mirror of
https://github.com/TES3MP/openmw-tes3mp.git
synced 2025-01-25 03:53:50 +00:00
1448 lines
37 KiB
C++
1448 lines
37 KiB
C++
//
|
|
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
|
|
//
|
|
// This software is provided 'as-is', without any express or implied
|
|
// warranty. In no event will the authors be held liable for any damages
|
|
// arising from the use of this software.
|
|
// Permission is granted to anyone to use this software for any purpose,
|
|
// including commercial applications, and to alter it and redistribute it
|
|
// freely, subject to the following restrictions:
|
|
// 1. The origin of this software must not be misrepresented; you must not
|
|
// claim that you wrote the original software. If you use this software
|
|
// in a product, an acknowledgment in the product documentation would be
|
|
// appreciated but is not required.
|
|
// 2. Altered source versions must be plainly marked as such, and must not be
|
|
// misrepresented as being the original software.
|
|
// 3. This notice may not be removed or altered from any source distribution.
|
|
//
|
|
|
|
#define _USE_MATH_DEFINES
|
|
#include <string.h>
|
|
#include <float.h>
|
|
#include <stdlib.h>
|
|
#include <new>
|
|
#include "DetourCrowd.h"
|
|
#include "DetourNavMesh.h"
|
|
#include "DetourNavMeshQuery.h"
|
|
#include "DetourObstacleAvoidance.h"
|
|
#include "DetourCommon.h"
|
|
#include "DetourMath.h"
|
|
#include "DetourAssert.h"
|
|
#include "DetourAlloc.h"
|
|
|
|
|
|
dtCrowd* dtAllocCrowd()
|
|
{
|
|
void* mem = dtAlloc(sizeof(dtCrowd), DT_ALLOC_PERM);
|
|
if (!mem) return 0;
|
|
return new(mem) dtCrowd;
|
|
}
|
|
|
|
void dtFreeCrowd(dtCrowd* ptr)
|
|
{
|
|
if (!ptr) return;
|
|
ptr->~dtCrowd();
|
|
dtFree(ptr);
|
|
}
|
|
|
|
|
|
static const int MAX_ITERS_PER_UPDATE = 100;
|
|
|
|
static const int MAX_PATHQUEUE_NODES = 4096;
|
|
static const int MAX_COMMON_NODES = 512;
|
|
|
|
inline float tween(const float t, const float t0, const float t1)
|
|
{
|
|
return dtClamp((t-t0) / (t1-t0), 0.0f, 1.0f);
|
|
}
|
|
|
|
static void integrate(dtCrowdAgent* ag, const float dt)
|
|
{
|
|
// Fake dynamic constraint.
|
|
const float maxDelta = ag->params.maxAcceleration * dt;
|
|
float dv[3];
|
|
dtVsub(dv, ag->nvel, ag->vel);
|
|
float ds = dtVlen(dv);
|
|
if (ds > maxDelta)
|
|
dtVscale(dv, dv, maxDelta/ds);
|
|
dtVadd(ag->vel, ag->vel, dv);
|
|
|
|
// Integrate
|
|
if (dtVlen(ag->vel) > 0.0001f)
|
|
dtVmad(ag->npos, ag->npos, ag->vel, dt);
|
|
else
|
|
dtVset(ag->vel,0,0,0);
|
|
}
|
|
|
|
static bool overOffmeshConnection(const dtCrowdAgent* ag, const float radius)
|
|
{
|
|
if (!ag->ncorners)
|
|
return false;
|
|
|
|
const bool offMeshConnection = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_OFFMESH_CONNECTION) ? true : false;
|
|
if (offMeshConnection)
|
|
{
|
|
const float distSq = dtVdist2DSqr(ag->npos, &ag->cornerVerts[(ag->ncorners-1)*3]);
|
|
if (distSq < radius*radius)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static float getDistanceToGoal(const dtCrowdAgent* ag, const float range)
|
|
{
|
|
if (!ag->ncorners)
|
|
return range;
|
|
|
|
const bool endOfPath = (ag->cornerFlags[ag->ncorners-1] & DT_STRAIGHTPATH_END) ? true : false;
|
|
if (endOfPath)
|
|
return dtMin(dtVdist2D(ag->npos, &ag->cornerVerts[(ag->ncorners-1)*3]), range);
|
|
|
|
return range;
|
|
}
|
|
|
|
static void calcSmoothSteerDirection(const dtCrowdAgent* ag, float* dir)
|
|
{
|
|
if (!ag->ncorners)
|
|
{
|
|
dtVset(dir, 0,0,0);
|
|
return;
|
|
}
|
|
|
|
const int ip0 = 0;
|
|
const int ip1 = dtMin(1, ag->ncorners-1);
|
|
const float* p0 = &ag->cornerVerts[ip0*3];
|
|
const float* p1 = &ag->cornerVerts[ip1*3];
|
|
|
|
float dir0[3], dir1[3];
|
|
dtVsub(dir0, p0, ag->npos);
|
|
dtVsub(dir1, p1, ag->npos);
|
|
dir0[1] = 0;
|
|
dir1[1] = 0;
|
|
|
|
float len0 = dtVlen(dir0);
|
|
float len1 = dtVlen(dir1);
|
|
if (len1 > 0.001f)
|
|
dtVscale(dir1,dir1,1.0f/len1);
|
|
|
|
dir[0] = dir0[0] - dir1[0]*len0*0.5f;
|
|
dir[1] = 0;
|
|
dir[2] = dir0[2] - dir1[2]*len0*0.5f;
|
|
|
|
dtVnormalize(dir);
|
|
}
|
|
|
|
static void calcStraightSteerDirection(const dtCrowdAgent* ag, float* dir)
|
|
{
|
|
if (!ag->ncorners)
|
|
{
|
|
dtVset(dir, 0,0,0);
|
|
return;
|
|
}
|
|
dtVsub(dir, &ag->cornerVerts[0], ag->npos);
|
|
dir[1] = 0;
|
|
dtVnormalize(dir);
|
|
}
|
|
|
|
static int addNeighbour(const int idx, const float dist,
|
|
dtCrowdNeighbour* neis, const int nneis, const int maxNeis)
|
|
{
|
|
// Insert neighbour based on the distance.
|
|
dtCrowdNeighbour* nei = 0;
|
|
if (!nneis)
|
|
{
|
|
nei = &neis[nneis];
|
|
}
|
|
else if (dist >= neis[nneis-1].dist)
|
|
{
|
|
if (nneis >= maxNeis)
|
|
return nneis;
|
|
nei = &neis[nneis];
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = 0; i < nneis; ++i)
|
|
if (dist <= neis[i].dist)
|
|
break;
|
|
|
|
const int tgt = i+1;
|
|
const int n = dtMin(nneis-i, maxNeis-tgt);
|
|
|
|
dtAssert(tgt+n <= maxNeis);
|
|
|
|
if (n > 0)
|
|
memmove(&neis[tgt], &neis[i], sizeof(dtCrowdNeighbour)*n);
|
|
nei = &neis[i];
|
|
}
|
|
|
|
memset(nei, 0, sizeof(dtCrowdNeighbour));
|
|
|
|
nei->idx = idx;
|
|
nei->dist = dist;
|
|
|
|
return dtMin(nneis+1, maxNeis);
|
|
}
|
|
|
|
static int getNeighbours(const float* pos, const float height, const float range,
|
|
const dtCrowdAgent* skip, dtCrowdNeighbour* result, const int maxResult,
|
|
dtCrowdAgent** agents, const int /*nagents*/, dtProximityGrid* grid)
|
|
{
|
|
int n = 0;
|
|
|
|
static const int MAX_NEIS = 32;
|
|
unsigned short ids[MAX_NEIS];
|
|
int nids = grid->queryItems(pos[0]-range, pos[2]-range,
|
|
pos[0]+range, pos[2]+range,
|
|
ids, MAX_NEIS);
|
|
|
|
for (int i = 0; i < nids; ++i)
|
|
{
|
|
const dtCrowdAgent* ag = agents[ids[i]];
|
|
|
|
if (ag == skip) continue;
|
|
|
|
// Check for overlap.
|
|
float diff[3];
|
|
dtVsub(diff, pos, ag->npos);
|
|
if (dtMathFabsf(diff[1]) >= (height+ag->params.height)/2.0f)
|
|
continue;
|
|
diff[1] = 0;
|
|
const float distSqr = dtVlenSqr(diff);
|
|
if (distSqr > dtSqr(range))
|
|
continue;
|
|
|
|
n = addNeighbour(ids[i], distSqr, result, n, maxResult);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static int addToOptQueue(dtCrowdAgent* newag, dtCrowdAgent** agents, const int nagents, const int maxAgents)
|
|
{
|
|
// Insert neighbour based on greatest time.
|
|
int slot = 0;
|
|
if (!nagents)
|
|
{
|
|
slot = nagents;
|
|
}
|
|
else if (newag->topologyOptTime <= agents[nagents-1]->topologyOptTime)
|
|
{
|
|
if (nagents >= maxAgents)
|
|
return nagents;
|
|
slot = nagents;
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = 0; i < nagents; ++i)
|
|
if (newag->topologyOptTime >= agents[i]->topologyOptTime)
|
|
break;
|
|
|
|
const int tgt = i+1;
|
|
const int n = dtMin(nagents-i, maxAgents-tgt);
|
|
|
|
dtAssert(tgt+n <= maxAgents);
|
|
|
|
if (n > 0)
|
|
memmove(&agents[tgt], &agents[i], sizeof(dtCrowdAgent*)*n);
|
|
slot = i;
|
|
}
|
|
|
|
agents[slot] = newag;
|
|
|
|
return dtMin(nagents+1, maxAgents);
|
|
}
|
|
|
|
static int addToPathQueue(dtCrowdAgent* newag, dtCrowdAgent** agents, const int nagents, const int maxAgents)
|
|
{
|
|
// Insert neighbour based on greatest time.
|
|
int slot = 0;
|
|
if (!nagents)
|
|
{
|
|
slot = nagents;
|
|
}
|
|
else if (newag->targetReplanTime <= agents[nagents-1]->targetReplanTime)
|
|
{
|
|
if (nagents >= maxAgents)
|
|
return nagents;
|
|
slot = nagents;
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
for (i = 0; i < nagents; ++i)
|
|
if (newag->targetReplanTime >= agents[i]->targetReplanTime)
|
|
break;
|
|
|
|
const int tgt = i+1;
|
|
const int n = dtMin(nagents-i, maxAgents-tgt);
|
|
|
|
dtAssert(tgt+n <= maxAgents);
|
|
|
|
if (n > 0)
|
|
memmove(&agents[tgt], &agents[i], sizeof(dtCrowdAgent*)*n);
|
|
slot = i;
|
|
}
|
|
|
|
agents[slot] = newag;
|
|
|
|
return dtMin(nagents+1, maxAgents);
|
|
}
|
|
|
|
|
|
/**
|
|
@class dtCrowd
|
|
@par
|
|
|
|
This is the core class of the @ref crowd module. See the @ref crowd documentation for a summary
|
|
of the crowd features.
|
|
|
|
A common method for setting up the crowd is as follows:
|
|
|
|
-# Allocate the crowd using #dtAllocCrowd.
|
|
-# Initialize the crowd using #init().
|
|
-# Set the avoidance configurations using #setObstacleAvoidanceParams().
|
|
-# Add agents using #addAgent() and make an initial movement request using #requestMoveTarget().
|
|
|
|
A common process for managing the crowd is as follows:
|
|
|
|
-# Call #update() to allow the crowd to manage its agents.
|
|
-# Retrieve agent information using #getActiveAgents().
|
|
-# Make movement requests using #requestMoveTarget() when movement goal changes.
|
|
-# Repeat every frame.
|
|
|
|
Some agent configuration settings can be updated using #updateAgentParameters(). But the crowd owns the
|
|
agent position. So it is not possible to update an active agent's position. If agent position
|
|
must be fed back into the crowd, the agent must be removed and re-added.
|
|
|
|
Notes:
|
|
|
|
- Path related information is available for newly added agents only after an #update() has been
|
|
performed.
|
|
- Agent objects are kept in a pool and re-used. So it is important when using agent objects to check the value of
|
|
#dtCrowdAgent::active to determine if the agent is actually in use or not.
|
|
- This class is meant to provide 'local' movement. There is a limit of 256 polygons in the path corridor.
|
|
So it is not meant to provide automatic pathfinding services over long distances.
|
|
|
|
@see dtAllocCrowd(), dtFreeCrowd(), init(), dtCrowdAgent
|
|
|
|
*/
|
|
|
|
dtCrowd::dtCrowd() :
|
|
m_maxAgents(0),
|
|
m_agents(0),
|
|
m_activeAgents(0),
|
|
m_agentAnims(0),
|
|
m_obstacleQuery(0),
|
|
m_grid(0),
|
|
m_pathResult(0),
|
|
m_maxPathResult(0),
|
|
m_maxAgentRadius(0),
|
|
m_velocitySampleCount(0),
|
|
m_navquery(0)
|
|
{
|
|
}
|
|
|
|
dtCrowd::~dtCrowd()
|
|
{
|
|
purge();
|
|
}
|
|
|
|
void dtCrowd::purge()
|
|
{
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
m_agents[i].~dtCrowdAgent();
|
|
dtFree(m_agents);
|
|
m_agents = 0;
|
|
m_maxAgents = 0;
|
|
|
|
dtFree(m_activeAgents);
|
|
m_activeAgents = 0;
|
|
|
|
dtFree(m_agentAnims);
|
|
m_agentAnims = 0;
|
|
|
|
dtFree(m_pathResult);
|
|
m_pathResult = 0;
|
|
|
|
dtFreeProximityGrid(m_grid);
|
|
m_grid = 0;
|
|
|
|
dtFreeObstacleAvoidanceQuery(m_obstacleQuery);
|
|
m_obstacleQuery = 0;
|
|
|
|
dtFreeNavMeshQuery(m_navquery);
|
|
m_navquery = 0;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// May be called more than once to purge and re-initialize the crowd.
|
|
bool dtCrowd::init(const int maxAgents, const float maxAgentRadius, dtNavMesh* nav)
|
|
{
|
|
purge();
|
|
|
|
m_maxAgents = maxAgents;
|
|
m_maxAgentRadius = maxAgentRadius;
|
|
|
|
// Larger than agent radius because it is also used for agent recovery.
|
|
dtVset(m_agentPlacementHalfExtents, m_maxAgentRadius*2.0f, m_maxAgentRadius*1.5f, m_maxAgentRadius*2.0f);
|
|
|
|
m_grid = dtAllocProximityGrid();
|
|
if (!m_grid)
|
|
return false;
|
|
if (!m_grid->init(m_maxAgents*4, maxAgentRadius*3))
|
|
return false;
|
|
|
|
m_obstacleQuery = dtAllocObstacleAvoidanceQuery();
|
|
if (!m_obstacleQuery)
|
|
return false;
|
|
if (!m_obstacleQuery->init(6, 8))
|
|
return false;
|
|
|
|
// Init obstacle query params.
|
|
memset(m_obstacleQueryParams, 0, sizeof(m_obstacleQueryParams));
|
|
for (int i = 0; i < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS; ++i)
|
|
{
|
|
dtObstacleAvoidanceParams* params = &m_obstacleQueryParams[i];
|
|
params->velBias = 0.4f;
|
|
params->weightDesVel = 2.0f;
|
|
params->weightCurVel = 0.75f;
|
|
params->weightSide = 0.75f;
|
|
params->weightToi = 2.5f;
|
|
params->horizTime = 2.5f;
|
|
params->gridSize = 33;
|
|
params->adaptiveDivs = 7;
|
|
params->adaptiveRings = 2;
|
|
params->adaptiveDepth = 5;
|
|
}
|
|
|
|
// Allocate temp buffer for merging paths.
|
|
m_maxPathResult = 256;
|
|
m_pathResult = (dtPolyRef*)dtAlloc(sizeof(dtPolyRef)*m_maxPathResult, DT_ALLOC_PERM);
|
|
if (!m_pathResult)
|
|
return false;
|
|
|
|
if (!m_pathq.init(m_maxPathResult, MAX_PATHQUEUE_NODES, nav))
|
|
return false;
|
|
|
|
m_agents = (dtCrowdAgent*)dtAlloc(sizeof(dtCrowdAgent)*m_maxAgents, DT_ALLOC_PERM);
|
|
if (!m_agents)
|
|
return false;
|
|
|
|
m_activeAgents = (dtCrowdAgent**)dtAlloc(sizeof(dtCrowdAgent*)*m_maxAgents, DT_ALLOC_PERM);
|
|
if (!m_activeAgents)
|
|
return false;
|
|
|
|
m_agentAnims = (dtCrowdAgentAnimation*)dtAlloc(sizeof(dtCrowdAgentAnimation)*m_maxAgents, DT_ALLOC_PERM);
|
|
if (!m_agentAnims)
|
|
return false;
|
|
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
new(&m_agents[i]) dtCrowdAgent();
|
|
m_agents[i].active = false;
|
|
if (!m_agents[i].corridor.init(m_maxPathResult))
|
|
return false;
|
|
}
|
|
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
m_agentAnims[i].active = false;
|
|
}
|
|
|
|
// The navquery is mostly used for local searches, no need for large node pool.
|
|
m_navquery = dtAllocNavMeshQuery();
|
|
if (!m_navquery)
|
|
return false;
|
|
if (dtStatusFailed(m_navquery->init(nav, MAX_COMMON_NODES)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void dtCrowd::setObstacleAvoidanceParams(const int idx, const dtObstacleAvoidanceParams* params)
|
|
{
|
|
if (idx >= 0 && idx < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS)
|
|
memcpy(&m_obstacleQueryParams[idx], params, sizeof(dtObstacleAvoidanceParams));
|
|
}
|
|
|
|
const dtObstacleAvoidanceParams* dtCrowd::getObstacleAvoidanceParams(const int idx) const
|
|
{
|
|
if (idx >= 0 && idx < DT_CROWD_MAX_OBSTAVOIDANCE_PARAMS)
|
|
return &m_obstacleQueryParams[idx];
|
|
return 0;
|
|
}
|
|
|
|
int dtCrowd::getAgentCount() const
|
|
{
|
|
return m_maxAgents;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// Agents in the pool may not be in use. Check #dtCrowdAgent.active before using the returned object.
|
|
const dtCrowdAgent* dtCrowd::getAgent(const int idx)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return 0;
|
|
return &m_agents[idx];
|
|
}
|
|
|
|
///
|
|
/// Agents in the pool may not be in use. Check #dtCrowdAgent.active before using the returned object.
|
|
dtCrowdAgent* dtCrowd::getEditableAgent(const int idx)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return 0;
|
|
return &m_agents[idx];
|
|
}
|
|
|
|
void dtCrowd::updateAgentParameters(const int idx, const dtCrowdAgentParams* params)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return;
|
|
memcpy(&m_agents[idx].params, params, sizeof(dtCrowdAgentParams));
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// The agent's position will be constrained to the surface of the navigation mesh.
|
|
int dtCrowd::addAgent(const float* pos, const dtCrowdAgentParams* params)
|
|
{
|
|
// Find empty slot.
|
|
int idx = -1;
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
if (!m_agents[i].active)
|
|
{
|
|
idx = i;
|
|
break;
|
|
}
|
|
}
|
|
if (idx == -1)
|
|
return -1;
|
|
|
|
dtCrowdAgent* ag = &m_agents[idx];
|
|
|
|
updateAgentParameters(idx, params);
|
|
|
|
// Find nearest position on navmesh and place the agent there.
|
|
float nearest[3];
|
|
dtPolyRef ref = 0;
|
|
dtVcopy(nearest, pos);
|
|
dtStatus status = m_navquery->findNearestPoly(pos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &ref, nearest);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
dtVcopy(nearest, pos);
|
|
ref = 0;
|
|
}
|
|
|
|
ag->corridor.reset(ref, nearest);
|
|
ag->boundary.reset();
|
|
ag->partial = false;
|
|
|
|
ag->topologyOptTime = 0;
|
|
ag->targetReplanTime = 0;
|
|
ag->nneis = 0;
|
|
|
|
dtVset(ag->dvel, 0,0,0);
|
|
dtVset(ag->nvel, 0,0,0);
|
|
dtVset(ag->vel, 0,0,0);
|
|
dtVcopy(ag->npos, nearest);
|
|
|
|
ag->desiredSpeed = 0;
|
|
|
|
if (ref)
|
|
ag->state = DT_CROWDAGENT_STATE_WALKING;
|
|
else
|
|
ag->state = DT_CROWDAGENT_STATE_INVALID;
|
|
|
|
ag->targetState = DT_CROWDAGENT_TARGET_NONE;
|
|
|
|
ag->active = true;
|
|
|
|
return idx;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// The agent is deactivated and will no longer be processed. Its #dtCrowdAgent object
|
|
/// is not removed from the pool. It is marked as inactive so that it is available for reuse.
|
|
void dtCrowd::removeAgent(const int idx)
|
|
{
|
|
if (idx >= 0 && idx < m_maxAgents)
|
|
{
|
|
m_agents[idx].active = false;
|
|
}
|
|
}
|
|
|
|
bool dtCrowd::requestMoveTargetReplan(const int idx, dtPolyRef ref, const float* pos)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return false;
|
|
|
|
dtCrowdAgent* ag = &m_agents[idx];
|
|
|
|
// Initialize request.
|
|
ag->targetRef = ref;
|
|
dtVcopy(ag->targetPos, pos);
|
|
ag->targetPathqRef = DT_PATHQ_INVALID;
|
|
ag->targetReplan = true;
|
|
if (ag->targetRef)
|
|
ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING;
|
|
else
|
|
ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// @par
|
|
///
|
|
/// This method is used when a new target is set.
|
|
///
|
|
/// The position will be constrained to the surface of the navigation mesh.
|
|
///
|
|
/// The request will be processed during the next #update().
|
|
bool dtCrowd::requestMoveTarget(const int idx, dtPolyRef ref, const float* pos)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return false;
|
|
if (!ref)
|
|
return false;
|
|
|
|
dtCrowdAgent* ag = &m_agents[idx];
|
|
|
|
// Initialize request.
|
|
ag->targetRef = ref;
|
|
dtVcopy(ag->targetPos, pos);
|
|
ag->targetPathqRef = DT_PATHQ_INVALID;
|
|
ag->targetReplan = false;
|
|
if (ag->targetRef)
|
|
ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING;
|
|
else
|
|
ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool dtCrowd::requestMoveVelocity(const int idx, const float* vel)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return false;
|
|
|
|
dtCrowdAgent* ag = &m_agents[idx];
|
|
|
|
// Initialize request.
|
|
ag->targetRef = 0;
|
|
dtVcopy(ag->targetPos, vel);
|
|
ag->targetPathqRef = DT_PATHQ_INVALID;
|
|
ag->targetReplan = false;
|
|
ag->targetState = DT_CROWDAGENT_TARGET_VELOCITY;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool dtCrowd::resetMoveTarget(const int idx)
|
|
{
|
|
if (idx < 0 || idx >= m_maxAgents)
|
|
return false;
|
|
|
|
dtCrowdAgent* ag = &m_agents[idx];
|
|
|
|
// Initialize request.
|
|
ag->targetRef = 0;
|
|
dtVset(ag->targetPos, 0,0,0);
|
|
dtVset(ag->dvel, 0,0,0);
|
|
ag->targetPathqRef = DT_PATHQ_INVALID;
|
|
ag->targetReplan = false;
|
|
ag->targetState = DT_CROWDAGENT_TARGET_NONE;
|
|
|
|
return true;
|
|
}
|
|
|
|
int dtCrowd::getActiveAgents(dtCrowdAgent** agents, const int maxAgents)
|
|
{
|
|
int n = 0;
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
if (!m_agents[i].active) continue;
|
|
if (n < maxAgents)
|
|
agents[n++] = &m_agents[i];
|
|
}
|
|
return n;
|
|
}
|
|
|
|
|
|
void dtCrowd::updateMoveRequest(const float /*dt*/)
|
|
{
|
|
const int PATH_MAX_AGENTS = 8;
|
|
dtCrowdAgent* queue[PATH_MAX_AGENTS];
|
|
int nqueue = 0;
|
|
|
|
// Fire off new requests.
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = &m_agents[i];
|
|
if (!ag->active)
|
|
continue;
|
|
if (ag->state == DT_CROWDAGENT_STATE_INVALID)
|
|
continue;
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
continue;
|
|
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_REQUESTING)
|
|
{
|
|
const dtPolyRef* path = ag->corridor.getPath();
|
|
const int npath = ag->corridor.getPathCount();
|
|
dtAssert(npath);
|
|
|
|
static const int MAX_RES = 32;
|
|
float reqPos[3];
|
|
dtPolyRef reqPath[MAX_RES]; // The path to the request location
|
|
int reqPathCount = 0;
|
|
|
|
// Quick search towards the goal.
|
|
static const int MAX_ITER = 20;
|
|
m_navquery->initSlicedFindPath(path[0], ag->targetRef, ag->npos, ag->targetPos, &m_filters[ag->params.queryFilterType]);
|
|
m_navquery->updateSlicedFindPath(MAX_ITER, 0);
|
|
dtStatus status = 0;
|
|
if (ag->targetReplan) // && npath > 10)
|
|
{
|
|
// Try to use existing steady path during replan if possible.
|
|
status = m_navquery->finalizeSlicedFindPathPartial(path, npath, reqPath, &reqPathCount, MAX_RES);
|
|
}
|
|
else
|
|
{
|
|
// Try to move towards target when goal changes.
|
|
status = m_navquery->finalizeSlicedFindPath(reqPath, &reqPathCount, MAX_RES);
|
|
}
|
|
|
|
if (!dtStatusFailed(status) && reqPathCount > 0)
|
|
{
|
|
// In progress or succeed.
|
|
if (reqPath[reqPathCount-1] != ag->targetRef)
|
|
{
|
|
// Partial path, constrain target position inside the last polygon.
|
|
status = m_navquery->closestPointOnPoly(reqPath[reqPathCount-1], ag->targetPos, reqPos, 0);
|
|
if (dtStatusFailed(status))
|
|
reqPathCount = 0;
|
|
}
|
|
else
|
|
{
|
|
dtVcopy(reqPos, ag->targetPos);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
reqPathCount = 0;
|
|
}
|
|
|
|
if (!reqPathCount)
|
|
{
|
|
// Could not find path, start the request from current location.
|
|
dtVcopy(reqPos, ag->npos);
|
|
reqPath[0] = path[0];
|
|
reqPathCount = 1;
|
|
}
|
|
|
|
ag->corridor.setCorridor(reqPos, reqPath, reqPathCount);
|
|
ag->boundary.reset();
|
|
ag->partial = false;
|
|
|
|
if (reqPath[reqPathCount-1] == ag->targetRef)
|
|
{
|
|
ag->targetState = DT_CROWDAGENT_TARGET_VALID;
|
|
ag->targetReplanTime = 0.0;
|
|
}
|
|
else
|
|
{
|
|
// The path is longer or potentially unreachable, full plan.
|
|
ag->targetState = DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE;
|
|
}
|
|
}
|
|
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_QUEUE)
|
|
{
|
|
nqueue = addToPathQueue(ag, queue, nqueue, PATH_MAX_AGENTS);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nqueue; ++i)
|
|
{
|
|
dtCrowdAgent* ag = queue[i];
|
|
ag->targetPathqRef = m_pathq.request(ag->corridor.getLastPoly(), ag->targetRef,
|
|
ag->corridor.getTarget(), ag->targetPos, &m_filters[ag->params.queryFilterType]);
|
|
if (ag->targetPathqRef != DT_PATHQ_INVALID)
|
|
ag->targetState = DT_CROWDAGENT_TARGET_WAITING_FOR_PATH;
|
|
}
|
|
|
|
|
|
// Update requests.
|
|
m_pathq.update(MAX_ITERS_PER_UPDATE);
|
|
|
|
dtStatus status;
|
|
|
|
// Process path results.
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = &m_agents[i];
|
|
if (!ag->active)
|
|
continue;
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
continue;
|
|
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_WAITING_FOR_PATH)
|
|
{
|
|
// Poll path queue.
|
|
status = m_pathq.getRequestStatus(ag->targetPathqRef);
|
|
if (dtStatusFailed(status))
|
|
{
|
|
// Path find failed, retry if the target location is still valid.
|
|
ag->targetPathqRef = DT_PATHQ_INVALID;
|
|
if (ag->targetRef)
|
|
ag->targetState = DT_CROWDAGENT_TARGET_REQUESTING;
|
|
else
|
|
ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
|
|
ag->targetReplanTime = 0.0;
|
|
}
|
|
else if (dtStatusSucceed(status))
|
|
{
|
|
const dtPolyRef* path = ag->corridor.getPath();
|
|
const int npath = ag->corridor.getPathCount();
|
|
dtAssert(npath);
|
|
|
|
// Apply results.
|
|
float targetPos[3];
|
|
dtVcopy(targetPos, ag->targetPos);
|
|
|
|
dtPolyRef* res = m_pathResult;
|
|
bool valid = true;
|
|
int nres = 0;
|
|
status = m_pathq.getPathResult(ag->targetPathqRef, res, &nres, m_maxPathResult);
|
|
if (dtStatusFailed(status) || !nres)
|
|
valid = false;
|
|
|
|
if (dtStatusDetail(status, DT_PARTIAL_RESULT))
|
|
ag->partial = true;
|
|
else
|
|
ag->partial = false;
|
|
|
|
// Merge result and existing path.
|
|
// The agent might have moved whilst the request is
|
|
// being processed, so the path may have changed.
|
|
// We assume that the end of the path is at the same location
|
|
// where the request was issued.
|
|
|
|
// The last ref in the old path should be the same as
|
|
// the location where the request was issued..
|
|
if (valid && path[npath-1] != res[0])
|
|
valid = false;
|
|
|
|
if (valid)
|
|
{
|
|
// Put the old path infront of the old path.
|
|
if (npath > 1)
|
|
{
|
|
// Make space for the old path.
|
|
if ((npath-1)+nres > m_maxPathResult)
|
|
nres = m_maxPathResult - (npath-1);
|
|
|
|
memmove(res+npath-1, res, sizeof(dtPolyRef)*nres);
|
|
// Copy old path in the beginning.
|
|
memcpy(res, path, sizeof(dtPolyRef)*(npath-1));
|
|
nres += npath-1;
|
|
|
|
// Remove trackbacks
|
|
for (int j = 0; j < nres; ++j)
|
|
{
|
|
if (j-1 >= 0 && j+1 < nres)
|
|
{
|
|
if (res[j-1] == res[j+1])
|
|
{
|
|
memmove(res+(j-1), res+(j+1), sizeof(dtPolyRef)*(nres-(j+1)));
|
|
nres -= 2;
|
|
j -= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// Check for partial path.
|
|
if (res[nres-1] != ag->targetRef)
|
|
{
|
|
// Partial path, constrain target position inside the last polygon.
|
|
float nearest[3];
|
|
status = m_navquery->closestPointOnPoly(res[nres-1], targetPos, nearest, 0);
|
|
if (dtStatusSucceed(status))
|
|
dtVcopy(targetPos, nearest);
|
|
else
|
|
valid = false;
|
|
}
|
|
}
|
|
|
|
if (valid)
|
|
{
|
|
// Set current corridor.
|
|
ag->corridor.setCorridor(targetPos, res, nres);
|
|
// Force to update boundary.
|
|
ag->boundary.reset();
|
|
ag->targetState = DT_CROWDAGENT_TARGET_VALID;
|
|
}
|
|
else
|
|
{
|
|
// Something went wrong.
|
|
ag->targetState = DT_CROWDAGENT_TARGET_FAILED;
|
|
}
|
|
|
|
ag->targetReplanTime = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
void dtCrowd::updateTopologyOptimization(dtCrowdAgent** agents, const int nagents, const float dt)
|
|
{
|
|
if (!nagents)
|
|
return;
|
|
|
|
const float OPT_TIME_THR = 0.5f; // seconds
|
|
const int OPT_MAX_AGENTS = 1;
|
|
dtCrowdAgent* queue[OPT_MAX_AGENTS];
|
|
int nqueue = 0;
|
|
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
continue;
|
|
if ((ag->params.updateFlags & DT_CROWD_OPTIMIZE_TOPO) == 0)
|
|
continue;
|
|
ag->topologyOptTime += dt;
|
|
if (ag->topologyOptTime >= OPT_TIME_THR)
|
|
nqueue = addToOptQueue(ag, queue, nqueue, OPT_MAX_AGENTS);
|
|
}
|
|
|
|
for (int i = 0; i < nqueue; ++i)
|
|
{
|
|
dtCrowdAgent* ag = queue[i];
|
|
ag->corridor.optimizePathTopology(m_navquery, &m_filters[ag->params.queryFilterType]);
|
|
ag->topologyOptTime = 0;
|
|
}
|
|
|
|
}
|
|
|
|
void dtCrowd::checkPathValidity(dtCrowdAgent** agents, const int nagents, const float dt)
|
|
{
|
|
static const int CHECK_LOOKAHEAD = 10;
|
|
static const float TARGET_REPLAN_DELAY = 1.0; // seconds
|
|
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
|
|
ag->targetReplanTime += dt;
|
|
|
|
bool replan = false;
|
|
|
|
// First check that the current location is valid.
|
|
const int idx = getAgentIndex(ag);
|
|
float agentPos[3];
|
|
dtPolyRef agentRef = ag->corridor.getFirstPoly();
|
|
dtVcopy(agentPos, ag->npos);
|
|
if (!m_navquery->isValidPolyRef(agentRef, &m_filters[ag->params.queryFilterType]))
|
|
{
|
|
// Current location is not valid, try to reposition.
|
|
// TODO: this can snap agents, how to handle that?
|
|
float nearest[3];
|
|
dtVcopy(nearest, agentPos);
|
|
agentRef = 0;
|
|
m_navquery->findNearestPoly(ag->npos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &agentRef, nearest);
|
|
dtVcopy(agentPos, nearest);
|
|
|
|
if (!agentRef)
|
|
{
|
|
// Could not find location in navmesh, set state to invalid.
|
|
ag->corridor.reset(0, agentPos);
|
|
ag->partial = false;
|
|
ag->boundary.reset();
|
|
ag->state = DT_CROWDAGENT_STATE_INVALID;
|
|
continue;
|
|
}
|
|
|
|
// Make sure the first polygon is valid, but leave other valid
|
|
// polygons in the path so that replanner can adjust the path better.
|
|
ag->corridor.fixPathStart(agentRef, agentPos);
|
|
// ag->corridor.trimInvalidPath(agentRef, agentPos, m_navquery, &m_filter);
|
|
ag->boundary.reset();
|
|
dtVcopy(ag->npos, agentPos);
|
|
|
|
replan = true;
|
|
}
|
|
|
|
// If the agent does not have move target or is controlled by velocity, no need to recover the target nor replan.
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
continue;
|
|
|
|
// Try to recover move request position.
|
|
if (ag->targetState != DT_CROWDAGENT_TARGET_NONE && ag->targetState != DT_CROWDAGENT_TARGET_FAILED)
|
|
{
|
|
if (!m_navquery->isValidPolyRef(ag->targetRef, &m_filters[ag->params.queryFilterType]))
|
|
{
|
|
// Current target is not valid, try to reposition.
|
|
float nearest[3];
|
|
dtVcopy(nearest, ag->targetPos);
|
|
ag->targetRef = 0;
|
|
m_navquery->findNearestPoly(ag->targetPos, m_agentPlacementHalfExtents, &m_filters[ag->params.queryFilterType], &ag->targetRef, nearest);
|
|
dtVcopy(ag->targetPos, nearest);
|
|
replan = true;
|
|
}
|
|
if (!ag->targetRef)
|
|
{
|
|
// Failed to reposition target, fail moverequest.
|
|
ag->corridor.reset(agentRef, agentPos);
|
|
ag->partial = false;
|
|
ag->targetState = DT_CROWDAGENT_TARGET_NONE;
|
|
}
|
|
}
|
|
|
|
// If nearby corridor is not valid, replan.
|
|
if (!ag->corridor.isValid(CHECK_LOOKAHEAD, m_navquery, &m_filters[ag->params.queryFilterType]))
|
|
{
|
|
// Fix current path.
|
|
// ag->corridor.trimInvalidPath(agentRef, agentPos, m_navquery, &m_filter);
|
|
// ag->boundary.reset();
|
|
replan = true;
|
|
}
|
|
|
|
// If the end of the path is near and it is not the requested location, replan.
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_VALID)
|
|
{
|
|
if (ag->targetReplanTime > TARGET_REPLAN_DELAY &&
|
|
ag->corridor.getPathCount() < CHECK_LOOKAHEAD &&
|
|
ag->corridor.getLastPoly() != ag->targetRef)
|
|
replan = true;
|
|
}
|
|
|
|
// Try to replan path to goal.
|
|
if (replan)
|
|
{
|
|
if (ag->targetState != DT_CROWDAGENT_TARGET_NONE)
|
|
{
|
|
requestMoveTargetReplan(idx, ag->targetRef, ag->targetPos);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void dtCrowd::update(const float dt, dtCrowdAgentDebugInfo* debug)
|
|
{
|
|
m_velocitySampleCount = 0;
|
|
|
|
const int debugIdx = debug ? debug->idx : -1;
|
|
|
|
dtCrowdAgent** agents = m_activeAgents;
|
|
int nagents = getActiveAgents(agents, m_maxAgents);
|
|
|
|
// Check that all agents still have valid paths.
|
|
checkPathValidity(agents, nagents, dt);
|
|
|
|
// Update async move request and path finder.
|
|
updateMoveRequest(dt);
|
|
|
|
// Optimize path topology.
|
|
updateTopologyOptimization(agents, nagents, dt);
|
|
|
|
// Register agents to proximity grid.
|
|
m_grid->clear();
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
const float* p = ag->npos;
|
|
const float r = ag->params.radius;
|
|
m_grid->addItem((unsigned short)i, p[0]-r, p[2]-r, p[0]+r, p[2]+r);
|
|
}
|
|
|
|
// Get nearby navmesh segments and agents to collide with.
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
|
|
// Update the collision boundary after certain distance has been passed or
|
|
// if it has become invalid.
|
|
const float updateThr = ag->params.collisionQueryRange*0.25f;
|
|
if (dtVdist2DSqr(ag->npos, ag->boundary.getCenter()) > dtSqr(updateThr) ||
|
|
!ag->boundary.isValid(m_navquery, &m_filters[ag->params.queryFilterType]))
|
|
{
|
|
ag->boundary.update(ag->corridor.getFirstPoly(), ag->npos, ag->params.collisionQueryRange,
|
|
m_navquery, &m_filters[ag->params.queryFilterType]);
|
|
}
|
|
// Query neighbour agents
|
|
ag->nneis = getNeighbours(ag->npos, ag->params.height, ag->params.collisionQueryRange,
|
|
ag, ag->neis, DT_CROWDAGENT_MAX_NEIGHBOURS,
|
|
agents, nagents, m_grid);
|
|
for (int j = 0; j < ag->nneis; j++)
|
|
ag->neis[j].idx = getAgentIndex(agents[ag->neis[j].idx]);
|
|
}
|
|
|
|
// Find next corner to steer to.
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
continue;
|
|
|
|
// Find corners for steering
|
|
ag->ncorners = ag->corridor.findCorners(ag->cornerVerts, ag->cornerFlags, ag->cornerPolys,
|
|
DT_CROWDAGENT_MAX_CORNERS, m_navquery, &m_filters[ag->params.queryFilterType]);
|
|
|
|
// Check to see if the corner after the next corner is directly visible,
|
|
// and short cut to there.
|
|
if ((ag->params.updateFlags & DT_CROWD_OPTIMIZE_VIS) && ag->ncorners > 0)
|
|
{
|
|
const float* target = &ag->cornerVerts[dtMin(1,ag->ncorners-1)*3];
|
|
ag->corridor.optimizePathVisibility(target, ag->params.pathOptimizationRange, m_navquery, &m_filters[ag->params.queryFilterType]);
|
|
|
|
// Copy data for debug purposes.
|
|
if (debugIdx == i)
|
|
{
|
|
dtVcopy(debug->optStart, ag->corridor.getPos());
|
|
dtVcopy(debug->optEnd, target);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Copy data for debug purposes.
|
|
if (debugIdx == i)
|
|
{
|
|
dtVset(debug->optStart, 0,0,0);
|
|
dtVset(debug->optEnd, 0,0,0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Trigger off-mesh connections (depends on corners).
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
continue;
|
|
|
|
// Check
|
|
const float triggerRadius = ag->params.radius*2.25f;
|
|
if (overOffmeshConnection(ag, triggerRadius))
|
|
{
|
|
// Prepare to off-mesh connection.
|
|
const int idx = (int)(ag - m_agents);
|
|
dtCrowdAgentAnimation* anim = &m_agentAnims[idx];
|
|
|
|
// Adjust the path over the off-mesh connection.
|
|
dtPolyRef refs[2];
|
|
if (ag->corridor.moveOverOffmeshConnection(ag->cornerPolys[ag->ncorners-1], refs,
|
|
anim->startPos, anim->endPos, m_navquery))
|
|
{
|
|
dtVcopy(anim->initPos, ag->npos);
|
|
anim->polyRef = refs[1];
|
|
anim->active = true;
|
|
anim->t = 0.0f;
|
|
anim->tmax = (dtVdist2D(anim->startPos, anim->endPos) / ag->params.maxSpeed) * 0.5f;
|
|
|
|
ag->state = DT_CROWDAGENT_STATE_OFFMESH;
|
|
ag->ncorners = 0;
|
|
ag->nneis = 0;
|
|
continue;
|
|
}
|
|
else
|
|
{
|
|
// Path validity check will ensure that bad/blocked connections will be replanned.
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate steering.
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE)
|
|
continue;
|
|
|
|
float dvel[3] = {0,0,0};
|
|
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
{
|
|
dtVcopy(dvel, ag->targetPos);
|
|
ag->desiredSpeed = dtVlen(ag->targetPos);
|
|
}
|
|
else
|
|
{
|
|
// Calculate steering direction.
|
|
if (ag->params.updateFlags & DT_CROWD_ANTICIPATE_TURNS)
|
|
calcSmoothSteerDirection(ag, dvel);
|
|
else
|
|
calcStraightSteerDirection(ag, dvel);
|
|
|
|
// Calculate speed scale, which tells the agent to slowdown at the end of the path.
|
|
const float slowDownRadius = ag->params.radius*2; // TODO: make less hacky.
|
|
const float speedScale = getDistanceToGoal(ag, slowDownRadius) / slowDownRadius;
|
|
|
|
ag->desiredSpeed = ag->params.maxSpeed;
|
|
dtVscale(dvel, dvel, ag->desiredSpeed * speedScale);
|
|
}
|
|
|
|
// Separation
|
|
if (ag->params.updateFlags & DT_CROWD_SEPARATION)
|
|
{
|
|
const float separationDist = ag->params.collisionQueryRange;
|
|
const float invSeparationDist = 1.0f / separationDist;
|
|
const float separationWeight = ag->params.separationWeight;
|
|
|
|
float w = 0;
|
|
float disp[3] = {0,0,0};
|
|
|
|
for (int j = 0; j < ag->nneis; ++j)
|
|
{
|
|
const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx];
|
|
|
|
float diff[3];
|
|
dtVsub(diff, ag->npos, nei->npos);
|
|
diff[1] = 0;
|
|
|
|
const float distSqr = dtVlenSqr(diff);
|
|
if (distSqr < 0.00001f)
|
|
continue;
|
|
if (distSqr > dtSqr(separationDist))
|
|
continue;
|
|
const float dist = dtMathSqrtf(distSqr);
|
|
const float weight = separationWeight * (1.0f - dtSqr(dist*invSeparationDist));
|
|
|
|
dtVmad(disp, disp, diff, weight/dist);
|
|
w += 1.0f;
|
|
}
|
|
|
|
if (w > 0.0001f)
|
|
{
|
|
// Adjust desired velocity.
|
|
dtVmad(dvel, dvel, disp, 1.0f/w);
|
|
// Clamp desired velocity to desired speed.
|
|
const float speedSqr = dtVlenSqr(dvel);
|
|
const float desiredSqr = dtSqr(ag->desiredSpeed);
|
|
if (speedSqr > desiredSqr)
|
|
dtVscale(dvel, dvel, desiredSqr/speedSqr);
|
|
}
|
|
}
|
|
|
|
// Set the desired velocity.
|
|
dtVcopy(ag->dvel, dvel);
|
|
}
|
|
|
|
// Velocity planning.
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
|
|
if (ag->params.updateFlags & DT_CROWD_OBSTACLE_AVOIDANCE)
|
|
{
|
|
m_obstacleQuery->reset();
|
|
|
|
// Add neighbours as obstacles.
|
|
for (int j = 0; j < ag->nneis; ++j)
|
|
{
|
|
const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx];
|
|
m_obstacleQuery->addCircle(nei->npos, nei->params.radius, nei->vel, nei->dvel);
|
|
}
|
|
|
|
// Append neighbour segments as obstacles.
|
|
for (int j = 0; j < ag->boundary.getSegmentCount(); ++j)
|
|
{
|
|
const float* s = ag->boundary.getSegment(j);
|
|
if (dtTriArea2D(ag->npos, s, s+3) < 0.0f)
|
|
continue;
|
|
m_obstacleQuery->addSegment(s, s+3);
|
|
}
|
|
|
|
dtObstacleAvoidanceDebugData* vod = 0;
|
|
if (debugIdx == i)
|
|
vod = debug->vod;
|
|
|
|
// Sample new safe velocity.
|
|
bool adaptive = true;
|
|
int ns = 0;
|
|
|
|
const dtObstacleAvoidanceParams* params = &m_obstacleQueryParams[ag->params.obstacleAvoidanceType];
|
|
|
|
if (adaptive)
|
|
{
|
|
ns = m_obstacleQuery->sampleVelocityAdaptive(ag->npos, ag->params.radius, ag->desiredSpeed,
|
|
ag->vel, ag->dvel, ag->nvel, params, vod);
|
|
}
|
|
else
|
|
{
|
|
ns = m_obstacleQuery->sampleVelocityGrid(ag->npos, ag->params.radius, ag->desiredSpeed,
|
|
ag->vel, ag->dvel, ag->nvel, params, vod);
|
|
}
|
|
m_velocitySampleCount += ns;
|
|
}
|
|
else
|
|
{
|
|
// If not using velocity planning, new velocity is directly the desired velocity.
|
|
dtVcopy(ag->nvel, ag->dvel);
|
|
}
|
|
}
|
|
|
|
// Integrate.
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
integrate(ag, dt);
|
|
}
|
|
|
|
// Handle collisions.
|
|
static const float COLLISION_RESOLVE_FACTOR = 0.7f;
|
|
|
|
for (int iter = 0; iter < 4; ++iter)
|
|
{
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
const int idx0 = getAgentIndex(ag);
|
|
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
|
|
dtVset(ag->disp, 0,0,0);
|
|
|
|
float w = 0;
|
|
|
|
for (int j = 0; j < ag->nneis; ++j)
|
|
{
|
|
const dtCrowdAgent* nei = &m_agents[ag->neis[j].idx];
|
|
const int idx1 = getAgentIndex(nei);
|
|
|
|
float diff[3];
|
|
dtVsub(diff, ag->npos, nei->npos);
|
|
diff[1] = 0;
|
|
|
|
float dist = dtVlenSqr(diff);
|
|
if (dist > dtSqr(ag->params.radius + nei->params.radius))
|
|
continue;
|
|
dist = dtMathSqrtf(dist);
|
|
float pen = (ag->params.radius + nei->params.radius) - dist;
|
|
if (dist < 0.0001f)
|
|
{
|
|
// Agents on top of each other, try to choose diverging separation directions.
|
|
if (idx0 > idx1)
|
|
dtVset(diff, -ag->dvel[2],0,ag->dvel[0]);
|
|
else
|
|
dtVset(diff, ag->dvel[2],0,-ag->dvel[0]);
|
|
pen = 0.01f;
|
|
}
|
|
else
|
|
{
|
|
pen = (1.0f/dist) * (pen*0.5f) * COLLISION_RESOLVE_FACTOR;
|
|
}
|
|
|
|
dtVmad(ag->disp, ag->disp, diff, pen);
|
|
|
|
w += 1.0f;
|
|
}
|
|
|
|
if (w > 0.0001f)
|
|
{
|
|
const float iw = 1.0f / w;
|
|
dtVscale(ag->disp, ag->disp, iw);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
|
|
dtVadd(ag->npos, ag->npos, ag->disp);
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < nagents; ++i)
|
|
{
|
|
dtCrowdAgent* ag = agents[i];
|
|
if (ag->state != DT_CROWDAGENT_STATE_WALKING)
|
|
continue;
|
|
|
|
// Move along navmesh.
|
|
ag->corridor.movePosition(ag->npos, m_navquery, &m_filters[ag->params.queryFilterType]);
|
|
// Get valid constrained position back.
|
|
dtVcopy(ag->npos, ag->corridor.getPos());
|
|
|
|
// If not using path, truncate the corridor to just one poly.
|
|
if (ag->targetState == DT_CROWDAGENT_TARGET_NONE || ag->targetState == DT_CROWDAGENT_TARGET_VELOCITY)
|
|
{
|
|
ag->corridor.reset(ag->corridor.getFirstPoly(), ag->npos);
|
|
ag->partial = false;
|
|
}
|
|
|
|
}
|
|
|
|
// Update agents using off-mesh connection.
|
|
for (int i = 0; i < m_maxAgents; ++i)
|
|
{
|
|
dtCrowdAgentAnimation* anim = &m_agentAnims[i];
|
|
if (!anim->active)
|
|
continue;
|
|
dtCrowdAgent* ag = agents[i];
|
|
|
|
anim->t += dt;
|
|
if (anim->t > anim->tmax)
|
|
{
|
|
// Reset animation
|
|
anim->active = false;
|
|
// Prepare agent for walking.
|
|
ag->state = DT_CROWDAGENT_STATE_WALKING;
|
|
continue;
|
|
}
|
|
|
|
// Update position
|
|
const float ta = anim->tmax*0.15f;
|
|
const float tb = anim->tmax;
|
|
if (anim->t < ta)
|
|
{
|
|
const float u = tween(anim->t, 0.0, ta);
|
|
dtVlerp(ag->npos, anim->initPos, anim->startPos, u);
|
|
}
|
|
else
|
|
{
|
|
const float u = tween(anim->t, ta, tb);
|
|
dtVlerp(ag->npos, anim->startPos, anim->endPos, u);
|
|
}
|
|
|
|
// Update velocity.
|
|
dtVset(ag->vel, 0,0,0);
|
|
dtVset(ag->dvel, 0,0,0);
|
|
}
|
|
|
|
}
|