1
0
Fork 1
mirror of https://github.com/TES3MP/openmw-tes3mp.git synced 2025-01-20 06:53:52 +00:00
openmw-tes3mp/components/nif/data.cpp
scrawl e8662bea31 Change the way that image origin is converted to OpenGL's lower-left convention
Flip the texture coordinates instead of flipping textures.

This simplifies the TextureManager (no need to worry if the caller wants flipping or not), should make it easier to generalize & multithread it.
2016-02-05 21:03:11 +01:00

271 lines
6.5 KiB
C++

#include "data.hpp"
#include "node.hpp"
#include <osg/Array>
#include <osg/PrimitiveSet>
namespace Nif
{
void NiSkinInstance::read(NIFStream *nif)
{
data.read(nif);
root.read(nif);
bones.read(nif);
}
void NiSkinInstance::post(NIFFile *nif)
{
data.post(nif);
root.post(nif);
bones.post(nif);
if(data.empty() || root.empty())
nif->fail("NiSkinInstance missing root or data");
size_t bnum = bones.length();
if(bnum != data->bones.size())
nif->fail("Mismatch in NiSkinData bone count");
root->makeRootBone(&data->trafo);
for(size_t i=0; i<bnum; i++)
{
if(bones[i].empty())
nif->fail("Oops: Missing bone! Don't know how to handle this.");
bones[i]->makeBone(i, data->bones[i]);
}
}
void ShapeData::read(NIFStream *nif)
{
int verts = nif->getUShort();
vertices = new osg::Vec3Array;
if(nif->getInt())
nif->getVector3s(vertices, verts);
normals = new osg::Vec3Array(osg::Array::BIND_PER_VERTEX);
if(nif->getInt())
nif->getVector3s(normals, verts);
center = nif->getVector3();
radius = nif->getFloat();
colors = new osg::Vec4Array(osg::Array::BIND_PER_VERTEX);
if(nif->getInt())
nif->getVector4s(colors, verts);
// Only the first 6 bits are used as a count. I think the rest are
// flags of some sort.
int uvs = nif->getUShort();
uvs &= 0x3f;
if(nif->getInt())
{
uvlist.resize(uvs);
for(int i = 0;i < uvs;i++)
{
osg::Vec2Array* list = uvlist[i] = new osg::Vec2Array(osg::Array::BIND_PER_VERTEX);
nif->getVector2s(list, verts);
// flip the texture coordinates to convert them to the OpenGL convention of bottom-left image origin
for (unsigned int uv=0; uv<list->size(); ++uv)
{
(*list)[uv] = osg::Vec2((*list)[uv].x(), 1.f - (*list)[uv].y());
}
}
}
}
void NiTriShapeData::read(NIFStream *nif)
{
ShapeData::read(nif);
/*int tris =*/ nif->getUShort();
// We have three times as many vertices as triangles, so this
// is always equal to tris*3.
int cnt = nif->getInt();
triangles = new osg::DrawElementsUShort(osg::PrimitiveSet::TRIANGLES);
nif->getUShorts(triangles, cnt);
// Read the match list, which lists the vertices that are equal to
// vertices. We don't actually need need this for anything, so
// just skip it.
int verts = nif->getUShort();
for(int i=0;i < verts;i++)
{
// Number of vertices matching vertex 'i'
int num = nif->getUShort();
nif->skip(num * sizeof(short));
}
}
void NiAutoNormalParticlesData::read(NIFStream *nif)
{
ShapeData::read(nif);
// Should always match the number of vertices
numParticles = nif->getUShort();
particleRadius = nif->getFloat();
activeCount = nif->getUShort();
if(nif->getInt())
{
int numVerts = vertices->size();
// Particle sizes
nif->getFloats(sizes, numVerts);
}
}
void NiRotatingParticlesData::read(NIFStream *nif)
{
NiAutoNormalParticlesData::read(nif);
if(nif->getInt())
{
int numVerts = vertices->size();
// Rotation quaternions.
nif->getQuaternions(rotations, numVerts);
}
}
void NiPosData::read(NIFStream *nif)
{
mKeyList.reset(new Vector3KeyMap);
mKeyList->read(nif);
}
void NiUVData::read(NIFStream *nif)
{
for(int i = 0;i < 4;i++)
{
mKeyList[i].reset(new FloatKeyMap);
mKeyList[i]->read(nif);
}
}
void NiFloatData::read(NIFStream *nif)
{
mKeyList.reset(new FloatKeyMap);
mKeyList->read(nif);
}
void NiPixelData::read(NIFStream *nif)
{
nif->getInt(); // always 0 or 1
rmask = nif->getInt(); // usually 0xff
gmask = nif->getInt(); // usually 0xff00
bmask = nif->getInt(); // usually 0xff0000
amask = nif->getInt(); // usually 0xff000000 or zero
bpp = nif->getInt();
// Unknown
nif->skip(12);
mips = nif->getInt();
// Bytes per pixel, should be bpp * 8
/*int bytes =*/ nif->getInt();
for(int i=0; i<mips; i++)
{
// Image size and offset in the following data field
/*int x =*/ nif->getInt();
/*int y =*/ nif->getInt();
/*int offset =*/ nif->getInt();
}
// Skip the data
unsigned int dataSize = nif->getInt();
nif->skip(dataSize);
}
void NiColorData::read(NIFStream *nif)
{
mKeyMap.reset(new Vector4KeyMap);
mKeyMap->read(nif);
}
void NiVisData::read(NIFStream *nif)
{
int count = nif->getInt();
mVis.resize(count);
for(size_t i = 0;i < mVis.size();i++)
{
mVis[i].time = nif->getFloat();
mVis[i].isSet = (nif->getChar() != 0);
}
}
void NiSkinData::read(NIFStream *nif)
{
trafo.rotation = nif->getMatrix3();
trafo.pos = nif->getVector3();
trafo.scale = nif->getFloat();
int boneNum = nif->getInt();
nif->getInt(); // -1
bones.resize(boneNum);
for(int i=0;i<boneNum;i++)
{
BoneInfo &bi = bones[i];
bi.trafo.rotation = nif->getMatrix3();
bi.trafo.pos = nif->getVector3();
bi.trafo.scale = nif->getFloat();
bi.boundSphereCenter = nif->getVector3();
bi.boundSphereRadius = nif->getFloat();
// Number of vertex weights
bi.weights.resize(nif->getUShort());
for(size_t j = 0;j < bi.weights.size();j++)
{
bi.weights[j].vertex = nif->getUShort();
bi.weights[j].weight = nif->getFloat();
}
}
}
void NiMorphData::read(NIFStream *nif)
{
int morphCount = nif->getInt();
int vertCount = nif->getInt();
/*relative targets?*/nif->getChar();
mMorphs.resize(morphCount);
for(int i = 0;i < morphCount;i++)
{
mMorphs[i].mKeyFrames.reset(new FloatKeyMap);
mMorphs[i].mKeyFrames->read(nif, true);
mMorphs[i].mVertices = new osg::Vec3Array;
nif->getVector3s(mMorphs[i].mVertices, vertCount);
}
}
void NiKeyframeData::read(NIFStream *nif)
{
mRotations.reset(new QuaternionKeyMap);
mRotations->read(nif);
if(mRotations->mInterpolationType == Vector3KeyMap::sXYZInterpolation)
{
//Chomp unused float
nif->getFloat();
mXRotations.reset(new FloatKeyMap);
mYRotations.reset(new FloatKeyMap);
mZRotations.reset(new FloatKeyMap);
mXRotations->read(nif, true);
mYRotations->read(nif, true);
mZRotations->read(nif, true);
}
mTranslations.reset(new Vector3KeyMap);
mTranslations->read(nif);
mScales.reset(new FloatKeyMap);
mScales->read(nif);
}
} // Namespace