
}
// Not a member, property or a special name. Look ourselves up
// in the local variable scope.
var = sc.findVar(name.str);
if(var !is null)
{
type = var.type;
assert(var.sc !is null);
// Class variable?
if(var.sc.isClass)
{
// Check if it's in THIS class, which is a common
// case. If so, we can use a simplified instruction that
// doesn't have to look up the class.
if(var.sc.getClass is sc.getClass)
vtype = VType.ThisVar;
else
{
// It's another class. For non-members this can only
// mean a parent class.
vtype = VType.ParentVar;
classIndex = var.sc.getClass().getIndex();
}
}
else
vtype = VType.LocalVar;
return;
}
// We are not a variable. Our last chance is a type name.
vtype = VType.Type;
if(BasicType.isBasic(name.str))
{
// Yes! Basic type.
type = MetaType.getBasic(name.str);
}
// Class name?
else if(auto mc = global.findParsed(name.str))
{
// This doesn't allow forward references.
mc.requireScope();
type = mc.classType;
// Singletons are treated differently - the class name can
// be used to access the singleton object
if(mc.isSingleton)
{
type = mc.objType;
singCls = mc.getIndex();
}
}
// Struct?
else if(auto tp = sc.findStruct(name.str))
{
type = tp.getMeta();
}
// Err, enum?
else if(auto tp = sc.findEnum(name.str))
{
type = tp.getMeta();
}
else
// No match at all
fail("Undefined identifier "~name.str, name.loc);
}
void evalAsm()
{
assert(!isType);
setLine();
// Special name
if(isSpecial)
{
if(name.str == "__STACK__")
tasm.getStack();
else assert(0, "Unknown special name " ~ name.str);
return;
}
// Property
if(isProperty)
{
prop.getValue();
return;
}
// Class singleton name
if(singCls != -1)
{
assert(type.isObject);
// Convert the class index into a object index at runtime
tasm.pushSingleton(singCls);
return;
}
// Normal variable
int s = type.getSize;
if(vtype == VType.LocalVar)
// This is a variable local to this function. The number gives
// the stack position.
tasm.pushLocal(var.number, s);
else if(vtype == VType.ThisVar)
// The var.number gives the offset into the data segment in
// this class
tasm.pushClass(var.number, s);
else if(vtype == VType.ParentVar)
// Variable in a parent but this object
tasm.pushParentVar(var.number, classIndex, s);
else if(vtype == VType.FarOtherVar)
// Push the value from a "FAR pointer". The class index should
// already have been pushed on the stack by DotOperator, we
// only push the index.
tasm.pushFarClass(var.number, classIndex, s);
else assert(0);
}
// Push the address of the variable rather than its value
void evalDest()
{
assert(!isType, "types can never be written to");
assert(isLValue());
assert(!isProperty);
setLine();
// No size information is needed for addresses.
if(vtype == VType.LocalVar)
tasm.pushLocalAddr(var.number);
else if(vtype == VType.ThisVar)
tasm.pushClassAddr(var.number);
else if(vtype == VType.ParentVar)
tasm.pushParentVarAddr(var.number, classIndex);
else if(vtype == VType.FarOtherVar)
tasm.pushFarClassAddr(var.number, classIndex);
else assert(0);
}
void postWrite()
{
assert(!isProperty);
assert(isLValue());
assert(var.sc !is null);
if(var.isRef)
// TODO: This assumes all ref variables are foreach values,
// which will probably not be true in the future.
tasm.iterateUpdate(var.sc.getLoopStack());
}
}
// A variable declaration that works as a statement. Supports multiple
// variable declarations, ie. int i, j; but they must be the same
// type, so int i, j[]; is not allowed.
class VarDeclStatement : Statement
{
VarDeclaration[] vars;
static bool canParse(TokenArray toks)
{
if(Type.canParseRem(toks) &&
isNext(toks, TT.Identifier))
return true;
return false;
}
void parse(ref TokenArray toks)
{
VarDeclaration varDec;
varDec = new VarDeclaration;
varDec.parse(toks);
vars ~= varDec;
loc = varDec.var.name.loc;
int arr = varDec.arrays();
// Are there more?
while(isNext(toks, TT.Comma))
{
// Read a variable, but with the same type as the last
varDec = new VarDeclaration(varDec.var.type);
varDec.parse(toks);
if(varDec.arrays() != arr)
fail("Multiple declarations must have same type",
varDec.var.name.loc);
vars ~= varDec;
}
if(!isNext(toks, TT.Semicolon))
fail("Declaration statement expected ;", toks);
}
char[] toString()
{
char[] res = "Variable declaration: ";
foreach(vd; vars) res ~= vd.toString ~" ";
return res;
}
void resolve(Scope sc)
{
if(sc.isStateCode())
fail("Variable declarations not allowed in state code", loc);
// Add variables to the scope.
foreach(vd; vars)
vd.resolve(sc);
}
// Validate types
void validate()
{
assert(vars.length >= 1);
vars[0].var.type.validate(loc);
}
// Insert local variable(s) on the stack.
void compile()
{
// Compile the variable declarations, they will push the right
// values to the stack.
foreach(vd; vars)
vd.compile();
}
}